diff options
63 files changed, 3775 insertions, 626 deletions
diff --git a/Documentation/sysctl/kernel.txt b/Documentation/sysctl/kernel.txt index 26b7ee491df8..6d486404200e 100644 --- a/Documentation/sysctl/kernel.txt +++ b/Documentation/sysctl/kernel.txt @@ -428,11 +428,6 @@ rate for each task. numa_balancing_scan_size_mb is how many megabytes worth of pages are scanned for a given scan. -numa_balancing_settle_count is how many scan periods must complete before -the schedule balancer stops pushing the task towards a preferred node. This -gives the scheduler a chance to place the task on an alternative node if the -preferred node is overloaded. - numa_balancing_migrate_deferred is how many page migrations get skipped unconditionally, after a page migration is skipped because a page is shared with other tasks. This reduces page migration overhead, and determines diff --git a/arch/arm/include/asm/unistd.h b/arch/arm/include/asm/unistd.h index 141baa3f9a72..acabef1a75df 100644 --- a/arch/arm/include/asm/unistd.h +++ b/arch/arm/include/asm/unistd.h @@ -15,7 +15,7 @@ #include <uapi/asm/unistd.h> -#define __NR_syscalls (380) +#define __NR_syscalls (384) #define __ARM_NR_cmpxchg (__ARM_NR_BASE+0x00fff0) #define __ARCH_WANT_STAT64 diff --git a/arch/arm/include/uapi/asm/unistd.h b/arch/arm/include/uapi/asm/unistd.h index af33b44990ed..fb5584d0cc05 100644 --- a/arch/arm/include/uapi/asm/unistd.h +++ b/arch/arm/include/uapi/asm/unistd.h @@ -406,6 +406,8 @@ #define __NR_process_vm_writev (__NR_SYSCALL_BASE+377) #define __NR_kcmp (__NR_SYSCALL_BASE+378) #define __NR_finit_module (__NR_SYSCALL_BASE+379) +#define __NR_sched_setattr (__NR_SYSCALL_BASE+380) +#define __NR_sched_getattr (__NR_SYSCALL_BASE+381) /* * This may need to be greater than __NR_last_syscall+1 in order to diff --git a/arch/arm/kernel/calls.S b/arch/arm/kernel/calls.S index c6ca7e376773..166e945de832 100644 --- a/arch/arm/kernel/calls.S +++ b/arch/arm/kernel/calls.S @@ -389,6 +389,8 @@ CALL(sys_process_vm_writev) CALL(sys_kcmp) CALL(sys_finit_module) +/* 380 */ CALL(sys_sched_setattr) + CALL(sys_sched_getattr) #ifndef syscalls_counted .equ syscalls_padding, ((NR_syscalls + 3) & ~3) - NR_syscalls #define syscalls_counted diff --git a/arch/m68k/include/asm/mac_via.h b/arch/m68k/include/asm/mac_via.h index aeeedf8b2d25..fe3fc9ae1b69 100644 --- a/arch/m68k/include/asm/mac_via.h +++ b/arch/m68k/include/asm/mac_via.h @@ -254,6 +254,8 @@ extern volatile __u8 *via1,*via2; extern int rbv_present,via_alt_mapping; +struct irq_desc; + extern void via_register_interrupts(void); extern void via_irq_enable(int); extern void via_irq_disable(int); diff --git a/arch/x86/include/asm/mwait.h b/arch/x86/include/asm/mwait.h index 2f366d0ac6b4..1da25a5f96f9 100644 --- a/arch/x86/include/asm/mwait.h +++ b/arch/x86/include/asm/mwait.h @@ -1,6 +1,8 @@ #ifndef _ASM_X86_MWAIT_H #define _ASM_X86_MWAIT_H +#include <linux/sched.h> + #define MWAIT_SUBSTATE_MASK 0xf #define MWAIT_CSTATE_MASK 0xf #define MWAIT_SUBSTATE_SIZE 4 @@ -13,4 +15,45 @@ #define MWAIT_ECX_INTERRUPT_BREAK 0x1 +static inline void __monitor(const void *eax, unsigned long ecx, + unsigned long edx) +{ + /* "monitor %eax, %ecx, %edx;" */ + asm volatile(".byte 0x0f, 0x01, 0xc8;" + :: "a" (eax), "c" (ecx), "d"(edx)); +} + +static inline void __mwait(unsigned long eax, unsigned long ecx) +{ + /* "mwait %eax, %ecx;" */ + asm volatile(".byte 0x0f, 0x01, 0xc9;" + :: "a" (eax), "c" (ecx)); +} + +/* + * This uses new MONITOR/MWAIT instructions on P4 processors with PNI, + * which can obviate IPI to trigger checking of need_resched. + * We execute MONITOR against need_resched and enter optimized wait state + * through MWAIT. Whenever someone changes need_resched, we would be woken + * up from MWAIT (without an IPI). + * + * New with Core Duo processors, MWAIT can take some hints based on CPU + * capability. + */ +static inline void mwait_idle_with_hints(unsigned long eax, unsigned long ecx) +{ + if (!current_set_polling_and_test()) { + if (static_cpu_has(X86_FEATURE_CLFLUSH_MONITOR)) { + mb(); + clflush((void *)¤t_thread_info()->flags); + mb(); + } + + __monitor((void *)¤t_thread_info()->flags, 0, 0); + if (!need_resched()) + __mwait(eax, ecx); + } + current_clr_polling(); +} + #endif /* _ASM_X86_MWAIT_H */ diff --git a/arch/x86/include/asm/processor.h b/arch/x86/include/asm/processor.h index 7b034a4057f9..24821f5768bc 100644 --- a/arch/x86/include/asm/processor.h +++ b/arch/x86/include/asm/processor.h @@ -700,29 +700,6 @@ static inline void sync_core(void) #endif } -static inline void __monitor(const void *eax, unsigned long ecx, - unsigned long edx) -{ - /* "monitor %eax, %ecx, %edx;" */ - asm volatile(".byte 0x0f, 0x01, 0xc8;" - :: "a" (eax), "c" (ecx), "d"(edx)); -} - -static inline void __mwait(unsigned long eax, unsigned long ecx) -{ - /* "mwait %eax, %ecx;" */ - asm volatile(".byte 0x0f, 0x01, 0xc9;" - :: "a" (eax), "c" (ecx)); -} - -static inline void __sti_mwait(unsigned long eax, unsigned long ecx) -{ - trace_hardirqs_on(); - /* "mwait %eax, %ecx;" */ - asm volatile("sti; .byte 0x0f, 0x01, 0xc9;" - :: "a" (eax), "c" (ecx)); -} - extern void select_idle_routine(const struct cpuinfo_x86 *c); extern void init_amd_e400_c1e_mask(void); diff --git a/arch/x86/include/asm/timer.h b/arch/x86/include/asm/timer.h index 34baa0eb5d0c..3de54ef0aea5 100644 --- a/arch/x86/include/asm/timer.h +++ b/arch/x86/include/asm/timer.h @@ -4,6 +4,7 @@ #include <linux/pm.h> #include <linux/percpu.h> #include <linux/interrupt.h> +#include <linux/math64.h> #define TICK_SIZE (tick_nsec / 1000) @@ -12,68 +13,26 @@ extern int recalibrate_cpu_khz(void); extern int no_timer_check; -/* Accelerators for sched_clock() - * convert from cycles(64bits) => nanoseconds (64bits) - * basic equation: - * ns = cycles / (freq / ns_per_sec) - * ns = cycles * (ns_per_sec / freq) - * ns = cycles * (10^9 / (cpu_khz * 10^3)) - * ns = cycles * (10^6 / cpu_khz) +/* + * We use the full linear equation: f(x) = a + b*x, in order to allow + * a continuous function in the face of dynamic freq changes. * - * Then we use scaling math (suggested by george@mvista.com) to get: - * ns = cycles * (10^6 * SC / cpu_khz) / SC - * ns = cycles * cyc2ns_scale / SC + * Continuity means that when our frequency changes our slope (b); we want to + * ensure that: f(t) == f'(t), which gives: a + b*t == a' + b'*t. * - * And since SC is a constant power of two, we can convert the div - * into a shift. + * Without an offset (a) the above would not be possible. * - * We can use khz divisor instead of mhz to keep a better precision, since - * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits. - * (mathieu.desnoyers@polymtl.ca) - * - * -johnstul@us.ibm.com "math is hard, lets go shopping!" - * - * In: - * - * ns = cycles * cyc2ns_scale / SC - * - * Although we may still have enough bits to store the value of ns, - * in some cases, we may not have enough bits to store cycles * cyc2ns_scale, - * leading to an incorrect result. - * - * To avoid this, we can decompose 'cycles' into quotient and remainder - * of division by SC. Then, - * - * ns = (quot * SC + rem) * cyc2ns_scale / SC - * = quot * cyc2ns_scale + (rem * cyc2ns_scale) / SC - * - * - sqazi@google.com + * See the comment near cycles_2_ns() for details on how we compute (b). */ - -DECLARE_PER_CPU(unsigned long, cyc2ns); -DECLARE_PER_CPU(unsigned long long, cyc2ns_offset); - -#define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */ - -static inline unsigned long long __cycles_2_ns(unsigned long long cyc) -{ - int cpu = smp_processor_id(); - unsigned long long ns = per_cpu(cyc2ns_offset, cpu); - ns += mult_frac(cyc, per_cpu(cyc2ns, cpu), - (1UL << CYC2NS_SCALE_FACTOR)); - return ns; -} - -static inline unsigned long long cycles_2_ns(unsigned long long cyc) -{ - unsigned long long ns; - unsigned long flags; - - local_irq_save(flags); - ns = __cycles_2_ns(cyc); - local_irq_restore(flags); - - return ns; -} +struct cyc2ns_data { + u32 cyc2ns_mul; + u32 cyc2ns_shift; + u64 cyc2ns_offset; + u32 __count; + /* u32 hole */ +}; /* 24 bytes -- do not grow */ + +extern struct cyc2ns_data *cyc2ns_read_begin(void); +extern void cyc2ns_read_end(struct cyc2ns_data *); #endif /* _ASM_X86_TIMER_H */ diff --git a/arch/x86/kernel/acpi/cstate.c b/arch/x86/kernel/acpi/cstate.c index d2b7f27781bc..e69182fd01cf 100644 --- a/arch/x86/kernel/acpi/cstate.c +++ b/arch/x86/kernel/acpi/cstate.c @@ -150,29 +150,6 @@ int acpi_processor_ffh_cstate_probe(unsigned int cpu, } EXPORT_SYMBOL_GPL(acpi_processor_ffh_cstate_probe); -/* - * This uses new MONITOR/MWAIT instructions on P4 processors with PNI, - * which can obviate IPI to trigger checking of need_resched. - * We execute MONITOR against need_resched and enter optimized wait state - * through MWAIT. Whenever someone changes need_resched, we would be woken - * up from MWAIT (without an IPI). - * - * New with Core Duo processors, MWAIT can take some hints based on CPU - * capability. - */ -void mwait_idle_with_hints(unsigned long ax, unsigned long cx) -{ - if (!need_resched()) { - if (this_cpu_has(X86_FEATURE_CLFLUSH_MONITOR)) - clflush((void *)¤t_thread_info()->flags); - - __monitor((void *)¤t_thread_info()->flags, 0, 0); - smp_mb(); - if (!need_resched()) - __mwait(ax, cx); - } -} - void acpi_processor_ffh_cstate_enter(struct acpi_processor_cx *cx) { unsigned int cpu = smp_processor_id(); diff --git a/arch/x86/kernel/cpu/amd.c b/arch/x86/kernel/cpu/amd.c index bca023bdd6b2..8bc79cddd9a2 100644 --- a/arch/x86/kernel/cpu/amd.c +++ b/arch/x86/kernel/cpu/amd.c @@ -487,7 +487,7 @@ static void early_init_amd(struct cpuinfo_x86 *c) set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC); set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC); if (!check_tsc_unstable()) - sched_clock_stable = 1; + set_sched_clock_stable(); } #ifdef CONFIG_X86_64 diff --git