diff options
author | NĂcolas F. R. A. Prado <nfraprado@protonmail.com> | 2020-12-28 14:46:07 +0000 |
---|---|---|
committer | Jonathan Corbet <corbet@lwn.net> | 2020-12-31 15:44:47 -0700 |
commit | 4f8af077a02eed4831885048a10e04daa4e61a72 (patch) | |
tree | a29d2ee06b509478bd6d41ef48ad6f24e8b8f011 /Documentation/kernel-hacking | |
parent | 5c8fe583cce542aa0b84adc939ce85293de36e5e (diff) | |
download | linux-stable-4f8af077a02eed4831885048a10e04daa4e61a72.tar.gz linux-stable-4f8af077a02eed4831885048a10e04daa4e61a72.tar.bz2 linux-stable-4f8af077a02eed4831885048a10e04daa4e61a72.zip |
docs: Fix reST markup when linking to sections
During the process of converting the documentation to reST, some links
were converted using the following wrong syntax (and sometimes using %20
instead of spaces):
`Display text <#section-name-in-html>`__
This syntax isn't valid according to the docutils' spec [1], but more
importantly, it is specific to HTML, since it uses '#' to link to an
HTML anchor.
The right syntax would instead use a docutils hyperlink reference as the
embedded URI to point to the section [2], that is:
`Display text <Section Name_>`__
This syntax works in both HTML and PDF.
The LaTeX toolchain doesn't mind the HTML anchor syntax when generating
the pdf documentation (make pdfdocs), that is, the build succeeds but
the links don't work, but that syntax causes errors when trying to build
using the not-yet-merged rst2pdf:
ValueError: format not resolved, probably missing URL scheme or undefined destination target for 'Forcing%20Quiescent%20States'
So, use the correct syntax in order to have it work in all different
output formats.
[1]: https://docutils.sourceforge.io/docs/ref/rst/restructuredtext.html#reference-names
[2]: https://docutils.sourceforge.io/docs/ref/rst/restructuredtext.html#embedded-uris-and-aliases
Fixes: ccc9971e2147 ("docs: rcu: convert some articles from html to ReST")
Fixes: c8cce10a62aa ("docs: Fix the reference labels in Locking.rst")
Fixes: e548cdeffcd8 ("docs-rst: convert kernel-locking to ReST")
Fixes: 7ddedebb03b7 ("ALSA: doc: ReSTize writing-an-alsa-driver document")
Signed-off-by: NĂcolas F. R. A. Prado <nfraprado@protonmail.com>
Reviewed-by: Takashi Iwai <tiwai@suse.de>
Reviewed-by: Mauro Carvalho Chehab <mchehab+huawei@kernel.org>
Link: https://lore.kernel.org/r/20201228144537.135353-1-nfraprado@protonmail.com
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
Diffstat (limited to 'Documentation/kernel-hacking')
-rw-r--r-- | Documentation/kernel-hacking/locking.rst | 8 |
1 files changed, 4 insertions, 4 deletions
diff --git a/Documentation/kernel-hacking/locking.rst b/Documentation/kernel-hacking/locking.rst index 6ed806e6061b..c3448929a824 100644 --- a/Documentation/kernel-hacking/locking.rst +++ b/Documentation/kernel-hacking/locking.rst @@ -118,11 +118,11 @@ spinlock, but you may block holding a mutex. If you can't lock a mutex, your task will suspend itself, and be woken up when the mutex is released. This means the CPU can do something else while you are waiting. There are many cases when you simply can't sleep (see -`What Functions Are Safe To Call From Interrupts? <#sleeping-things>`__), +`What Functions Are Safe To Call From Interrupts?`_), and so have to use a spinlock instead. Neither type of lock is recursive: see -`Deadlock: Simple and Advanced <#deadlock>`__. +`Deadlock: Simple and Advanced`_. Locks and Uniprocessor Kernels ------------------------------ @@ -179,7 +179,7 @@ perfect world). Note that you can also use spin_lock_irq() or spin_lock_irqsave() here, which stop hardware interrupts -as well: see `Hard IRQ Context <#hard-irq-context>`__. +as well: see `Hard IRQ Context`_. This works perfectly for UP as well: the spin lock vanishes, and this macro simply becomes local_bh_disable() @@ -230,7 +230,7 @@ The Same Softirq ~~~~~~~~~~~~~~~~ The same softirq can run on the other CPUs: you can use a per-CPU array -(see `Per-CPU Data <#per-cpu-data>`__) for better performance. If you're +(see `Per-CPU Data`_) for better performance. If you're going so far as to use a softirq, you probably care about scalable performance enough to justify the extra complexity. |