diff options
author | Eric Biggers <ebiggers@google.com> | 2017-04-07 10:58:37 -0700 |
---|---|---|
committer | Theodore Ts'o <tytso@mit.edu> | 2017-05-04 11:43:17 -0400 |
commit | 272f98f6846277378e1758a49a49d7bf39343c02 (patch) | |
tree | 91d4554f42078f0840cdc0977fd775087f56703d /fs/isofs | |
parent | 960e6994ad9cf10ddd4d3680a2d6cf5159c93a83 (diff) | |
download | linux-stable-272f98f6846277378e1758a49a49d7bf39343c02.tar.gz linux-stable-272f98f6846277378e1758a49a49d7bf39343c02.tar.bz2 linux-stable-272f98f6846277378e1758a49a49d7bf39343c02.zip |
fscrypt: fix context consistency check when key(s) unavailable
To mitigate some types of offline attacks, filesystem encryption is
designed to enforce that all files in an encrypted directory tree use
the same encryption policy (i.e. the same encryption context excluding
the nonce). However, the fscrypt_has_permitted_context() function which
enforces this relies on comparing struct fscrypt_info's, which are only
available when we have the encryption keys. This can cause two
incorrect behaviors:
1. If we have the parent directory's key but not the child's key, or
vice versa, then fscrypt_has_permitted_context() returned false,
causing applications to see EPERM or ENOKEY. This is incorrect if
the encryption contexts are in fact consistent. Although we'd
normally have either both keys or neither key in that case since the
master_key_descriptors would be the same, this is not guaranteed
because keys can be added or removed from keyrings at any time.
2. If we have neither the parent's key nor the child's key, then
fscrypt_has_permitted_context() returned true, causing applications
to see no error (or else an error for some other reason). This is
incorrect if the encryption contexts are in fact inconsistent, since
in that case we should deny access.
To fix this, retrieve and compare the fscrypt_contexts if we are unable
to set up both fscrypt_infos.
While this slightly hurts performance when accessing an encrypted
directory tree without the key, this isn't a case we really need to be
optimizing for; access *with* the key is much more important.
Furthermore, the performance hit is barely noticeable given that we are
already retrieving the fscrypt_context and doing two keyring searches in
fscrypt_get_encryption_info(). If we ever actually wanted to optimize
this case we might start by caching the fscrypt_contexts.
Cc: stable@vger.kernel.org # 4.0+
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Diffstat (limited to 'fs/isofs')
0 files changed, 0 insertions, 0 deletions