a/arch/x86/kernel/cpu/intel.c b/arch/x86/kernel/cpu/intel.c index ea04b342c026..1a439c047ff3 100644 --- a/arch/x86/kernel/cpu/intel.c +++ b/arch/x86/kernel/cpu/intel.c @@ -93,7 +93,7 @@ static void early_init_intel(struct cpuinfo_x86 *c) set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC); set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC); if (!check_tsc_unstable()) - sched_clock_stable = 1; + set_sched_clock_stable(); } /* Penwell and Cloverview have the TSC which doesn't sleep on S3 */ diff --git a/arch/x86/kernel/cpu/perf_event.c b/arch/x86/kernel/cpu/perf_event.c index 8e132931614d..b88645191fe5 100644 --- a/arch/x86/kernel/cpu/perf_event.c +++ b/arch/x86/kernel/cpu/perf_event.c @@ -1883,21 +1883,27 @@ static struct pmu pmu = { void arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now) { + struct cyc2ns_data *data; + userpg->cap_user_time = 0; userpg->cap_user_time_zero = 0; userpg->cap_user_rdpmc = x86_pmu.attr_rdpmc; userpg->pmc_width = x86_pmu.cntval_bits; - if (!sched_clock_stable) + if (!sched_clock_stable()) return; + data = cyc2ns_read_begin(); + userpg->cap_user_time = 1; - userpg->time_mult = this_cpu_read(cyc2ns); - userpg->time_shift = CYC2NS_SCALE_FACTOR; - userpg->time_offset = this_cpu_read(cyc2ns_offset) - now; + userpg->time_mult = data->cyc2ns_mul; + userpg->time_shift = data->cyc2ns_shift; + userpg->time_offset = data->cyc2ns_offset - now; userpg->cap_user_time_zero = 1; - userpg->time_zero = this_cpu_read(cyc2ns_offset); + userpg->time_zero = data->cyc2ns_offset; + + cyc2ns_read_end(data); } /* diff --git a/arch/x86/kernel/smpboot.c b/arch/x86/kernel/smpboot.c index 85dc05a3aa02..f5252c4eec8c 100644 --- a/arch/x86/kernel/smpboot.c +++ b/arch/x86/kernel/smpboot.c @@ -1417,7 +1417,9 @@ static inline void mwait_play_dead(void) * The WBINVD is insufficient due to the spurious-wakeup * case where we return around the loop. */ + mb(); clflush(mwait_ptr); + mb(); __monitor(mwait_ptr, 0, 0); mb(); __mwait(eax, 0); diff --git a/arch/x86/kernel/tsc.c b/arch/x86/kernel/tsc.c index 930e5d48f560..6377fb28b958 100644 --- a/arch/x86/kernel/tsc.c +++ b/arch/x86/kernel/tsc.c @@ -11,6 +11,7 @@ #include <linux/clocksource.h> #include <linux/percpu.h> #include <linux/timex.h> +#include <linux/static_key.h> #include <asm/hpet.h> #include <asm/timer.h> @@ -37,13 +38,244 @@ static int __read_mostly tsc_unstable; erroneous rdtsc usage on !cpu_has_tsc processors */ static int __read_mostly tsc_disabled = -1; +static struct static_key __use_tsc = STATIC_KEY_INIT; + int tsc_clocksource_reliable; + +/* + * Use a ring-buffer like data structure, where a writer advances the head by + * writing a new data entry and a reader advances the tail when it observes a + * new entry. + * + * Writers are made to wait on readers until there's space to write a new + * entry. + * + * This means that we can always use an {offset, mul} pair to compute a ns + * value that is 'roughly' in the right direction, even if we're writing a new + * {offset, mul} pair during the clock read. + * + * The down-side is that we can no longer guarantee strict monotonicity anymore + * (assuming the TSC was that to begin with), because while we compute the + * intersection point of the two clock slopes and make sure the time is + * continuous at the point of switching; we can no longer guarantee a reader is + * strictly before or after the switch point. + * + * It does mean a reader no longer needs to disable IRQs in order to avoid + * CPU-Freq updates messing with his times, and similarly an NMI reader will + * no longer run the risk of hitting half-written state. + */ + +struct cyc2ns { + struct cyc2ns_data data[2]; /* 0 + 2*24 = 48 */ + struct cyc2ns_data *head; /* 48 + 8 = 56 */ + struct cyc2ns_data *tail; /* 56 + 8 = 64 */ +}; /* exactly fits one cacheline */ + +static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns); + +struct cyc2ns_data *cyc2ns_read_begin(void) +{ + struct cyc2ns_data *head; + + preempt_disable(); + + head = this_cpu_read(cyc2ns.head); + /* + * Ensure we observe the entry when we observe the pointer to it. + * matches the wmb from cyc2ns_write_end(). + */ + smp_read_barrier_depends(); + head->__count++; + barrier(); + + return head; +} + +void cyc2ns_read_end(struct cyc2ns_data *head) +{ + barrier(); + /* + * If we're the outer most nested read; update the tail pointer + * when we're done. This notifies possible pending writers + * that we've observed the head pointer and that the other + * entry is now free. + */ + if (!--head->__count) { + /* + * x86-TSO does not reorder writes with older reads; + * therefore once this write becomes visible to another + * cpu, we must be finished reading the cyc2ns_data. + * + * matches with cyc2ns_write_begin(). + */ + this_cpu_write(cyc2ns.tail, head); + } + preempt_enable(); +} + +/* + * Begin writing a new @data entry for @cpu. + * + * Assumes some sort of write side lock; currently 'provided' by the assumption + * that cpufreq will call its notifiers sequentially. + */ +static struct cyc2ns_data *cyc2ns_write_begin(int cpu) +{ + struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu); + struct cyc2ns_data *data = c2n->data; + + if (data == c2n->head) + data++; + + /* XXX send an IPI to @cpu in order to guarantee a read? */ + + /* + * When we observe the tail write from cyc2ns_read_end(), + * the cpu must be done with that entry and its safe + * to start writing to it. + */ + while (c2n->tail == data) + cpu_relax(); + + return data; +} + +static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data) +{ + struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu); + + /* + * Ensure the @data writes are visible before we publish the + * entry. Matches the data-depencency in cyc2ns_read_begin(). + */ + smp_wmb(); + + ACCESS_ONCE(c2n->head) = data; +} + +/* + * Accelerators for sched_clock() + * convert from cycles(64bits) => nanoseconds (64bits) + * basic equation: + * ns = cycles / (freq / ns_per_sec) + * ns = cycles * (ns_per_sec / freq) + * ns = cycles * (10^9 / (cpu_khz * 10^3)) + * ns = cycles * (10^6 / cpu_khz) + * + * Then we use scaling math (suggested by george@mvista.com) to get: + * ns = cycles * (10^6 * SC / cpu_khz) / SC + * ns = cycles * cyc2ns_scale / SC + * + * And since SC is a constant power of two, we can convert the div + * into a shift. + * + * We can use khz divisor instead of mhz to keep a better precision, since + * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits. + * (mathieu.desnoyers@polymtl.ca) + * + * -johnstul@us.ibm.com "math is hard, lets go shopping!" + */ + +#define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */ + +static void cyc2ns_data_init(struct cyc2ns_data *data) +{ + data->cyc2ns_mul = 1U << CYC2NS_SCALE_FACTOR; + data->cyc2ns_shift = CYC2NS_SCALE_FACTOR; + data->cyc2ns_offset = 0; + data->__count = 0; +} + +static void cyc2ns_init(int cpu) +{ + struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu); + + cyc2ns_data_init(&c2n->data[0]); + cyc2ns_data_init(&c2n->data[1]); + + c2n->head = c2n->data; + c2n->tail = c2n->data; +} + +static inline unsigned long long cycles_2_ns(unsigned long long cyc) +{ + struct cyc2ns_data *data, *tail; + unsigned long long ns; + + /* + * See cyc2ns_read_*() for details; replicated in order to avoid + * an extra few instructions that came with the abstraction. + * Notable, it allows us to only do the __count and tail update + * dance when its actually needed. + */ + + preempt_disable(); + data = this_cpu_read(cyc2ns.head); + tail = this_cpu_read(cyc2ns.tail); + + if (likely(data == tail)) { + ns = data->cyc2ns_offset; + ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR); + } else { + data->__count++; + + barrier(); + + ns = data->cyc2ns_offset; + ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR); + + barrier(); + + if (!--data->__count) + this_cpu_write(cyc2ns.tail, data); + } + preempt_enable(); + + return ns; +} + +/* XXX surely we already have this someplace in the kernel?! */ +#define DIV_ROUND(n, d) (((n) + ((d) / 2)) / (d)) + +static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu) +{ + unsigned long long tsc_now, ns_now; + struct cyc2ns_data *data; + unsigned long flags; + + local_irq_save(flags); + sched_clock_idle_sleep_event(); + + if (!cpu_khz) + goto done; + + data = cyc2ns_write_begin(cpu); + + rdtscll(tsc_now); + ns_now = cycles_2_ns(tsc_now); + + /* + * Compute a new multiplier as per the above comment and ensure our + * time function is continuous; see the comment near struct + * cyc2ns_data. + */ + data->cyc2ns_mul = DIV_ROUND(NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR, cpu_khz); + data->cyc2ns_shift = CYC2NS_SCALE_FACTOR; + data->cyc2ns_offset = ns_now - + mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR); + + cyc2ns_write_end(cpu, data); + +done: + sched_clock_idle_wakeup_event(0); + local_irq_restore(flags); +} /* * Scheduler clock - returns current time in nanosec units. */ u64 native_sched_clock(void) { - u64 this_offset; + u64 tsc_now; /* * Fall back to jiffies if there's no TSC available: @@ -53,16 +285,16 @@ u64 native_sched_clock(void) * very important for it to be as fast as the platform * can achieve it. ) */ - if (unlikely(tsc_disabled)) { + if (!static_key_false(&__use_tsc)) { /* No locking but a rare wrong value is not a big deal: */ return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ); } /* read the Time Stamp Counter: */ - rdtscll(this_offset); + rdtscll(tsc_now); /* return the value in ns */ - return __cycles_2_ns(this_offset); + return cycles_2_ns(tsc_now); } /* We need to define a real function for sched_clock, to override the @@ -589,61 +821,11 @@ int recalibrate_cpu_khz(void) EXPORT_SYMBOL(recalibrate_cpu_khz); -/* Accelerators for sched_clock() - * convert from cycles(64bits) => nanoseconds (64bits) - * basic equation: - * ns = cycles / (freq / ns_per_sec) - * ns = cycles * (ns_per_sec / freq) - * ns = cycles * (10^9 / (cpu_khz * 10^3)) - * ns = cycles * (10^6 / cpu_khz) - * - * Then we use scaling math (suggested by george@mvista.com) to get: - * ns = cycles * (10^6 * SC / cpu_khz) / SC - * ns = cycles * cyc2ns_scale / SC - * - * And since SC is a constant power of two, we can convert the div - * into a shift. - * - * We can use khz divisor instead of mhz to keep a better precision, since - * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits. - * (mathieu.desnoyers@polymtl.ca) - * - * -johnstul@us.ibm.com "math is hard, lets go shopping!" - */ - -DEFINE_PER_CPU(unsigned long, cyc2ns); -DEFINE_PER_CPU(unsigned long long, cyc2ns_offset); - -static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu) -{ - unsigned long long tsc_now, ns_now, *offset; - unsigned long flags, *scale; - - local_irq_save(flags); - sched_clock_idle_sleep_event(); - - scale = &per_cpu(cyc2ns, cpu); - offset = &per_cpu(cyc2ns_offset, cpu); - - rdtscll(tsc_now); - ns_now = __cycles_2_ns(tsc_now); - - if (cpu_khz) { - *scale = ((NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR) + - cpu_khz / 2) / cpu_khz; - *offset = ns_now - mult_frac(tsc_now, *scale, - (1UL << CYC2NS_SCALE_FACTOR)); - } - - sched_clock_idle_wakeup_event(0); - local_irq_restore(flags); -} - static unsigned long long cyc2ns_suspend; void tsc_save_sched_clock_state(void) { - if (!sched_clock_stable) + if (!sched_clock_stable()) return; cyc2ns_suspend = sched_clock(); @@ -663,16 +845,26 @@ void tsc_restore_sched_clock_state(void) unsigned long flags; int cpu; - if (!sched_clock_stable) + if (!sched_clock_stable()) return; local_irq_save(flags); - __this_cpu_write(cyc2ns_offset, 0); + /* + * We're comming out of suspend, there's no concurrency yet; don't + * bother being nice about the RCU stuff, just write to both + * data fields. + */ + + this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0); + this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0); + offset = cyc2ns_suspend - sched_clock(); - for_each_possible_cpu(cpu) - per_cpu(cyc2ns_offset, cpu) = offset; + for_each_possible_cpu(cpu) { + per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset; + per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset; + } local_irq_restore(flags); } @@ -795,7 +987,7 @@ void mark_tsc_unstable(char *reason) { if (!tsc_unstable) { tsc_unstable = 1; - sched_clock_stable = 0; + clear_sched_clock_stable(); disable_sched_clock_irqtime(); pr_info("Marking TSC unstable due to %s\n", reason); /* Change only the rating, when not registered */ @@ -995,14 +1187,18 @@ void __init tsc_init(void) * speed as the bootup CPU. (cpufreq notifiers will fix this * up if their speed diverges) */ - for_each_possible_cpu(cpu) + for_each_possible_cpu(cpu) { + cyc2ns_init(cpu); set_cyc2ns_scale(cpu_khz, cpu); + } if (tsc_disabled > 0) return; /* now allow native_sched_clock() to use rdtsc */ + tsc_disabled = 0; + static_key_slow_inc(&__use_tsc); if (!no_sched_irq_time) enable_sched_clock_irqtime(); diff --git a/arch/x86/platform/uv/tlb_uv.c b/arch/x86/platform/uv/tlb_uv.c index efe4d7220397..dfe605ac1bcd 100644 --- a/arch/x86/platform/uv/tlb_uv.c +++ b/arch/x86/platform/uv/tlb_uv.c @@ -433,15 +433,49 @@ static void reset_with_ipi(struct pnmask *distribution, struct bau_control *bcp) return; } -static inline unsigned long cycles_2_us(unsigned long long cyc) +/* + * Not to be confused with cycles_2_ns() from tsc.c; this gives a relative + * number, not an absolute. It converts a duration in cycles to a duration in + * ns. + */ +static inline unsigned long long cycles_2_ns(unsigned long long cyc) { + struct cyc2ns_data *data = cyc2ns_read_begin(); unsigned long long ns; - unsigned long us; - int cpu = smp_processor_id(); - ns = (cyc * per_cpu(cyc2ns, cpu)) >> CYC2NS_SCALE_FACTOR; - us = ns / 1000; - return us; + ns = mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift); + + cyc2ns_read_end(data); + return ns; +} + +/* + * The reverse of the above; converts a duration in ns to a duration in cycles. + */ +static inline unsigned long long ns_2_cycles(unsigned long long ns) +{ + struct cyc2ns_data *data = cyc2ns_read_begin(); + unsigned long long cyc; + + cyc = (ns << data->cyc2ns_shift) / data->cyc2ns_mul; + + cyc2ns_read_end(data); + return cyc; +} + +static inline unsigned long cycles_2_us(unsigned long long cyc) +{ + return cycles_2_ns(cyc) / NSEC_PER_USEC; +} + +static inline cycles_t sec_2_cycles(unsigned long sec) +{ + return ns_2_cycles(sec * NSEC_PER_SEC); +} + +static inline unsigned long long usec_2_cycles(unsigned long usec) +{ + return ns_2_cycles(usec * NSEC_PER_USEC); } /* @@ -668,16 +702,6 @@ static int wait_completion(struct bau_desc *bau_desc, bcp, try); } -static inline cycles_t sec_2_cycles(unsigned long sec) -{ - unsigned long ns; - cycles_t cyc; - - ns = sec * 1000000000; - cyc = (ns << CYC2NS_SCALE_FACTOR)/(per_cpu(cyc2ns, smp_processor_id())); - return cyc; -} - /* * Our retries are blocked by all destination sw ack resources being * in use, and a timeout is pending. In that case hardware immediately @@ -1327,16 +1351,6 @@ static void ptc_seq_stop(struct seq_file *file, void *data) { } -static inline unsigned long long usec_2_cycles(unsigned long microsec) -{ - unsigned long ns; - unsigned long long cyc; - - ns = microsec * 1000; - cyc = (ns << CYC2NS_SCALE_FACTOR)/(per_cpu(cyc2ns, smp_processor_id())); - return cyc; -} - /* * Display the statistics thru /proc/sgi_uv/ptc_statistics * 'data' points to the cpu number diff --git a/arch/x86/syscalls/syscall_32.tbl b/arch/x86/syscalls/syscall_32.tbl index aabfb8380a1c..96bc506ac6de 100644 --- a/arch/x86/syscalls/syscall_32.tbl +++ b/arch/x86/syscalls/syscall_32.tbl @@ -357,3 +357,5 @@ 348 i386 process_vm_writev sys_process_vm_writev compat_sys_process_vm_writev 349 i386 kcmp sys_kcmp 350 i386 finit_module sys_finit_module +351 i386 sched_setattr sys_sched_setattr +352 i386 sched_getattr sys_sched_getattr diff --git a/arch/x86/syscalls/syscall_64.tbl b/arch/x86/syscalls/syscall_64.tbl index 38ae65dfd14f..a12bddc7ccea 100644 --- a/arch/x86/syscalls/syscall_64.tbl +++ b/arch/x86/syscalls/syscall_64.tbl @@ -320,6 +320,8 @@ 311 64 process_vm_writev sys_process_vm_writev 312 common kcmp sys_kcmp 313 common finit_module sys_finit_module +314 common sched_setattr sys_sched_setattr +315 common sched_getattr sys_sched_getattr # # x32-specific system call numbers start at 512 to avoid cache impact diff --git a/drivers/acpi/acpi_pad.c b/drivers/acpi/acpi_pad.c index fc6008fbce35..509452a62f96 100644 --- a/drivers/acpi/acpi_pad.c +++ b/drivers/acpi/acpi_pad.c @@ -193,10 +193,7 @@ static int power_saving_thread(void *data) CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu); stop_critical_timings(); - __monitor((void *)¤t_thread_info()->flags, 0, 0); - smp_mb(); - if (!need_resched()) - __mwait(power_saving_mwait_eax, 1); + mwait_idle_with_hints(power_saving_mwait_eax, 1); start_critical_timings(); if (lapic_marked_unstable) diff --git a/drivers/acpi/processor_idle.c b/drivers/acpi/processor_idle.c index 644516d9bde6..f90c56c8379e 100644 --- a/drivers/acpi/processor_idle.c +++ b/drivers/acpi/processor_idle.c @@ -727,11 +727,6 @@ static int acpi_idle_enter_c1(struct cpuidle_device *dev, if (unlikely(!pr)) return -EINVAL; - if (cx->entry_method == ACPI_CSTATE_FFH) { - if (current_set_polling_and_test()) - return -EINVAL; - } - lapic_timer_state_broadcast(pr, cx, 1); acpi_idle_do_entry(cx); @@ -785,11 +780,6 @@ static int acpi_idle_enter_simple(struct cpuidle_device *dev, if (unlikely(!pr)) return -EINVAL; - if (cx->entry_method == ACPI_CSTATE_FFH) { - if (current_set_polling_and_test()) - return -EINVAL; - } - /* * Must be done before busmaster disable as we might need to * access HPET ! @@ -841,11 +831,6 @@ static int acpi_idle_enter_bm(struct cpuidle_device *dev, } } - if (cx->entry_method == ACPI_CSTATE_FFH) { - if (current_set_polling_and_test()) - return -EINVAL; - } - acpi_unlazy_tlb(smp_processor_id()); /* Tell the scheduler that we are going deep-idle: */ diff --git a/drivers/idle/intel_idle.c b/drivers/idle/intel_idle.c index 797ed29a36ea..6c0e0452dd9b 100644 --- a/drivers/idle/intel_idle.c +++ b/drivers/idle/intel_idle.c @@ -377,16 +377,7 @@ static int intel_idle(struct cpuidle_device *dev, if (!(lapic_timer_reliable_states & (1 << (cstate)))) clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu); - if (!current_set_polling_and_test()) { - - if (this_cpu_has(X86_FEATURE_CLFLUSH_MONITOR)) - clflush((void *)¤t_thread_info()->flags); - - __monitor((void *)¤t_thread_info()->flags, 0, 0); - smp_mb(); - if (!need_resched()) - __mwait(eax, ecx); - } + mwait_idle_with_hints(eax, ecx); if (!