summaryrefslogtreecommitdiffstats
path: root/mm/damon/sysfs-schemes.c
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2023-11-02 19:38:47 -1000
committerLinus Torvalds <torvalds@linux-foundation.org>2023-11-02 19:38:47 -1000
commitecae0bd5173b1014f95a14a8dfbe40ec10367dcf (patch)
treef571213ef1a35354ea79f0240a180fdb4111b290 /mm/damon/sysfs-schemes.c
parentbc3012f4e3a9765de81f454cb8f9bb16aafc6ff5 (diff)
parent9732336006764e2ee61225387e3c70eae9139035 (diff)
downloadlinux-stable-ecae0bd5173b1014f95a14a8dfbe40ec10367dcf.tar.gz
linux-stable-ecae0bd5173b1014f95a14a8dfbe40ec10367dcf.tar.bz2
linux-stable-ecae0bd5173b1014f95a14a8dfbe40ec10367dcf.zip
Merge tag 'mm-stable-2023-11-01-14-33' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton: "Many singleton patches against the MM code. The patch series which are included in this merge do the following: - Kemeng Shi has contributed some compation maintenance work in the series 'Fixes and cleanups to compaction' - Joel Fernandes has a patchset ('Optimize mremap during mutual alignment within PMD') which fixes an obscure issue with mremap()'s pagetable handling during a subsequent exec(), based upon an implementation which Linus suggested - More DAMON/DAMOS maintenance and feature work from SeongJae Park i the following patch series: mm/damon: misc fixups for documents, comments and its tracepoint mm/damon: add a tracepoint for damos apply target regions mm/damon: provide pseudo-moving sum based access rate mm/damon: implement DAMOS apply intervals mm/damon/core-test: Fix memory leaks in core-test mm/damon/sysfs-schemes: Do DAMOS tried regions update for only one apply interval - In the series 'Do not try to access unaccepted memory' Adrian Hunter provides some fixups for the recently-added 'unaccepted memory' feature. To increase the feature's checking coverage. 'Plug a few gaps where RAM is exposed without checking if it is unaccepted memory' - In the series 'cleanups for lockless slab shrink' Qi Zheng has done some maintenance work which is preparation for the lockless slab shrinking code - Qi Zheng has redone the earlier (and reverted) attempt to make slab shrinking lockless in the series 'use refcount+RCU method to implement lockless slab shrink' - David Hildenbrand contributes some maintenance work for the rmap code in the series 'Anon rmap cleanups' - Kefeng Wang does more folio conversions and some maintenance work in the migration code. Series 'mm: migrate: more folio conversion and unification' - Matthew Wilcox has fixed an issue in the buffer_head code which was causing long stalls under some heavy memory/IO loads. Some cleanups were added on the way. Series 'Add and use bdev_getblk()' - In the series 'Use nth_page() in place of direct struct page manipulation' Zi Yan has fixed a potential issue with the direct manipulation of hugetlb page frames - In the series 'mm: hugetlb: Skip initialization of gigantic tail struct pages if freed by HVO' has improved our handling of gigantic pages in the hugetlb vmmemmep optimizaton code. This provides significant boot time improvements when significant amounts of gigantic pages are in use - Matthew Wilcox has sent the series 'Small hugetlb cleanups' - code rationalization and folio conversions in the hugetlb code - Yin Fengwei has improved mlock()'s handling of large folios in the series 'support large folio for mlock' - In the series 'Expose swapcache stat for memcg v1' Liu Shixin has added statistics for memcg v1 users which are available (and useful) under memcg v2 - Florent Revest has enhanced the MDWE (Memory-Deny-Write-Executable) prctl so that userspace may direct the kernel to not automatically propagate the denial to child processes. The series is named 'MDWE without inheritance' - Kefeng Wang has provided the series 'mm: convert numa balancing functions to use a folio' which does what it says - In the series 'mm/ksm: add fork-exec support for prctl' Stefan Roesch makes is possible for a process to propagate KSM treatment across exec() - Huang Ying has enhanced memory tiering's calculation of memory distances. This is used to permit the dax/kmem driver to use 'high bandwidth memory' in addition to Optane Data Center Persistent Memory Modules (DCPMM). The series is named 'memory tiering: calculate abstract distance based on ACPI HMAT' - In the series 'Smart scanning mode for KSM' Stefan Roesch has optimized KSM by teaching it to retain and use some historical information from previous scans - Yosry Ahmed has fixed some inconsistencies in memcg