diff options
author | Huang Ying <ying.huang@intel.com> | 2017-05-08 15:57:40 -0700 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2017-05-08 17:15:13 -0700 |
commit | 54f180d3c181277457fb003dd9524c2aa1ef8160 (patch) | |
tree | fc763d5c91a4b0c0dfe5f4a6d594dd768866074f /mm/swap_state.c | |
parent | bc4e54f6e966e9ca35064cd60f91b1478c07a1b2 (diff) | |
download | linux-stable-54f180d3c181277457fb003dd9524c2aa1ef8160.tar.gz linux-stable-54f180d3c181277457fb003dd9524c2aa1ef8160.tar.bz2 linux-stable-54f180d3c181277457fb003dd9524c2aa1ef8160.zip |
mm, swap: use kvzalloc to allocate some swap data structures
Now vzalloc() is used in swap code to allocate various data structures,
such as swap cache, swap slots cache, cluster info, etc. Because the
size may be too large on some system, so that normal kzalloc() may fail.
But using kzalloc() has some advantages, for example, less memory
fragmentation, less TLB pressure, etc. So change the data structure
allocation in swap code to use kvzalloc() which will try kzalloc()
firstly, and fallback to vzalloc() if kzalloc() failed.
In general, although kmalloc() will reduce the number of high-order
pages in short term, vmalloc() will cause more pain for memory
fragmentation in the long term. And the swap data structure allocation
that is changed in this patch is expected to be long term allocation.
From Dave Hansen:
"for example, we have a two-page data structure. vmalloc() takes two
effectively random order-0 pages, probably from two different 2M pages
and pins them. That "kills" two 2M pages. kmalloc(), allocating two
*contiguous* pages, will not cross a 2M boundary. That means it will
only "kill" the possibility of a single 2M page. More 2M pages == less
fragmentation.
The allocation in this patch occurs during swap on time, which is
usually done during system boot, so usually we have high opportunity to
allocate the contiguous pages successfully.
The allocation for swap_map[] in struct swap_info_struct is not changed,
because that is usually quite large and vmalloc_to_page() is used for
it. That makes it a little harder to change.
Link: http://lkml.kernel.org/r/20170407064911.25447-1-ying.huang@intel.com
Signed-off-by: Huang Ying <ying.huang@intel.com>
Acked-by: Tim Chen <tim.c.chen@intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'mm/swap_state.c')
-rw-r--r-- | mm/swap_state.c | 2 |
1 files changed, 1 insertions, 1 deletions
diff --git a/mm/swap_state.c b/mm/swap_state.c index 7bfb9bd1ca21..539b8885e3d1 100644 --- a/mm/swap_state.c +++ b/mm/swap_state.c @@ -523,7 +523,7 @@ int init_swap_address_space(unsigned int type, unsigned long nr_pages) unsigned int i, nr; nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES); - spaces = vzalloc(sizeof(struct address_space) * nr); + spaces = kvzalloc(sizeof(struct address_space) * nr, GFP_KERNEL); if (!spaces) return -ENOMEM; for (i = 0; i < nr; i++) { |