diff options
author | Mel Gorman <mgorman@suse.de> | 2015-03-25 15:55:40 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2015-03-25 16:20:31 -0700 |
commit | b191f9b106ea1a24a711dbebb2925d3313da5852 (patch) | |
tree | d47cd29412ed7c10fbd5415e2bf2d8ebcc8366d0 /mm/huge_memory.c | |
parent | bea66fbd11af1ca98ae26855eea41eda8582923e (diff) | |
download | linux-stable-b191f9b106ea1a24a711dbebb2925d3313da5852.tar.gz linux-stable-b191f9b106ea1a24a711dbebb2925d3313da5852.tar.bz2 linux-stable-b191f9b106ea1a24a711dbebb2925d3313da5852.zip |
mm: numa: preserve PTE write permissions across a NUMA hinting fault
Protecting a PTE to trap a NUMA hinting fault clears the writable bit
and further faults are needed after trapping a NUMA hinting fault to set
the writable bit again. This patch preserves the writable bit when
trapping NUMA hinting faults. The impact is obvious from the number of
minor faults trapped during the basis balancing benchmark and the system
CPU usage;
autonumabench
4.0.0-rc4 4.0.0-rc4
baseline preserve
Time System-NUMA01 107.13 ( 0.00%) 103.13 ( 3.73%)
Time System-NUMA01_THEADLOCAL 131.87 ( 0.00%) 83.30 ( 36.83%)
Time System-NUMA02 8.95 ( 0.00%) 10.72 (-19.78%)
Time System-NUMA02_SMT 4.57 ( 0.00%) 3.99 ( 12.69%)
Time Elapsed-NUMA01 515.78 ( 0.00%) 517.26 ( -0.29%)
Time Elapsed-NUMA01_THEADLOCAL 384.10 ( 0.00%) 384.31 ( -0.05%)
Time Elapsed-NUMA02 48.86 ( 0.00%) 48.78 ( 0.16%)
Time Elapsed-NUMA02_SMT 47.98 ( 0.00%) 48.12 ( -0.29%)
4.0.0-rc4 4.0.0-rc4
baseline preserve
User 44383.95 43971.89
System 252.61 201.24
Elapsed 998.68 1000.94
Minor Faults 2597249 1981230
Major Faults 365 364
There is a similar drop in system CPU usage using Dave Chinner's xfsrepair
workload
4.0.0-rc4 4.0.0-rc4
baseline preserve
Amean real-xfsrepair 454.14 ( 0.00%) 442.36 ( 2.60%)
Amean syst-xfsrepair 277.20 ( 0.00%) 204.68 ( 26.16%)
The patch looks hacky but the alternatives looked worse. The tidest was
to rewalk the page tables after a hinting fault but it was more complex
than this approach and the performance was worse. It's not generally
safe to just mark the page writable during the fault if it's a write
fault as it may have been read-only for COW so that approach was
discarded.
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reported-by: Dave Chinner <david@fromorbit.com>
Tested-by: Dave Chinner <david@fromorbit.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'mm/huge_memory.c')
-rw-r--r-- | mm/huge_memory.c | 9 |
1 files changed, 8 insertions, 1 deletions
diff --git a/mm/huge_memory.c b/mm/huge_memory.c index 2f12e9fcf1a2..0a42d1521aa4 100644 --- a/mm/huge_memory.c +++ b/mm/huge_memory.c @@ -1260,6 +1260,7 @@ int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma, int target_nid, last_cpupid = -1; bool page_locked; bool migrated = false; + bool was_writable; int flags = 0; /* A PROT_NONE fault should not end up here */ @@ -1354,7 +1355,10 @@ int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma, goto out; clear_pmdnuma: BUG_ON(!PageLocked(page)); + was_writable = pmd_write(pmd); pmd = pmd_modify(pmd, vma->vm_page_prot); + if (was_writable) + pmd = pmd_mkwrite(pmd); set_pmd_at(mm, haddr, pmdp, pmd); update_mmu_cache_pmd(vma, addr, pmdp); unlock_page(page); @@ -1478,6 +1482,7 @@ int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) { pmd_t entry; + bool preserve_write = prot_numa && pmd_write(*pmd); ret = 1; /* @@ -1493,9 +1498,11 @@ int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd, if (!prot_numa || !pmd_protnone(*pmd)) { entry = pmdp_get_and_clear_notify(mm, addr, pmd); entry = pmd_modify(entry, newprot); + if (preserve_write) + entry = pmd_mkwrite(entry); ret = HPAGE_PMD_NR; set_pmd_at(mm, addr, pmd, entry); - BUG_ON(pmd_write(entry)); + BUG_ON(!preserve_write && pmd_write(entry)); } spin_unlock(ptl); } |