(lapic_timer_reliable_states & (1 << (cstate)))) clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu); diff --git a/drivers/thermal/intel_powerclamp.c b/drivers/thermal/intel_powerclamp.c index 8f181b3f842b..d833c8f5b465 100644 --- a/drivers/thermal/intel_powerclamp.c +++ b/drivers/thermal/intel_powerclamp.c @@ -438,14 +438,12 @@ static int clamp_thread(void *arg) */ local_touch_nmi(); stop_critical_timings(); - __monitor((void *)¤t_thread_info()->flags, 0, 0); - cpu_relax(); /* allow HT sibling to run */ - __mwait(eax, ecx); + mwait_idle_with_hints(eax, ecx); start_critical_timings(); atomic_inc(&idle_wakeup_counter); } tick_nohz_idle_exit(); - preempt_enable_no_resched(); + preempt_enable(); } del_timer_sync(&wakeup_timer); clear_bit(cpunr, cpu_clamping_mask); diff --git a/include/linux/bottom_half.h b/include/linux/bottom_half.h index 27b1bcffe408..86c12c93e3cf 100644 --- a/include/linux/bottom_half.h +++ b/include/linux/bottom_half.h @@ -1,9 +1,35 @@ #ifndef _LINUX_BH_H #define _LINUX_BH_H -extern void local_bh_disable(void); +#include <linux/preempt.h> +#include <linux/preempt_mask.h> + +#ifdef CONFIG_TRACE_IRQFLAGS +extern void __local_bh_disable_ip(unsigned long ip, unsigned int cnt); +#else +static __always_inline void __local_bh_disable_ip(unsigned long ip, unsigned int cnt) +{ + preempt_count_add(cnt); + barrier(); +} +#endif + +static inline void local_bh_disable(void) +{ + __local_bh_disable_ip(_THIS_IP_, SOFTIRQ_DISABLE_OFFSET); +} + extern void _local_bh_enable(void); -extern void local_bh_enable(void); -extern void local_bh_enable_ip(unsigned long ip); +extern void __local_bh_enable_ip(unsigned long ip, unsigned int cnt); + +static inline void local_bh_enable_ip(unsigned long ip) +{ + __local_bh_enable_ip(ip, SOFTIRQ_DISABLE_OFFSET); +} + +static inline void local_bh_enable(void) +{ + __local_bh_enable_ip(_THIS_IP_, SOFTIRQ_DISABLE_OFFSET); +} #endif /* _LINUX_BH_H */ diff --git a/include/linux/hardirq.h b/include/linux/hardirq.h index d9cf963ac832..12d5f972f23f 100644 --- a/include/linux/hardirq.h +++ b/include/linux/hardirq.h @@ -5,6 +5,7 @@ #include <linux/lockdep.h> #include <linux/ftrace_irq.h> #include <linux/vtime.h> +#include <asm/hardirq.h> extern void synchronize_irq(unsigned int irq); diff --git a/include/linux/init_task.h b/include/linux/init_task.h index b0ed422e4e4a..f0e52383a001 100644 --- a/include/linux/init_task.h +++ b/include/linux/init_task.h @@ -11,6 +11,7 @@ #include <linux/user_namespace.h> #include <linux/securebits.h> #include <linux/seqlock.h> +#include <linux/rbtree.h> #include <net/net_namespace.h> #include <linux/sched/rt.h> @@ -154,6 +155,14 @@ extern struct task_group root_task_group; #define INIT_TASK_COMM "swapper" +#ifdef CONFIG_RT_MUTEXES +# define INIT_RT_MUTEXES(tsk) \ + .pi_waiters = RB_ROOT, \ + .pi_waiters_leftmost = NULL, +#else +# define INIT_RT_MUTEXES(tsk) +#endif + /* * INIT_TASK is used to set up the first task table, touch at * your own risk!. Base=0, limit=0x1fffff (=2MB) @@ -221,6 +230,7 @@ extern struct task_group root_task_group; INIT_TRACE_RECURSION \ INIT_TASK_RCU_PREEMPT(tsk) \ INIT_CPUSET_SEQ(tsk) \ + INIT_RT_MUTEXES(tsk) \ INIT_VTIME(tsk) \ } diff --git a/include/linux/preempt.h b/include/linux/preempt.h index a3d9dc8c2c00..59749fc48328 100644 --- a/include/linux/preempt.h +++ b/include/linux/preempt.h @@ -64,7 +64,11 @@ do { \ } while (0) #else -#define preempt_enable() preempt_enable_no_resched() +#define preempt_enable() \ +do { \ + barrier(); \ + preempt_count_dec(); \ +} while (0) #define preempt_check_resched() do { } while (0) #endif @@ -93,7 +97,11 @@ do { \ __preempt_schedule_context(); \ } while (0) #else -#define preempt_enable_notrace() preempt_enable_no_resched_notrace() +#define preempt_enable_notrace() \ +do { \ + barrier(); \ + __preempt_count_dec(); \ +} while (0) #endif #else /* !CONFIG_PREEMPT_COUNT */ @@ -116,6 +124,31 @@ do { \ #endif /* CONFIG_PREEMPT_COUNT */ +#ifdef MODULE +/* + * Modules have no business playing preemption tricks. + */ +#undef sched_preempt_enable_no_resched +#undef preempt_enable_no_resched +#undef preempt_enable_no_resched_notrace +#undef preempt_check_resched +#endif + +#ifdef CONFIG_PREEMPT +#define preempt_set_need_resched() \ +do { \ + set_preempt_need_resched(); \ +} while (0) +#define preempt_fold_need_resched() \ +do { \ + if (tif_need_resched()) \ + set_preempt_need_resched(); \ +} while (0) +#else +#define preempt_set_need_resched() do { } while (0) +#define preempt_fold_need_resched() do { } while (0) +#endif + #ifdef CONFIG_PREEMPT_NOTIFIERS struct preempt_notifier; diff --git a/include/linux/preempt_mask.h b/include/linux/preempt_mask.h index d169820203dd..dbeec4d4a3be 100644 --- a/include/linux/preempt_mask.h +++ b/include/linux/preempt_mask.h @@ -2,7 +2,6 @@ #define LINUX_PREEMPT_MASK_H #include <linux/preempt.h> -#include <asm/hardirq.h> /* * We put the hardirq and softirq counter into the preemption @@ -79,6 +78,21 @@ #endif /* + * The preempt_count offset needed for things like: + * + * spin_lock_bh() + * + * Which need to disable both preemption (CONFIG_PREEMPT_COUNT) and + * softirqs, such that unlock sequences of: + * + * spin_unlock(); + * local_bh_enable(); + * + * Work as expected. + */ +#define SOFTIRQ_LOCK_OFFSET (SOFTIRQ_DISABLE_OFFSET + PREEMPT_CHECK_OFFSET) + +/* * Are we running in atomic context? WARNING: this macro cannot * always detect atomic context; in particular, it cannot know about * held spinlocks in non-preemptible kernels. Thus it should not be diff --git a/include/linux/rtmutex.h b/include/linux/rtmutex.h index de17134244f3..3aed8d737e1a 100644 --- a/include/linux/rtmutex.h +++ b/include/linux/rtmutex.h @@ -13,7 +13,7 @@ #define __LINUX_RT_MUTEX_H #include <linux/linkage.h> -#include <linux/plist.h> +#include <linux/rbtree.h> #include <linux/spinlock_types.h> extern int max_lock_depth; /* for sysctl */ @@ -22,12 +22,14 @@ extern int max_lock_depth; /* for sysctl */ * The rt_mutex structure * * @wait_lock: spinlock to protect the structure - * @wait_list: pilist head to enqueue waiters in priority order + * @waiters: rbtree root to enqueue waiters in priority order + * @waiters_leftmost: top waiter * @owner: the mutex owner */ struct rt_mutex { raw_spinlock_t wait_lock; - struct plist_head wait_list; + struct rb_root waiters; + struct rb_node *waiters_leftmost; struct task_struct *owner; #ifdef CONFIG_DEBUG_RT_MUTEXES int save_state; @@ -66,7 +68,7 @@ struct hrtimer_sleeper; #define __RT_MUTEX_INITIALIZER(mutexname) \ { .wait_lock = __RAW_SPIN_LOCK_UNLOCKED(mutexname.wait_lock) \ - , .wait_list = PLIST_HEAD_INIT(mutexname.wait_list) \ + , .waiters = RB_ROOT \ , .owner = NULL \ __DEBUG_RT_MUTEX_INITIALIZER(mutexname)} @@ -98,12 +100,4 @@ extern int rt_mutex_trylock(struct rt_mutex *lock); extern void rt_mutex_unlock(struct rt_mutex *lock); -#ifdef CONFIG_RT_MUTEXES -# define INIT_RT_MUTEXES(tsk) \ - .pi_waiters = PLIST_HEAD_INIT(tsk.pi_waiters), \ - INIT_RT_MUTEX_DEBUG(tsk) -#else -# define INIT_RT_MUTEXES(tsk) -#endif - #endif diff --git a/include/linux/rwlock_api_smp.h b/include/linux/rwlock_api_smp.h index 9c9f0495d37c..5b9b84b20407 100644 --- a/include/linux/rwlock_api_smp.h +++ b/include/linux/rwlock_api_smp.h @@ -172,8 +172,7 @@ static inline void __raw_read_lock_irq(rwlock_t *lock) static inline void __raw_read_lock_bh(rwlock_t *lock) { - local_bh_disable(); - preempt_disable(); + __local_bh_disable_ip(_RET_IP_, SOFTIRQ_LOCK_OFFSET); rwlock_acquire_read(&lock->dep_map, 0, 0, _RET_IP_); LOCK_CONTENDED(lock, do_raw_read_trylock, do_raw_read_lock); } @@ -200,8 +199,7 @@ static inline void __raw_write_lock_irq(rwlock_t *lock) static inline void __raw_write_lock_bh(rwlock_t *lock) { - local_bh_disable(); - preempt_disable(); + __local_bh_disable_ip(_RET_IP_, SOFTIRQ_LOCK_OFFSET); rwlock_acquire(&lock->dep_map, 0, 0, _RET_IP_); LOCK_CONTENDED(lock, do_raw_write_trylock, do_raw_write_lock); } @@ -250,8 +248,7 @@ static inline void __raw_read_unlock_bh(rwlock_t *lock) { rwlock_release(&lock->dep_map, 1, _RET_IP_); do_raw_read_unlock(lock); - preempt_enable_no_resched(); - local_bh_enable_ip((unsigned long)__builtin_return_address(0)); + __local_bh_enable_ip(_RET_IP_, SOFTIRQ_LOCK_OFFSET); } static inline void __raw_write_unlock_irqrestore(rwlock_t *lock, @@ -275,8 +272,7 @@ static inline void __raw_write_unlock_bh(rwlock_t *lock) { rwlock_release(&lock->dep_map, 1, _RET_IP_); do_raw_write_unlock(lock); - preempt_enable_no_resched(); - local_bh_enable_ip((unsigned long)__builtin_return_address(0)); + __local_bh_enable_ip(_RET_IP_, SOFTIRQ_LOCK_OFFSET); } #endif /* __LINUX_RWLOCK_API_SMP_H */ diff --git a/include/linux/sched.h b/include/linux/sched.h index 53f97eb8dbc7..ffccdad050b5 100644 --- a/include/linux/sched.h +++ b/include/linux/sched.h @@ -16,6 +16,7 @@ struct sched_param { #include <linux/types.h> #include <linux/timex.h> #include <linux/jiffies.h> +#include <linux/plist.h> #include <linux/rbtree.h> #include <linux/thread_info.h> #include <linux/cpumask.h> @@ -56,6 +57,70 @@ struct sched_param { #include <asm/processor.h> +#define SCHED_ATTR_SIZE_VER0 48 /* sizeof first published struct */ + +/* + * Extended scheduling parameters data structure. + * + * This is needed because the original struct sched_param can not be + * altered without introducing ABI issues with legacy applications + * (e.g., in sched_getparam()). + * + * However, the possibility of specifying more than just a priority for + * the tasks may be useful for a wide variety of application fields, e.g., + * multimedia, streaming, automation and control, and many others. + * + * This variant (sched_attr) is meant at describing a so-called + * sporadic time-constrained task. In such model a task is specified by: + * - the activation period or minimum instance inter-arrival time; + * - the maximum (or average, depending on the actual scheduling + * discipline) computation time of all instances, a.k.a. runtime; + * - the deadline (relative to the actual activation time) of each + * instance. + * Very briefly, a periodic (sporadic) task asks for the execution of + * some specific computation --which is typically called an instance-- + * (at most) every period. Moreover, each instance typically lasts no more + * than the runtime and must be completed by time instant t equal to + * the instance activation time + the deadline. + * + * This is reflected by the actual fields of the sched_attr structure: + * + * @size size of the structure, for fwd/bwd compat. + * + * @sched_policy task's scheduling policy + * @sched_flags for customizing the scheduler behaviour + * @sched_nice task's nice value (SCHED_NORMAL/BATCH) + * @sched_priority task's static priority (SCHED_FIFO/RR) + * @sched_deadline representative of the task's deadline + * @sched_runtime representative of the task's runtime + * @sched_period representative of the task's period + * + * Given this task model, there are a multiplicity of scheduling algorithms + * and policies, that can be used to ensure all the tasks will make their + * timing constraints. + * + * As of now, the SCHED_DEADLINE policy (sched_dl scheduling class) is the + * only user of this new interface. More information about the algorithm + * available in the scheduling class file or in Documentation/. + */ +struct sched_attr { + u32 size; + + u32 sched_policy; + u64 sched_flags; + + /* SCHED_NORMAL, SCHED_BATCH */ + s32 sched_nice; + + /* SCHED_FIFO, SCHED_RR */ + u32 sched_priority; + + /* SCHED_DEADLINE */ + u64 sched_runtime; + u64 sched_deadline; + u64 sched_period; +}; + struct exec_domain; struct futex_pi_state; struct robust_list_head; @@ -168,7 +233,6 @@ extern char ___assert_task_state[1 - 2*!!