summaryrefslogtreecommitdiffstats
path: root/fs/gfs2/incore.h
diff options
context:
space:
mode:
authorBenjamin Marzinski <bmarzins@redhat.com>2014-05-01 22:26:55 -0500
committerSteven Whitehouse <swhiteho@redhat.com>2014-05-14 10:04:34 +0100
commit24972557b12ce8fd5b6c6847d0e2ee1837ddc13b (patch)
treefb82edff8bfab9d4d1c4df6dd7784dd3c9f85c1b /fs/gfs2/incore.h
parent5a7c6690c2759d686d2c299402327e92ed92ab6c (diff)
downloadlinux-stable-24972557b12ce8fd5b6c6847d0e2ee1837ddc13b.tar.gz
linux-stable-24972557b12ce8fd5b6c6847d0e2ee1837ddc13b.tar.bz2
linux-stable-24972557b12ce8fd5b6c6847d0e2ee1837ddc13b.zip
GFS2: remove transaction glock
GFS2 has a transaction glock, which must be grabbed for every transaction, whose purpose is to deal with freezing the filesystem. Aside from this involving a large amount of locking, it is very easy to make the current fsfreeze code hang on unfreezing. This patch rewrites how gfs2 handles freezing the filesystem. The transaction glock is removed. In it's place is a freeze glock, which is cached (but not held) in a shared state by every node in the cluster when the filesystem is mounted. This lock only needs to be grabbed on freezing, and actions which need to be safe from freezing, like recovery. When a node wants to freeze the filesystem, it grabs this glock exclusively. When the freeze glock state changes on the nodes (either from shared to unlocked, or shared to exclusive), the filesystem does a special log flush. gfs2_log_flush() does all the work for flushing out the and shutting down the incore log, and then it tries to grab the freeze glock in a shared state again. Since the filesystem is stuck in gfs2_log_flush, no new transaction can start, and nothing can be written to disk. Unfreezing the filesytem simply involes dropping the freeze glock, allowing gfs2_log_flush() to grab and then release the shared lock, so it is cached for next time. However, in order for the unfreezing ioctl to occur, gfs2 needs to get a shared lock on the filesystem root directory inode to check permissions. If that glock has already been grabbed exclusively, fsfreeze will be unable to get the shared lock and unfreeze the filesystem. In order to allow the unfreeze, this patch makes gfs2 grab a shared lock on the filesystem root directory during the freeze, and hold it until it unfreezes the filesystem. The functions which need to grab a shared lock in order to allow the unfreeze ioctl to be issued now use the lock grabbed by the freeze code instead. The freeze and unfreeze code take care to make sure that this shared lock will not be dropped while another process is using it. Signed-off-by: Benjamin Marzinski <bmarzins@redhat.com> Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
Diffstat (limited to 'fs/gfs2/incore.h')
-rw-r--r--fs/gfs2/incore.h12
1 files changed, 8 insertions, 4 deletions
diff --git a/fs/gfs2/incore.h b/fs/gfs2/incore.h
index bdf70c18610c..2434a96f95df 100644
--- a/fs/gfs2/incore.h
+++ b/fs/gfs2/incore.h
@@ -465,9 +465,7 @@ struct gfs2_trans {
unsigned int tr_reserved;
unsigned int tr_touched:1;
unsigned int tr_attached:1;
-
- struct gfs2_holder tr_t_gh;
-
+ unsigned int tr_alloced:1;
unsigned int tr_num_buf_new;
unsigned int tr_num_databuf_new;
@@ -682,7 +680,7 @@ struct gfs2_sbd {
struct lm_lockstruct sd_lockstruct;
struct gfs2_holder sd_live_gh;
struct gfs2_glock *sd_rename_gl;
- struct gfs2_glock *sd_trans_gl;
+ struct gfs2_glock *sd_freeze_gl;
wait_queue_head_t sd_glock_wait;
atomic_t sd_glock_disposal;
struct completion sd_locking_init;
@@ -794,6 +792,12 @@ struct gfs2_sbd {
/* For quiescing the filesystem */
struct gfs2_holder sd_freeze_gh;
+ struct gfs2_holder sd_freeze_root_gh;
+ struct gfs2_holder sd_thaw_gh;
+ atomic_t sd_log_freeze;
+ atomic_t sd_frozen_root;
+ wait_queue_head_t sd_frozen_root_wait;
+ wait_queue_head_t sd_log_frozen_wait;
char sd_fsname[GFS2_FSNAME_LEN];
char sd_table_name[GFS2_FSNAME_LEN];