statistics in the series 'mm: memcg: fix tracking of pending stats updates values' - In the series 'Implement IOCTL to get and optionally clear info about PTEs' Peter Xu has added an ioctl to /proc/<pid>/pagemap which permits us to atomically read-then-clear page softdirty state. This is mainly used by CRIU - Hugh Dickins contributed the series 'shmem,tmpfs: general maintenance', a bunch of relatively minor maintenance tweaks to this code - Matthew Wilcox has increased the use of the VMA lock over file-backed page faults in the series 'Handle more faults under the VMA lock'. Some rationalizations of the fault path became possible as a result - In the series 'mm/rmap: convert page_move_anon_rmap() to folio_move_anon_rmap()' David Hildenbrand has implemented some cleanups and folio conversions - In the series 'various improvements to the GUP interface' Lorenzo Stoakes has simplified and improved the GUP interface with an eye to providing groundwork for future improvements - Andrey Konovalov has sent along the series 'kasan: assorted fixes and improvements' which does those things - Some page allocator maintenance work from Kemeng Shi in the series 'Two minor cleanups to break_down_buddy_pages' - In thes series 'New selftest for mm' Breno Leitao has developed another MM self test which tickles a race we had between madvise() and page faults - In the series 'Add folio_end_read' Matthew Wilcox provides cleanups and an optimization to the core pagecache code - Nhat Pham has added memcg accounting for hugetlb memory in the series 'hugetlb memcg accounting' - Cleanups and rationalizations to the pagemap code from Lorenzo Stoakes, in the series 'Abstract vma_merge() and split_vma()' - Audra Mitchell has fixed issues in the procfs page_owner code's new timestamping feature which was causing some misbehaviours. In the series 'Fix page_owner's use of free timestamps' - Lorenzo Stoakes has fixed the handling of new mappings of sealed files in the series 'permit write-sealed memfd read-only shared mappings' - Mike Kravetz has optimized the hugetlb vmemmap optimization in the series 'Batch hugetlb vmemmap modification operations' - Some buffer_head folio conversions and cleanups from Matthew Wilcox in the series 'Finish the create_empty_buffers() transition' - As a page allocator performance optimization Huang Ying has added automatic tuning to the allocator's per-cpu-pages feature, in the series 'mm: PCP high auto-tuning' - Roman Gushchin has contributed the patchset 'mm: improve performance of accounted kernel memory allocations' which improves their performance by ~30% as measured by a micro-benchmark - folio conversions from Kefeng Wang in the series 'mm: convert page cpupid functions to folios' - Some kmemleak fixups in Liu Shixin's series 'Some bugfix about kmemleak' - Qi Zheng has improved our handling of memoryless nodes by keeping them off the allocation fallback list. This is done in the series 'handle memoryless nodes more appropriately' - khugepaged conversions from Vishal Moola in the series 'Some khugepaged folio conversions'" [ bcachefs conflicts with the dynamically allocated shrinkers have been resolved as per Stephen Rothwell in https://lore.kernel.org/all/20230913093553.4290421e@canb.auug.org.au/ with help from Qi Zheng. The clone3 test filtering conflict was half-arsed by yours truly ] * tag 'mm-stable-2023-11-01-14-33' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (406 commits) mm/damon/sysfs: update monitoring target regions for online input commit mm/damon/sysfs: remove requested targets when online-commit inputs selftests: add a sanity check for zswap Documentation: maple_tree: fix word spelling error mm/vmalloc: fix the unchecked dereference warning in vread_iter() zswap: export compression failure stats Documentation: ubsan: drop "the" from article title mempolicy: migration attempt to match interleave nodes mempolicy: mmap_lock is not needed while migrating folios mempolicy: alloc_pages_mpol() for NUMA policy without vma mm: add page_rmappable_folio() wrapper mempolicy: remove confusing MPOL_MF_LAZY dead code mempolicy: mpol_shared_policy_init() without pseudo-vma mempolicy trivia: use pgoff_t in shared mempolicy tree mempolicy trivia: slightly more consistent naming mempolicy trivia: delete those ancient pr_debug()s mempolicy: fix migrate_pages(2) syscall return nr_failed kernfs: drop shared NUMA mempolicy hooks hugetlbfs: drop shared NUMA mempolicy pretence mm/damon/sysfs-test: add a unit test for damon_sysfs_set_targets() ...
