summaryrefslogtreecommitdiffstats
path: root/Documentation
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2016-04-04 10:50:24 -0700
committerLinus Torvalds <torvalds@linux-foundation.org>2016-04-04 10:50:24 -0700
commit4a2d057e4fc4f9ebd32351837c14c10a0773b956 (patch)
treeb0ed0187a6839ebed4982fe7589b410222fd4b9a /Documentation
parent9735a22799b9214d17d3c231fe377fc852f042e9 (diff)
parent1fa64f198b9f8d6ec0f7aec7c18dc94684391140 (diff)
downloadlinux-stable-4a2d057e4fc4f9ebd32351837c14c10a0773b956.tar.gz
linux-stable-4a2d057e4fc4f9ebd32351837c14c10a0773b956.tar.bz2
linux-stable-4a2d057e4fc4f9ebd32351837c14c10a0773b956.zip
Merge branch 'PAGE_CACHE_SIZE-removal'
Merge PAGE_CACHE_SIZE removal patches from Kirill Shutemov: "PAGE_CACHE_{SIZE,SHIFT,MASK,ALIGN} macros were introduced *long* time ago with promise that one day it will be possible to implement page cache with bigger chunks than PAGE_SIZE. This promise never materialized. And unlikely will. Let's stop pretending that pages in page cache are special. They are not. The first patch with most changes has been done with coccinelle. The second is manual fixups on top. The third patch removes macros definition" [ I was planning to apply this just before rc2, but then I spaced out, so here it is right _after_ rc2 instead. As Kirill suggested as a possibility, I could have decided to only merge the first two patches, and leave the old interfaces for compatibility, but I'd rather get it all done and any out-of-tree modules and patches can trivially do the converstion while still also working with older kernels, so there is little reason to try to maintain the redundant legacy model. - Linus ] * PAGE_CACHE_SIZE-removal: mm: drop PAGE_CACHE_* and page_cache_{get,release} definition mm, fs: remove remaining PAGE_CACHE_* and page_cache_{get,release} usage mm, fs: get rid of PAGE_CACHE_* and page_cache_{get,release} macros
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/filesystems/cramfs.txt2
-rw-r--r--Documentation/filesystems/tmpfs.txt2
-rw-r--r--Documentation/filesystems/vfs.txt4
3 files changed, 4 insertions, 4 deletions
diff --git a/Documentation/filesystems/cramfs.txt b/Documentation/filesystems/cramfs.txt
index 31f53f0ab957..4006298f6707 100644
--- a/Documentation/filesystems/cramfs.txt
+++ b/Documentation/filesystems/cramfs.txt
@@ -38,7 +38,7 @@ the update lasts only as long as the inode is cached in memory, after
which the timestamp reverts to 1970, i.e. moves backwards in time.
Currently, cramfs must be written and read with architectures of the
-same endianness, and can be read only by kernels with PAGE_CACHE_SIZE
+same endianness, and can be read only by kernels with PAGE_SIZE
== 4096. At least the latter of these is a bug, but it hasn't been
decided what the best fix is. For the moment if you have larger pages
you can just change the #define in mkcramfs.c, so long as you don't
diff --git a/Documentation/filesystems/tmpfs.txt b/Documentation/filesystems/tmpfs.txt
index d392e1505f17..d9c11d25bf02 100644
--- a/Documentation/filesystems/tmpfs.txt
+++ b/Documentation/filesystems/tmpfs.txt
@@ -60,7 +60,7 @@ size: The limit of allocated bytes for this tmpfs instance. The
default is half of your physical RAM without swap. If you
oversize your tmpfs instances the machine will deadlock
since the OOM handler will not be able to free that memory.
-nr_blocks: The same as size, but in blocks of PAGE_CACHE_SIZE.
+nr_blocks: The same as size, but in blocks of PAGE_SIZE.
nr_inodes: The maximum number of inodes for this instance. The default
is half of the number of your physical RAM pages, or (on a
machine with highmem) the number of lowmem RAM pages,
diff --git a/Documentation/filesystems/vfs.txt b/Documentation/filesystems/vfs.txt
index b02a7d598258..4164bd6397a2 100644
--- a/Documentation/filesystems/vfs.txt
+++ b/Documentation/filesystems/vfs.txt
@@ -708,9 +708,9 @@ struct address_space_operations {
from the address space. This generally corresponds to either a
truncation, punch hole or a complete invalidation of the address
space (in the latter case 'offset' will always be 0 and 'length'
- will be PAGE_CACHE_SIZE). Any private data associated with the page
+ will be PAGE_SIZE). Any private data associated with the page
should be updated to reflect this truncation. If offset is 0 and
- length is PAGE_CACHE_SIZE, then the private data should be released,
+ length is PAGE_SIZE, then the private data should be released,
because the page must be able to be completely discarded. This may
be done by calling the ->releasepage function, but in this case the
release MUST succeed.