Diffstat (limited to 'mm/damon/sysfs-schemes.c')
-rw-r--r--mm/damon/sysfs-schemes.c133
1 files changed, 128 insertions, 5 deletions
diff --git a/mm/damon/sysfs-schemes.c b/mm/damon/sysfs-schemes.c
index 527e7d17eb3b..45bd0fd4a8b1 100644
--- a/mm/damon/sysfs-schemes.c
+++ b/mm/damon/sysfs-schemes.c
@@ -31,7 +31,7 @@ static struct damon_sysfs_scheme_region *damon_sysfs_scheme_region_alloc(
return NULL;
sysfs_region->kobj = (struct kobject){};
sysfs_region->ar = region->ar;
- sysfs_region->nr_accesses = region->nr_accesses;
+ sysfs_region->nr_accesses = region->nr_accesses_bp / 10000;
sysfs_region->age = region->age;
INIT_LIST_HEAD(&sysfs_region->list);
return sysfs_region;
@@ -113,11 +113,47 @@ static const struct kobj_type damon_sysfs_scheme_region_ktype = {
* scheme regions directory
*/
+/*
+ * enum damos_sysfs_regions_upd_status - Represent DAMOS tried regions update
+ * status
+ * @DAMOS_TRIED_REGIONS_UPD_IDLE: Waiting for next request.
+ * @DAMOS_TRIED_REGIONS_UPD_STARTED: Update started.
+ * @DAMOS_TRIED_REGIONS_UPD_FINISHED: Update finished.
+ *
+ * Each DAMON-based operation scheme (&struct damos) has its own apply
+ * interval, and we need to expose the scheme tried regions based on only
+ * single snapshot. For this, we keep the tried regions update status for each
+ * scheme. The status becomes 'idle' at the beginning.
+ *
+ * Once the tried regions update request is received, the request handling
+ * start function (damon_sysfs_scheme_update_regions_start()) sets the status
+ * of all schemes as 'idle' again, and register ->before_damos_apply() and
+ * ->after_sampling() callbacks.
+ *
+ * Then, the first followup ->before_damos_apply() callback
+ * (damon_sysfs_before_damos_apply()) sets the status 'started'. The first
+ * ->after_sampling() callback (damon_sysfs_after_sampling()) after the call
+ * is called only after the scheme is completely applied
+ * to the given snapshot. Hence the callback knows the situation by showing
+ * 'started' status, and sets the status as 'finished'. Then,
+ * damon_sysfs_before_damos_apply() understands the situation by showing the
+ * 'finished' status and do nothing.
+ *
+ * Finally, the tried regions request handling finisher function
+ * (damon_sysfs_schemes_update_regions_stop()) unregisters the callbacks.
+ */
+enum damos_sysfs_regions_upd_status {
+ DAMOS_TRIED_REGIONS_UPD_IDLE,
+ DAMOS_TRIED_REGIONS_UPD_STARTED,
+ DAMOS_TRIED_REGIONS_UPD_FINISHED,
+};
+
struct damon_sysfs_scheme_regions {
struct kobject kobj;
struct list_head regions_list;
int nr_regions;
unsigned long total_bytes;
+ enum damos_sysfs_regions_upd_status upd_status;
};
static struct damon_sysfs_scheme_regions *
@@ -130,6 +166,7 @@ damon_sysfs_scheme_regions_alloc(void)
INIT_LIST_HEAD(&regions->regions_list);
regions->nr_regions = 0;
regions->total_bytes = 0;
+ regions->upd_status = DAMOS_TRIED_REGIONS_UPD_IDLE;
return regions;
}
@@ -1121,6 +1158,7 @@ struct damon_sysfs_scheme {
struct kobject kobj;
enum damos_action action;
struct damon_sysfs_access_pattern *access_pattern;
+ unsigned long apply_interval_us;
struct damon_sysfs_quotas *quotas;
struct damon_sysfs_watermarks *watermarks;
struct damon_sysfs_scheme_filters *filters;
@@ -1141,7 +1179,7 @@ static const char * const damon_sysfs_damos_action_strs[] = {
};
static struct damon_sysfs_scheme *damon_sysfs_scheme_alloc(
- enum damos_action action)
+ enum damos_action action, unsigned long apply_interval_us)
{
struct damon_sysfs_scheme *scheme = kmalloc(sizeof(*scheme),
GFP_KERNEL);
@@ -1150,6 +1188,7 @@ static struct damon_sysfs_scheme *damon_sysfs_scheme_alloc(
return NULL;
scheme->kobj = (struct kobject){};
scheme->action = action;
+ scheme->apply_interval_us = apply_interval_us;
return scheme;
}
@@ -1353,6 +1392,25 @@ static ssize_t action_store(struct kobject *kobj, struct kobj_attribute *attr,
return -EINVAL;
}
+static ssize_t apply_interval_us_show(struct kobject *kobj,
+ struct kobj_attribute *attr, char *buf)
+{
+ struct damon_sysfs_scheme *scheme = container_of(kobj,
+ struct damon_sysfs_scheme, kobj);
+
+ return sysfs_emit(buf, "%lu\n", scheme->apply_interval_us);
+}
+
+static ssize_t apply_interval_us_store(struct kobject *kobj,
+ struct kobj_attribute *attr, const char *buf, size_t count)
+{
+ struct damon_sysfs_scheme *scheme = container_of(kobj,
+ struct damon_sysfs_scheme, kobj);
+ int err = kstrtoul(buf, 0, &scheme->apply_interval_us);
+
+ return err ? err : count;
+}
+
static void damon_sysfs_scheme_release(struct kobject *kobj)
{
kfree(container_of(kobj, struct damon_sysfs_scheme, kobj));
@@ -1361,8 +1419,12 @@ static void damon_sysfs_scheme_release(struct kobject *kobj)
static struct kobj_attribute damon_sysfs_scheme_action_attr =
__ATTR_RW_MODE(action, 0600);
+static struct kobj_attribute damon_sysfs_scheme_apply_interval_us_attr =
+ __ATTR_RW_MODE(apply_interval_us, 0600);
+
static struct attribute *damon_sysfs_scheme_attrs[] = {
&damon_sysfs_scheme_action_attr.attr,
+ &damon_sysfs_scheme_apply_interval_us_attr.attr,
NULL,
};
ATTRIBUTE_GROUPS(damon_sysfs_scheme);
@@ -1413,7 +1475,11 @@ static int damon_sysfs_schemes_add_dirs(struct damon_sysfs_schemes *schemes,
schemes->schemes_arr = schemes_arr;
for (i = 0; i < nr_schemes; i++) {
- scheme = damon_sysfs_scheme_alloc(DAMOS_STAT);
+ /*
+ * apply_interval_us as 0 means same to aggregation interval
+ * (same to before-apply_interval behavior)
+ */
+ scheme = damon_sysfs_scheme_alloc(DAMOS_STAT, 0);
if (!scheme) {
damon_sysfs_schemes_rm_dirs(schemes);
return -ENOMEM;
@@ -1610,8 +1676,8 @@ static struct damos *damon_sysfs_mk_scheme(
.low = sysfs_wmarks->low,
};
- scheme = damon_new_scheme(&pattern, sysfs_scheme->action, &quota,
- &wmarks);
+ scheme = damon_new_scheme(&pattern, sysfs_scheme->action,
+ sysfs_scheme->apply_interval_us, &quota, &wmarks);
if (!scheme)
return NULL;
@@ -1641,6 +1707,7 @@ static void damon_sysfs_update_scheme(struct damos *scheme,
scheme->pattern.max_age_region = access_pattern->age->max;
scheme->action = sysfs_scheme->action;
+ scheme->apply_interval_us = sysfs_scheme->apply_interval_us;
scheme->quota.ms = sysfs_quotas->ms;
scheme->quota.sz = sysfs_quotas->sz;
@@ -1747,6 +1814,10 @@ static int damon_sysfs_before_damos_apply(struct damon_ctx *ctx,
return 0;
sysfs_regions = sysfs_schemes->schemes_arr[schemes_idx]->tried_regions;
+ if (sysfs_regions->upd_status == DAMOS_TRIED_REGIONS_UPD_FINISHED)
+ return 0;
+ if (sysfs_regions->upd_status == DAMOS_TRIED_REGIONS_UPD_IDLE)
+ sysfs_regions->upd_status = DAMOS_TRIED_REGIONS_UPD_STARTED;
sysfs_regions->total_bytes += r->ar.end - r->ar.start;
if (damos_regions_upd_total_bytes_only)
return 0;
@@ -1763,6 +1834,29 @@ static int damon_sysfs_before_damos_apply(struct damon_ctx *ctx,
return 0;
}
+/*
+ * DAMON callback that called after each accesses sampling. While this
+ * callback is registered, damon_sysfs_lock should be held to ensure the
+ * regions directories exist.
+ */
+static int damon_sysfs_after_sampling(struct damon_ctx *ctx)
+{
+ struct damon_sysfs_schemes *sysfs_schemes =
+ damon_sysfs_schemes_for_damos_callback;
+ struct damon_sysfs_scheme_regions *sysfs_regions;
+ int i;
+
+ for (i = 0; i < sysfs_schemes->nr; i++) {
+ sysfs_regions = sysfs_schemes->schemes_arr[i]->tried_regions;
+ if (sysfs_regions->upd_status ==
+ DAMOS_TRIED_REGIONS_UPD_STARTED)
+ sysfs_regions->upd_status =
+ DAMOS_TRIED_REGIONS_UPD_FINISHED;
+ }
+
+ return 0;
+}
+
/* Called from damon_sysfs_cmd_request_callback under damon_sysfs_lock */
int damon_sysfs_schemes_clear_regions(
struct damon_sysfs_schemes *sysfs_schemes,
@@ -1786,6 +1880,16 @@ int damon_sysfs_schemes_clear_regions(
return 0;
}
+static void damos_tried_regions_init_upd_status(
+ struct damon_sysfs_schemes *sysfs_schemes)
+{
+ int i;
+
+ for (i = 0; i < sysfs_schemes->nr; i++)
+ sysfs_schemes->schemes_arr[i]->tried_regions->upd_status =
+ DAMOS_TRIED_REGIONS_UPD_IDLE;
+}
+
/* Called from damon_sysfs_cmd_request_callback under damon_sysfs_lock */
int damon_sysfs_schemes_update_regions_start(
struct damon_sysfs_schemes *sysfs_schemes,
@@ -1793,11 +1897,29 @@ int damon_sysfs_schemes_update_regions_start(
{
damon_sysfs_schemes_clear_regions(sysfs_schemes, ctx);
damon_sysfs_schemes_for_damos_callback = sysfs_schemes;
+ damos_tried_regions_init_upd_status(sysfs_schemes);
damos_regions_upd_total_bytes_only = total_bytes_only;
ctx->callback.before_damos_apply = damon_sysfs_before_damos_apply;
+ ctx->callback.after_sampling = damon_sysfs_after_sampling;
return 0;
}
+bool damos_sysfs_regions_upd_done(void)
+{
+ struct damon_sysfs_schemes *sysfs_schemes =
+ damon_sysfs_schemes_for_damos_callback;
+ struct damon_sysfs_scheme_regions *sysfs_regions;
+ int i;
+
+ for (i = 0; i < sysfs_schemes->nr; i++) {
+ sysfs_regions = sysfs_schemes->schemes_arr[i]->tried_regions;
+ if (sysfs_regions->upd_status !=
+ DAMOS_TRIED_REGIONS_UPD_FINISHED)
+ return false;
+ }
+ return true;
+}
+
/*
* Called from damon_sysfs_cmd_request_callback under damon_sysfs_lock. Caller
* should unlock damon_sysfs_lock which held before
@@ -1807,6 +1929,7 @@ int damon_sysfs_schemes_update_regions_stop(struct damon_ctx *ctx)
{
damon_sysfs_schemes_for_damos_callback = NULL;
ctx->callback.before_damos_apply = NULL;
+ ctx->callback.after_sampling = NULL;
damon_sysfs_schemes_region_idx = 0;
return 0;
}