( #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) -#define task_is_dead(task) ((task)->exit_state != 0) #define task_is_stopped_or_traced(task) \ ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) #define task_contributes_to_load(task) \ @@ -1029,6 +1093,51 @@ struct sched_rt_entity { #endif }; +struct sched_dl_entity { + struct rb_node rb_node; + + /* + * Original scheduling parameters. Copied here from sched_attr + * during sched_setscheduler2(), they will remain the same until + * the next sched_setscheduler2(). + */ + u64 dl_runtime; /* maximum runtime for each instance */ + u64 dl_deadline; /* relative deadline of each instance */ + u64 dl_period; /* separation of two instances (period) */ + u64 dl_bw; /* dl_runtime / dl_deadline */ + + /* + * Actual scheduling parameters. Initialized with the values above, + * they are continously updated during task execution. Note that + * the remaining runtime could be < 0 in case we are in overrun. + */ + s64 runtime; /* remaining runtime for this instance */ + u64 deadline; /* absolute deadline for this instance */ + unsigned int flags; /* specifying the scheduler behaviour */ + + /* + * Some bool flags: + * + * @dl_throttled tells if we exhausted the runtime. If so, the + * task has to wait for a replenishment to be performed at the + * next firing of dl_timer. + * + * @dl_new tells if a new instance arrived. If so we must + * start executing it with full runtime and reset its absolute + * deadline; + * + * @dl_boosted tells if we are boosted due to DI. If so we are + * outside bandwidth enforcement mechanism (but only until we + * exit the critical section). + */ + int dl_throttled, dl_new, dl_boosted; + + /* + * Bandwidth enforcement timer. Each -deadline task has its + * own bandwidth to be enforced, thus we need one timer per task. + */ + struct hrtimer dl_timer; +}; struct rcu_node; @@ -1065,6 +1174,7 @@ struct task_struct { #ifdef CONFIG_CGROUP_SCHED struct task_group *sched_task_group; #endif + struct sched_dl_entity dl; #ifdef CONFIG_PREEMPT_NOTIFIERS /* list of struct preempt_notifier: */ @@ -1098,6 +1208,7 @@ struct task_struct { struct list_head tasks; #ifdef CONFIG_SMP struct plist_node pushable_tasks; + struct rb_node pushable_dl_tasks; #endif struct mm_struct *mm, *active_mm; @@ -1249,9 +1360,12 @@ struct task_struct { #ifdef CONFIG_RT_MUTEXES /* PI waiters blocked on a rt_mutex held by this task */ - struct plist_head pi_waiters; + struct rb_root pi_waiters; + struct rb_node *pi_waiters_leftmost; /* Deadlock detection and priority inheritance handling */ struct rt_mutex_waiter *pi_blocked_on; + /* Top pi_waiters task */ + struct task_struct *pi_top_task; #endif #ifdef CONFIG_DEBUG_MUTEXES @@ -1880,7 +1994,9 @@ static inline void sched_clock_idle_wakeup_event(u64 delta_ns) * but then during bootup it turns out that sched_clock() * is reliable after all: */ -extern int sched_clock_stable; +extern int sched_clock_stable(void); +extern void set_sched_clock_stable(void); +extern void clear_sched_clock_stable(void); extern void sched_clock_tick(void); extern void sched_clock_idle_sleep_event(void); @@ -1959,6 +2075,8 @@ extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *); extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *); +extern int sched_setattr(struct task_struct *, + const struct sched_attr *); extern struct task_struct *idle_task(int cpu); /** * is_idle_task - is the specified task an idle task? @@ -2038,7 +2156,7 @@ extern void wake_up_new_task(struct task_struct *tsk); #else static inline void kick_process(struct task_struct *tsk) { } #endif -extern void sched_fork(unsigned long clone_flags, struct task_struct *p); +extern int sched_fork(unsigned long clone_flags, struct task_struct *p); extern void sched_dead(struct task_struct *p); extern void proc_caches_init(void); @@ -2627,6 +2745,21 @@ static inline bool __must_check current_clr_polling_and_test(void) } #endif +static inline void current_clr_polling(void) +{ + __current_clr_polling(); + + /* + * Ensure we check TIF_NEED_RESCHED after we clear the polling bit. + * Once the bit is cleared, we'll get IPIs with every new + * TIF_NEED_RESCHED and the IPI handler, scheduler_ipi(), will also + * fold. + */ + smp_mb(); /* paired with resched_task() */ + + preempt_fold_need_resched(); +} + static __always_inline bool need_resched(void) { return unlikely(tif_need_resched()); diff --git a/include/linux/sched/deadline.h b/include/linux/sched/deadline.h new file mode 100644 index 000000000000..9d303b8847df --- /dev/null +++ b/include/linux/sched/deadline.h @@ -0,0 +1,24 @@ +#ifndef _SCHED_DEADLINE_H +#define _SCHED_DEADLINE_H + +/* + * SCHED_DEADLINE tasks has negative priorities, reflecting + * the fact that any of them has higher prio than RT and + * NORMAL/BATCH tasks. + */ + +#define MAX_DL_PRIO 0 + +static inline int dl_prio(int prio) +{ + if (unlikely(prio < MAX_DL_PRIO)) + return 1; + return 0; +} + +static inline int dl_task(struct task_struct *p) +{ + return dl_prio(p->prio); +} + +#endif /* _SCHED_DEADLINE_H */ diff --git a/include/linux/sched/rt.h b/include/linux/sched/rt.h index 440434df3627..34e4ebea8fce 100644 --- a/include/linux/sched/rt.h +++ b/include/linux/sched/rt.h @@ -35,6 +35,7 @@ static inline int rt_task(struct task_struct *p) #ifdef CONFIG_RT_MUTEXES extern int rt_mutex_getprio(struct task_struct *p); extern void rt_mutex_setprio(struct task_struct *p, int prio); +extern struct task_struct *rt_mutex_get_top_task(struct task_struct *task); extern void rt_mutex_adjust_pi(struct task_struct *p); static inline bool tsk_is_pi_blocked(struct task_struct *tsk) { @@ -45,6 +46,10 @@ static inline int rt_mutex_getprio(struct task_struct *p) { return p->normal_prio; } +static inline struct task_struct *rt_mutex_get_top_task(struct task_struct *task) +{ + return NULL; +} # define rt_mutex_adjust_pi(p) do { } while (0) static inline bool tsk_is_pi_blocked(struct task_struct *tsk) { diff --git a/include/linux/sched/sysctl.h b/include/linux/sched/sysctl.h index 41467f8ff8ec..31e0193cb0c5 100644 --- a/include/linux/sched/sysctl.h +++ b/include/linux/sched/sysctl.h @@ -48,7 +48,6 @@ extern unsigned int sysctl_numa_balancing_scan_delay; extern unsigned int sysctl_numa_balancing_scan_period_min; extern unsigned int sysctl_numa_balancing_scan_period_max; extern unsigned int sysctl_numa_balancing_scan_size; -extern unsigned int sysctl_numa_balancing_settle_count; #ifdef CONFIG_SCHED_DEBUG extern unsigned int sysctl_sched_migration_cost; diff --git a/include/linux/spinlock_api_smp.h b/include/linux/spinlock_api_smp.h index bdb9993f0fda..42dfab89e740 100644 --- a/include/linux/spinlock_api_smp.h +++ b/include/linux/spinlock_api_smp.h @@ -131,8 +131,7 @@ static inline void __raw_spin_lock_irq(raw_spinlock_t *lock) static inline void __raw_spin_lock_bh(raw_spinlock_t *lock) { - local_bh_disable(); - preempt_disable(); + __local_bh_disable_ip(_RET_IP_, SOFTIRQ_LOCK_OFFSET); spin_acquire(&lock->dep_map, 0, 0, _RET_IP_); LOCK_CONTENDED(lock, do_raw_spin_trylock, do_raw_spin_lock); } @@ -174,20 +173,17 @@ static inline void __raw_spin_unlock_bh(raw_spinlock_t *lock) { spin_release(&lock->dep_map, 1, _RET_IP_); do_raw_spin_unlock(lock); - preempt_enable_no_resched(); - local_bh_enable_ip((unsigned long)__builtin_return_address(0)); + __local_bh_enable_ip(_RET_IP_, SOFTIRQ_LOCK_OFFSET); } static inline int __raw_spin_trylock_bh(raw_spinlock_t *lock) { - local_bh_disable(); - preempt_disable(); + __local_bh_disable_ip(_RET_IP_, SOFTIRQ_LOCK_OFFSET); if (do_raw_spin_trylock(lock)) { spin_acquire(&lock->dep_map, 0, 1, _RET_IP_); return 1; } - preempt_enable_no_resched(); - local_bh_enable_ip((unsigned long)__builtin_return_address(0)); + __local_bh_enable_ip(_RET_IP_, SOFTIRQ_LOCK_OFFSET); return 0; } diff --git a/include/linux/spinlock_api_up.h b/include/linux/spinlock_api_up.h index af1f47229e70..d0d188861ad6 100644 --- a/include/linux/spinlock_api_up.h +++ b/include/linux/spinlock_api_up.h @@ -24,11 +24,14 @@ * flags straight, to suppress compiler warnings of unused lock * variables, and to add the proper checker annotations: */ +#define ___LOCK(lock) \ + do { __acquire(lock); (void)(lock); } while (0) + #define __LOCK(lock) \ - do { preempt_disable(); __acquire(lock); (void)(lock); } while (0) + do { preempt_disable(); ___LOCK(lock); } while (0) #define __LOCK_BH(lock) \ - do { local_bh_disable(); __LOCK(lock); } while (0) + do { __local_bh_disable_ip(_THIS_IP_, SOFTIRQ_LOCK_OFFSET); ___LOCK(lock); } while (0) #define __LOCK_IRQ(lock) \ do { local_irq_disable(); __LOCK(lock); } while (0) @@ -36,12 +39,15 @@ #define __LOCK_IRQSAVE(lock, flags) \ do { local_irq_save(flags); __LOCK(lock); } while (0) +#define ___UNLOCK(lock) \ + do { __release(lock); (void)(lock); } while (0) + #define __UNLOCK(lock) \ - do { preempt_enable(); __release(lock); (void)(lock); } while (0) + do { preempt_enable(); ___UNLOCK(lock); } while (0) #define __UNLOCK_BH(lock) \ - do { preempt_enable_no_resched(); local_bh_enable(); \ - __release(lock); (void)(lock); } while (0) + do { __local_bh_enable_ip(_THIS_IP_, SOFTIRQ_LOCK_OFFSET); \ + ___UNLOCK(lock); } while (0) #define __UNLOCK_IRQ(lock) \ do { local_irq_enable(); __UNLOCK(lock); } while (0) diff --git a/include/linux/syscalls.h b/include/linux/syscalls.h index 94273bbe6050..40ed9e9a77e5 100644 --- a/include/linux/syscalls.h +++ b/include/linux/syscalls.h @@ -38,6 +38,7 @@ struct rlimit; struct rlimit64; struct rusage; struct sched_param; +struct sched_attr; struct sel_arg_struct; struct semaphore; struct sembuf; @@ -279,9 +280,14 @@ asmlinkage long sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param); asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param); +asmlinkage long sys_sched_setattr(pid_t pid, + struct sched_attr __user *attr); asmlinkage long sys_sched_getscheduler(pid_t pid); asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param); +asmlinkage long sys_sched_getattr(pid_t pid, + struct sched_attr __user *attr, + unsigned int size); asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len, unsigned long __user *user_mask_ptr); asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len, diff --git a/include/linux/uaccess.h b/include/linux/uaccess.h index 9d8cf056e661..ecd3319dac33 100644 --- a/include/linux/uaccess.h +++ b/include/linux/uaccess.h @@ -25,13 +25,16 @@ static inline void pagefault_disable(void) static inline void pagefault_enable(void) { +#ifndef CONFIG_PREEMPT /* * make sure to issue those last loads/stores before enabling * the pagefault handler again. */ barrier(); preempt_count_dec(); - preempt_check_resched(); +#else + preempt_enable(); +#endif } #ifndef ARCH_HAS_NOCACHE_UACCESS diff --git a/include/net/busy_poll.h b/include/net/busy_poll.h index 829627d7b846..1d67fb6b23a0 100644 --- a/include/net/busy_poll.h +++ b/include/net/busy_poll.h @@ -42,27 +42,10 @@ static inline bool net_busy_loop_on(void) return sysctl_net_busy_poll; } -/* a wrapper to make debug_smp_processor_id() happy - * we can use sched_clock() because we don't care much about precision - * we only care that the average is bounded - */ -#ifdef CONFIG_DEBUG_PREEMPT -static inline u64 busy_loop_us_clock(void) -{ - u64 rc; - - preempt_disable_notrace(); - rc = sched_clock(); - preempt_enable_no_resched_notrace(); - - return rc >> 10; -} -#else /* CONFIG_DEBUG_PREEMPT */ static inline u64 busy_loop_us_clock(void) { - return sched_clock() >> 10; + return local_clock() >> 10; } -#endif /* CONFIG_DEBUG_PREEMPT */ static inline unsigned long sk_busy_loop_end_time(struct sock *sk) { diff --git a/include/uapi/linux/sched.h b/include/uapi/linux/sched.h index 5a0f945927ac..34f9d7387d13 100644 --- a/include/uapi/linux/sched.h +++ b/include/uapi/linux/sched.h @@ -39,8 +39,14 @@ #define SCHED_BATCH 3 /* SCHED_ISO: reserved but not implemented yet */ #define SCHED_IDLE 5 +#define SCHED_DEADLINE 6 + /* Can be ORed in to make sure the process is reverted back to SCHED_NORMAL on fork */ #define SCHED_RESET_ON_FORK 0x40000000 +/* + * For the sched_{set,get}attr() calls + */ +#define SCHED_FLAG_RESET_ON_FORK 0x01 #endif /* _UAPI_LINUX_SCHED_H */ diff --git a/kernel/cpu/idle.c b/kernel/cpu/idle.c index 988573a9a387..277f494c2a9a 100644 --- a/kernel/cpu/idle.c +++ b/kernel/cpu/idle.c @@ -105,14 +105,17 @@ static void cpu_idle_loop(void) __current_set_polling(); } arch_cpu_idle_exit(); - /* - * We need to test and propagate the TIF_NEED_RESCHED - * bit here because we might not have send the - * reschedule IPI to idle tasks. - */ - if (tif_need_resched()) - set_preempt_need_resched(); } + + /* + * Since we fell out of the loop above, we know + * TIF_NEED_RESCHED must be set, propagate it into + * PREEMPT_NEED_RESCHED. + * + * This is required because for polling idle loops we will + * not have had an IPI to fold the state for us. + */ + preempt_set_need_resched(); tick_nohz_idle_exit(); schedule_preempt_disabled(); } diff --git a/kernel/fork.c b/kernel/fork.c index dfa736c98d17..294189fc7ac8 100644 --- a/kernel/fork.c +++ b/kernel/fork.c @@ -1087,8 +1087,10 @@ static void rt_mutex_init_task(struct task_struct *p) { raw_spin_lock_init(&p->pi_lock); #ifdef CONFIG_RT_MUTEXES - plist_head_init(&p->pi_waiters); + p->pi_waiters = RB_ROOT; + p->pi_waiters_leftmost = NULL; p->pi_blocked_on = NULL; + p->pi_top_task = NULL; #endif } @@ -1311,7 +1313,9 @@ static struct task_struct *copy_process(unsigned long clone_flags, #endif /* Perform scheduler related setup. Assign this task to a CPU. */ - sched_fork(clone_flags, p); + retval = sched_fork(clone_flags, p); + if (retval) + goto bad_fork_cleanup_policy; retval = perf_event_init_task(p); if (retval) @@ -1403,13 +1407,11 @@ static struct task_struct *copy_process(unsigned long clone_flags, p->tgid = p->pid; } - p->pdeath_signal = 0; - p->exit_state = 0; - p->nr_dirtied = 0; p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10); p->dirty_paused_when = 0; + p->pdeath_signal = 0; INIT_LIST_HEAD(&p->thread_group); p->task_works = NULL; diff --git a/kernel/futex.c b/kernel/futex.c index 1ddc4498f1e1..44a1261cb9ff 100644 --- a/kernel/futex.c +++ b/kernel/futex.c @@ -2426,6 +2426,8 @@ static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags, * code while we sleep on uaddr. */ debug_rt_mutex_init_waiter(&rt_waiter); + RB_CLEAR_NODE(&rt_waiter.pi_tree_entry); + RB_CLEAR_NODE(&rt_waiter.tree_entry); rt_waiter.task = NULL; ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE); diff --git a/kernel/hrtimer.c b/kernel/hrtimer.c index 383319bae3f7..09094361dce5 100644 --- a/kernel/hrtimer.c +++ b/kernel/hrtimer.c @@ -46,6 +46,7 @@ #include <linux/sched.h> #include <linux/sched/sysctl.h> #include <linux/sched/rt.h> +#include <linux/sched/deadline.h> #include <linux/timer.h> #include <linux/freezer.h> @@ -1610,7 +1611,7 @@ long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp, unsigned long slack; slack = current->timer_slack_ns; - if (rt_task(current)) + if (dl_task(current) || rt_task(current)) slack = 0; hrtimer_init_on_stack(&t.timer, clockid, mode); diff --git a/kernel/locking/rtmutex-debug.c b/kernel/locking/rtmutex-debug.c index 13b243a323fa..49b2ed3dced8 100644 --- a/kernel/locking/rtmutex-debug.c +++ b/kernel/locking/rtmutex-debug.c @@ -24,7 +24,7 @@ #include <linux/kallsyms.h> #include <linux/syscalls.h> #include <linux/interrupt.h> -#include <linux/plist.h> +#include <linux/rbtree.h> #include <linux/fs.h> #include <linux/debug_locks.h> @@ -57,7 +57,7 @@ static void printk_lock(struct rt_mutex *lock, int print_owner) void rt_mutex_debug_task_free(struct task_struct *task) { - DEBUG_LOCKS_WARN_ON(!plist_head_empty(&task->pi_waiters)); + DEBUG_LOCKS_WARN_ON(!RB_EMPTY_ROOT(&task->pi_waiters)); DEBUG_LOCKS_WARN_ON(task->pi_blocked_on); } @@ -154,16 +154,12 @@ void debug_rt_mutex_proxy_unlock(struct rt_mutex *lock) void debug_rt_mutex_init_waiter(struct rt_mutex_waiter *waiter) { memset(waiter, 0x11, sizeof(*waiter)); - plist_node_init(&waiter->list_entry, MAX_PRIO); - plist_node_init(&waiter->pi_list_entry, MAX_PRIO); waiter->deadlock_task_pid = NULL; } void debug_rt_mutex_free_waiter(struct rt_mutex_waiter *waiter) { put_pid(waiter->deadlock_task_pid); - DEBUG_LOCKS_WARN_ON(!plist_node_empty(&waiter->list_entry)); - DEBUG_LOCKS_WARN_ON(!plist_node_empty(&waiter->pi_list_entry)); memset(waiter, 0x22, sizeof(*waiter)); } diff --git a/kernel/locking/rtmutex.c b/kernel/locking/rtmutex.c index 0dd6aec1cb6a..2e960a2bab81 100644 --- a/kernel/locking/rtmutex.c +++ b/kernel/locking/rtmutex.c @@ -14,6 +14,7 @@ #include <linux/export.h> #include <linux/sched.h> #include <linux/sched/rt.h> +#include <linux/sched/deadline.h> #include <linux/timer.h> #include "rtmutex_common.h" @@ -91,10 +92,107 @@ static inline void mark_rt_mutex_waiters(struct rt_mutex *lock) } #endif +static inline int +rt_mutex_waiter_less(struct rt_mutex_waiter *left, + struct rt_mutex_waiter *right) +{ + if (left->prio < right->prio) + return 1; + + /* + * If both waiters have dl_prio(), we check the deadlines of the + * associated tasks. + * If left waiter has a dl_prio(), and we didn't return 1 above, + * then right waiter has a dl_prio() too. + */ + if (dl_prio(left->prio)) + return (left->task->dl.deadline < right->task->dl.deadline); + + return 0; +} + +static void +rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter) +{ + struct rb_node **link = &lock->waiters.rb_node; + struct rb_node *parent = NULL; + struct rt_mutex_waiter *entry; + int leftmost = 1; + + while (*link) { + parent = *link; + entry = rb_entry(parent, struct rt_mutex_waiter, tree_entry); + if (rt_mutex_waiter_less(waiter, entry)) { + link = &parent->rb_left; + } else { + link = &parent->rb_right; + leftmost = 0; + } + } + + if (leftmost) + lock->waiters_leftmost = &waiter->tree_entry; + + rb_link_node(&waiter->tree_entry, parent, link); + rb_insert_color(&waiter->tree_entry, &lock->waiters); +} + +static void +rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter) +{ + if (RB_EMPTY_NODE(&waiter->tree_entry)) + return; + + if (lock->waiters_leftmost == &waiter->tree_entry) + lock->waiters_leftmost = rb_next(&waiter->tree_entry); + + rb_erase(&waiter->tree_entry, &lock->waiters); + RB_CLEAR_NODE(&waiter->tree_entry); +} + +static void +rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter) +{ + struct rb_node **link = &task->pi_waiters.rb_node; + struct rb_node *parent = NULL; + struct rt_mutex_waiter *entry; + int leftmost = 1; + + while (*link) { + parent = *link; + entry = rb_entry(parent, struct rt_mutex_waiter, pi_tree_entry); + if (rt_mutex_waiter_less(waiter, entry)) { + link = &parent->rb_left; + } else { + link = &parent->rb_right; + leftmost = 0; + } + } + + if (leftmost) + task->pi_waiters_leftmost = &waiter->pi_tree_entry; + + rb_link_node(&waiter->pi_tree_entry, parent, link); + rb_insert_color(&waiter->pi_tree_entry, &task->pi_waiters); +} + +static void +rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter) +{ + if (RB_EMPTY_NODE(&waiter->pi_tree_entry)) + return; + + if (task->pi_waiters_leftmost == &waiter->pi_tree_entry) + task->pi_waiters_leftmost = rb_next(&waiter->pi_tree_entry); + + rb_erase(&waiter->pi_tree_entry, &task->pi_waiters); + RB_CLEAR_NODE(&waiter->pi_tree_entry); +} + /* - * Calculate task priority from the waiter list priority + * Calculate task priority from the waiter tree priority * - * Return task->normal_prio when the waiter list is empty or when + * Return task->normal_prio when the waiter tree is empty or when * the waiter is not allowed to do priority boosting */ int rt_mutex_getprio(struct task_struct *task) @@ -102,10 +200,18 @@ int rt_mutex_getprio(struct task_struct *task) if (likely(!task_has_pi_waiters(task))) return task->normal_prio; - return min(task_top_pi_waiter(task)->pi_list_entry.prio, + return min(task_top_pi_waiter(task)->prio, task->normal_prio); } +struct task_struct *rt_mutex_get_top_task(struct task_struct *task) +{ + if (likely(!task_has_pi_waiters(task))) + return NULL; + + return task_top_pi_waiter(task)->task; +} + /* * Adjust the priority of a task, after its pi_waiters got modified. * @@ -115,7 +221,7 @@ static void __rt_mutex_adjust_prio(struct task_struct *task) { int prio = rt_mutex_getprio(task); - if (task->prio != prio) + if (task->prio != prio || dl_prio(prio)) rt_mutex_setprio(task, prio); } @@ -233,7 +339,7 @@ static int rt_mutex_adjust_prio_chain(struct task_struct *task, * When deadlock detection is off then we check, if further * priority adjustment is necessary. */ - if (!detect_deadlock && waiter->list_entry.prio == task->prio) + if (!detect_deadlock && waiter->prio == task->prio) goto out_unlock_pi; lock = waiter->lock; @@ -254,9 +360,9 @@ static int rt_mutex_adjust_prio_chain(struct task_struct *task, top_waiter = rt_mutex_top_waiter(lock); /* Requeue the waiter */ - plist_del(&waiter->list_entry, &lock->wait_list); - waiter->list_entry.prio = task->prio; - plist_add(&waiter->list_entry, &lock->wait_list); + rt_mutex_dequeue(lock, waiter); + waiter->prio = task->prio; + rt_mutex_enqueue(lock, waiter); /* Release the task */ raw_spin_unlock_irqrestore(&task->pi_lock, flags); @@ -280,17 +386,15 @@ static int rt_mutex_adjust_prio_chain(struct task_struct *task, if (waiter == rt_mutex_top_waiter(lock)) { /* Boost the owner */ - plist_del(&top_waiter->pi_list_entry, &task->pi_waiters); - waiter->pi_list_entry.prio = waiter->list_entry.prio; - plist_add(&waiter->pi_list_entry, &task->pi_waiters); + rt_mutex_dequeue_pi(task, top_waiter); + rt_mutex_enqueue_pi(task, waiter); __rt_mutex_adjust_prio(task); } else if (top_waiter == waiter) { /* Deboost the owner */ - plist_del(&waiter->pi_list_entry, &task->pi_waiters); + rt_mutex_dequeue_pi(task, waiter); waiter = rt_mutex_top_waiter(lock); - waiter->pi_list_entry.prio = waiter->list_entry.prio; - plist_add(&waiter->pi_list_entry, &task->pi_waiters); + rt_mutex_enqueue_pi(task, waiter); __rt_mutex_adjust_prio(task); } @@ -355,7 +459,7 @@ static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task, * 3) it is top waiter */ if (rt_mutex_has_waiters(lock)) { - if (task->prio >= rt_mutex_top_waiter(lock)->list_entry.prio) { + if (task->prio >= rt_mutex_top_waiter(lock)->prio) { if (!waiter || waiter != rt_mutex_top_waiter(lock)) return 0; } @@ -369,7 +473,7 @@ static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task, /* remove the queued waiter. */ if (waiter) { - plist_del(&waiter->list_entry, &lock->wait_list); + rt_mutex_dequeue(lock, waiter); task->pi_blocked_on = NULL; } @@ -379,8 +483,7 @@ static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task, */ if (rt_mutex_has_waiters(lock)) { top = rt_mutex_top_waiter(lock); - top->pi_list_entry.prio = top->list_entry.prio; - plist_add(&top->pi_list_entry, &task->pi_waiters); + rt_mutex_enqueue_pi(task, top); } raw_spin_unlock_irqrestore(&task->pi_lock, flags); } @@ -416,13 +519,12 @@ static int task_blocks_on_rt_mutex(struct rt_mutex *lock, __rt_mutex_adjust_prio(task); waiter->task = task; waiter->lock = lock; - plist_node_init(&waiter->list_entry, task->prio); - plist_node_init(&waiter->pi_list_entry, task->prio); + waiter->prio = task->prio; /* Get the top priority waiter on the lock */ if (rt_mutex_has_waiters(lock)) top_waiter = rt_mutex_top_waiter(lock); - plist_add(&waiter->list_entry, &lock->wait_list); + rt_mutex_enqueue(lock, waiter); task->pi_blocked_on = waiter; @@ -433,8 +535,8 @@ static int task_blocks_on_rt_mutex(struct rt_mutex *lock, if (waiter == rt_mutex_top_waiter(lock)) { raw_spin_lock_irqsave(&owner->pi_lock, flags); - plist_del(&top_waiter->pi_list_entry, &owner->pi_waiters); - plist_add(&waiter->pi_list_entry, &owner->pi_waiters); + rt_mutex_dequeue_pi(owner, top_waiter); + rt_mutex_enqueue_pi(owner, waiter); __rt_mutex_adjust_prio(owner); if (owner->pi_blocked_on) @@ -486,7 +588,7 @@ static void wakeup_next_waiter(struct rt_mutex *lock) * boosted mode and go back to normal after releasing * lock->wait_lock. */ - plist_del(&waiter->pi_list_entry, ¤t->pi_waiters); + rt_mutex_dequeue_pi(current, waiter); rt_mutex_set_owner(lock, NULL); @@ -510,7 +612,7 @@ static void remove_waiter(struct rt_mutex *lock, int chain_walk = 0; raw_spin_lock_irqsave(¤t->pi_lock, flags); - plist_del(&waiter->list_entry, &lock->wait_list); + rt_mutex_dequeue(lock, waiter); current->pi_blocked_on = NULL; raw_spin_unlock_irqrestore(¤t->pi_lock, flags); @@ -521,13 +623,13 @@ static void remove_waiter(struct rt_mutex *lock, raw_spin_lock_irqsave(&owner->pi_lock, flags); - plist_del(&waiter->pi_list_entry, &owner->pi_waiters); + rt_mutex_dequeue_pi(owner, waiter); if (rt_mutex_has_waiters(lock)) { struct rt_mutex_waiter *next; next = rt_mutex_top_waiter(lock); - plist_add(&next->pi_list_entry, &owner->pi_waiters); + rt_mutex_enqueue_pi(owner, next); } __rt_mutex_adjust_prio(owner); @@ -537,8 +639,6 @@ static void remove_waiter(struct rt_mutex *lock, raw_spin_unlock_irqrestore(&owner->pi_lock, flags); } - WARN_ON(!plist_node_empty(&waiter->pi_list_entry)); - if (!chain_walk) return; @@ -565,7 +665,8 @@ void rt_mutex_adjust_pi(struct task_struct *task) raw_spin_lock_irqsave(&task->pi_lock, flags); waiter = task->pi_blocked_on; - if (!waiter || waiter->list_entry.prio == task->prio) { + if (!waiter || (waiter->prio == task->prio && + !dl_prio(task->prio))) { raw_spin_unlock_irqrestore(&task->pi_lock, flags); return; } @@ -638,6 +739,8 @@ rt_mutex_slowlock(struct rt_mutex *lock, int state, int ret = 0; debug_rt_mutex_init_waiter(&waiter); + RB_CLEAR_NODE(&waiter.pi_tree_entry); + RB_CLEAR_NODE(&waiter.tree_entry); raw_spin_lock(&lock->wait_lock); @@ -904,7 +1007,8 @@ void __rt_mutex_init(struct rt_mutex *lock, const char *name) { lock->owner = NULL; raw_spin_lock_init(&lock->wait_lock); - plist_head_init(&lock->wait_list); + lock->waiters = RB_ROOT; + lock->waiters_leftmost = NULL; debug_rt_mutex_init(lock, name); } diff --git a/kernel/locking/rtmutex_common.h b/kernel/locking/rtmutex_common.h index 53a66c85261b..7431a9c86f35 100644 --- a/kernel/locking/rtmutex_common.h +++ b/kernel/locking/rtmutex_common.h @@ -40,13 +40,13 @@ extern void schedule_rt_mutex_test(struct rt_mutex *lock); * This is the control structure for tasks blocked on a rt_mutex, * which is allocated on the kernel stack on of the blocked task. * - * @list_entry: pi node to enqueue into the mutex waiters list - * @pi_list_entry: pi node to enqueue into the mutex owner waiters list + * @tree_entry: pi node to enqueue into the mutex waiters tree + * @pi_tree_entry: pi node to enqueue into the mutex owner waiters tree * @task: task reference to the blocked task */ struct rt_mutex_waiter { - struct plist_node list_entry; - struct plist_node pi_list_entry; + struct rb_node tree_entry; + struct rb_node pi_tree_entry; struct task_struct *task; struct rt_mutex *lock; #ifdef CONFIG_DEBUG_RT_MUTEXES @@ -54,14 +54,15 @@ struct rt_mutex_waiter { struct pid *deadlock_task_pid; struct rt_mutex *deadlock_lock; #endif + int prio; }; /* - * Various helpers to access the waiters-plist: + * Various helpers to access the waiters-tree: */ static inline int rt_mutex_has_waiters(struct rt_mutex *lock) { - return !plist_head_empty(&lock->wait_list); + return !RB_EMPTY_ROOT(&lock->waiters); } static inline struct rt_mutex_waiter * @@ -69,8 +70,8 @@ rt_mutex_top_waiter(struct rt_mutex *lock) { struct rt_mutex_waiter *w; - w = plist_first_entry(&lock->wait_list, struct rt_mutex_waiter, - list_entry); + w = rb_entry(lock->waiters_leftmost, struct rt_mutex_waiter, + tree_entry); BUG_ON(w->lock != lock); return w; @@ -78,14 +79,14 @@ rt_mutex_top_waiter(struct rt_mutex *lock) static inline int task_has_pi_waiters(struct task_struct *p) { - return !plist_head_empty(&p->pi_waiters); + return !RB_EMPTY_ROOT(&p->pi_waiters); } static inline struct rt_mutex_waiter * task_top_pi_waiter(struct task_struct *p) { - return plist_first_entry(&p->pi_waiters, struct rt_mutex_waiter, - pi_list_entry); + return rb_entry(p->pi_waiters_leftmost, struct rt_mutex_waiter, + pi_tree_entry); } /* diff --git a/kernel/sched/Makefile b/kernel/sched/Makefile index 7b621409cf15..9a95c8c2af2a 100644 --- a/kernel/sched/Makefile +++ b/kernel/sched/Makefile @@ -11,9 +11,10 @@ ifneq ($(CONFIG_SCHED_OMIT_FRAME_POINTER),y) CFLAGS_core.o := $(PROFILING) -fno-omit-frame-pointer endif -obj-y += core.o proc.o clock.o cputime.o idle_task.o fair.o rt.o stop_task.o +obj-y += core.o proc.o clock.o cputime.o +obj-y += idle_task.o fair.o rt.o deadline.o stop_task.o obj-y += wait.o completion.o -obj-$(CONFIG_SMP) += cpupri.o +obj-$(CONFIG_SMP) += cpupri.o cpudeadline.o obj-$(CONFIG_SCHED_AUTOGROUP) += auto_group.o obj-$(CONFIG_SCHEDSTATS) += stats.o obj-$(CONFIG_SCHED_DEBUG) += debug.o diff --git a/kernel/sched/clock.c b/kernel/sched/clock.c index c3ae1446461c..6bd6a6731b21 100644 --- a/kernel/sched/clock.c +++ b/kernel/sched/clock.c @@ -26,9 +26,10 @@ * at 0 on boot (but people really shouldn't rely on that). * * cpu_clock(i) -- can be used from any context, including NMI. - * sched_clock_cpu(i) -- must be used with local IRQs disabled (implied by NMI) * local_clock() -- is cpu_clock() on the current cpu. * + * sched_clock_cpu(i) + * * How: * * The implementation either uses sched_clock() when @@ -50,15 +51,6 @@ * Furthermore, explicit sleep and wakeup hooks allow us to account for time * that is otherwise invisible (TSC gets stopped). * - * - * Notes: - * - * The !IRQ-safetly of sched_clock() and sched_clock_cpu() comes from things - * like cpufreq interrupts that can change the base clock (TSC) multiplier - * and cause funny jumps in time -- although the filtering provided by - * sched_clock_cpu() should mitigate serious artifacts we cannot rely on it - * in general since for !CONFIG_HAVE_UNSTABLE_SCHED_CLOCK we fully rely on - * sched_clock(). */ #include <linux/spinlock.h> #include <linux/hardirq.h> @@ -66,6 +58,8 @@ #include <linux/percpu.h> #include <linux/ktime.h> #include <linux/sched.h> +#include <linux/static_key.h> +#include <linux/workqueue.h> /* * Scheduler clock - returns current time in nanosec units. @@ -82,7 +76,37 @@ EXPORT_SYMBOL_GPL(sched_clock); __read_mostly int sched_clock_running; #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK -__read_mostly int sched_clock_stable; +static struct static_key __sched_clock_stable = STATIC_KEY_INIT; + +int sched_clock_stable(void) +{ + if (static_key_false(&__sched_clock_stable)) + return false; + return true; +} + +void set_sched_clock_stable(void) +{ + if (!sched_clock_stable()) + static_key_slow_dec(&__sched_clock_stable); +} + +static void __clear_sched_clock_stable(struct work_struct *work) +{ + /* XXX worry about clock continuity */ + if (sched_clock_stable()) + static_key_slow_inc(&__sched_clock_stable); +} + +static DECLARE_WORK(sched_clock_work, __clear_sched_clock_stable); + +void clear_sched_clock_stable(void) +{ + if (keventd_up()) + schedule_work(&sched_clock_work); + else + __clear_sched_clock_stable(&sched_clock_work); +} struct sched_clock_data { u64 tick_raw; @@ -242,20 +266,20 @@ u64 sched_clock_cpu(int cpu) struct sched_clock_data *scd; u64 clock; - WARN_ON_ONCE(!irqs_disabled()); - - if (sched_clock_stable) + if (sched_clock_stable()) return sched_clock(); if (unlikely(!sched_clock_running)) return 0ull; + preempt_disable(); scd = cpu_sdc(cpu); if (cpu != smp_processor_id()) clock = sched_clock_remote(scd); else clock = sched_clock_local(scd); + preempt_enable(); return clock; } @@ -265,7 +289,7 @@ void sched_clock_tick(void) struct sched_clock_data *scd; u64 now, now_gtod; - if (sched_clock_stable) + if (sched_clock_stable()) return; if (unlikely(!sched_clock_running)) @@ -316,14 +340,10 @@ EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event); */ u64 cpu_clock(int cpu) { - u64 clock; - unsigned long flags; - - local_irq_save(flags); - clock = sched_clock_cpu(cpu); - local_irq_restore(flags); + if (static_key_false(&__sched_clock_stable)) + return sched_clock_cpu(cpu); - return clock; + return sched_clock(); } /* @@ -335,14 +355,10 @@ u64 cpu_clock(int cpu) */ u64 local_clock(void) { - u64 clock; - unsigned long flags; + if (static_key_false(&__sched_clock_stable)) + return sched_clock_cpu(raw_smp_processor_id()); - local_irq_save(flags); - clock = sched_clock_cpu(smp_processor_id()); - local_irq_restore(flags); - - return clock; + return sched_clock(); } #else /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */ @@ -362,12 +378,12 @@ u64 sched_clock_cpu(int cpu) u64 cpu_clock(int cpu) { - return sched_clock_cpu(cpu); + return sched_clock(); } u64 local_clock(void) { - return sched_clock_cpu(0); + return sched_clock(); } #endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */ diff --git a/kernel/sched/core.c b/kernel/sched/core.c index a88f4a485c5e..36c951b7eef8 100644 --- a/kernel/sched/core.c +++ b/kernel/sched/core.c @@ -296,8 +296,6 @@ __read_mostly int scheduler_running; */ int sysctl_sched_rt_runtime = 950000; - - /* * __task_rq_lock - lock the rq @p resides on. */ @@ -899,7 +897,9 @@ static inline int normal_prio(struct task_struct *p) { int prio; - if (task_has_rt_policy(p)) + if (task_has_dl_policy(p)) + prio = MAX_DL_PRIO-1; + else if (task_has_rt_policy(p)) prio = MAX_RT_PRIO-1 - p->rt_priority; else prio = __normal_prio(p); @@ -945,7 +945,7 @@ static inline void check_class_changed(struct rq *rq, struct task_struct *p, if (prev_class->switched_from) prev_class->switched_from(rq, p); p->sched_class->switched_to(rq, p); - } else if (oldprio != p->prio) + } else if (oldprio != p->prio || dl_task(p)) p->sched_class->prio_changed(rq, p, oldprio); } @@ -1499,8 +1499,7 @@ void scheduler_ipi(void) * TIF_NEED_RESCHED remotely (for the first time) will also send * this IPI. */ - if (tif_need_resched()) - set_preempt_need_resched(); + preempt_fold_need_resched(); if (llist_empty(&this_rq()->wake_list) && !tick_nohz_full_cpu(smp_processor_id()) @@ -1717,6 +1716,13 @@ static void __sched_fork(unsigned long clone_flags, struct task_struct *p) memset(&p->se.statistics, 0, sizeof(p->se.statistics)); #endif + RB_CLEAR_NODE(&p->dl.rb_node); + hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); + p->dl.dl_runtime = p->dl.runtime = 0; + p->dl.dl_deadline = p->dl.deadline = 0; + p->dl.dl_period = 0; + p->dl.flags = 0; + INIT_LIST_HEAD(&p->rt.run_list); #ifdef CONFIG_PREEMPT_NOTIFIERS @@ -1768,7 +1774,7 @@ void set_numabalancing_state(bool enabled) /* * fork()/clone()-time setup: */ -void sched_fork(unsigned long clone_flags, struct task_struct *p) +int sched_fork(unsigned long clone_flags, struct task_struct *p) { unsigned long flags; int cpu = get_cpu(); @@ -1790,7 +1796,7 @@ void sched_fork(unsigned long clone_flags, struct task_struct *p) * Revert to default priority/policy on fork if requested. */ if (unlikely(p->sched_reset_on_fork)) { - if (task_has_rt_policy(p)) { + if (task_has_dl_policy(p) || task_has_rt_policy(p)) { p->policy = SCHED_NORMAL; p->static_prio = NICE_TO_PRIO(0); p->rt_priority = 0; @@ -1807,8 +1813,14 @@ void sched_fork(unsigned long clone_flags, struct task_struct *p) p->sched_reset_on_fork = 0; } - if (!rt_prio(p->prio)) + if (dl_prio(p->prio)) { + put_cpu(); + return -EAGAIN; + } else if (rt_prio(p->prio)) { + p->sched_class = &rt_sched_class; + } else { p->sched_class = &fair_sched_class; + } if (p->sched_class->task_fork) p->sched_class->task_fork(p); @@ -1834,11 +1846,124 @@ void sched_fork(unsigned long clone_flags, struct task_struct *p) init_task_preempt_count(p); #ifdef CONFIG_SMP plist_node_init(&p->pushable_tasks, MAX_PRIO); + RB_CLEAR_NODE(&p->pushable_dl_tasks); #endif put_cpu(); + return 0; +} + +unsigned long to_ratio(u64 period, u64 runtime) +{ + if (runtime == RUNTIME_INF) + return 1ULL << 20; + + /* + * Doing this here saves a lot of checks in all + * the calling paths, and returning zero seems + * safe for them anyway. + */ + if (period == 0) + return 0; + + return div64_u64(runtime << 20, period); +} + +#ifdef CONFIG_SMP +inline struct dl_bw *dl_bw_of(int i) +{ + return &cpu_rq(i)->rd->dl_bw; } +static inline int dl_bw_cpus(int i) +{ + struct root_domain *rd = cpu_rq(i)->rd; + int cpus = 0; + + for_each_cpu_and(i, rd->span, cpu_active_mask) + cpus++; + + return cpus; +} +#else +inline struct dl_bw *dl_bw_of(int i) +{ + return &cpu_rq(i)->dl.dl_bw; +} + +static inline int dl_bw_cpus(int i) +{ + return 1; +} +#endif + +static inline +void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw) +{ + dl_b->total_bw -= tsk_bw; +} + +static inline +void __dl_add(struct dl_bw *dl_b, u64 tsk_bw) +{ + dl_b->total_bw += tsk_bw; +} + +static inline +bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw) +{ + return dl_b->bw != -1 && + dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw; +} + +/* + * We must be sure that accepting a new task (or allowing changing the + * parameters of an existing one) is consistent with the bandwidth + * constraints. If yes, this function also accordingly updates the currently + * allocated bandwidth to reflect the new situation. + * + * This function is called while holding p's rq->lock. + */ +static int dl_overflow(struct task_struct *p, int policy, + const struct sched_attr *attr) +{ + + struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); + u64 period = attr->sched_period; + u64 runtime = attr->sched_runtime; + u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0; + int cpus, err = -1; + + if (new_bw == p->dl.dl_bw) + return 0; + + /* + * Either if a task, enters, leave, or stays -deadline but changes + * its parameters, we may need to update accordingly the total + * allocated bandwidth of the container. + */ + raw_spin_lock(&dl_b->lock); + cpus = dl_bw_cpus(task_cpu(p)); + if (dl_policy(policy) && !task_has_dl_policy(p) && + !__dl_overflow(dl_b, cpus, 0, new_bw)) { + __dl_add(dl_b, new_bw); + err = 0; + } else if (dl_policy(policy) && task_has_dl_policy(p) && + !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) { + __dl_clear(dl_b, p->dl.dl_bw); + __dl_add(dl_b, new_bw); + err = 0; + } else if (!dl_policy(policy) && task_has_dl_policy(p)) { + __dl_clear(dl_b, p->dl.dl_bw); + err = 0; + } + raw_spin_unlock(&dl_b->lock); + + return err; +} + +extern void init_dl_bw(struct dl_bw *dl_b); + /* * wake_up_new_task - wake up a newly created task for the first time. * @@ -2003,6 +2128,9 @@ static void finish_task_switch(struct rq *rq, struct task_struct *prev) if (unlikely(prev_state == TASK_DEAD)) { task_numa_free(prev); + if (prev->sched_class->task_dead) + prev->sched_class->task_dead(prev); + /* * Remove function-return probe instances associated with this * task and put them back on the free list. @@ -2296,7 +2424,7 @@ void scheduler_tick(void) #ifdef CONFIG_SMP rq->idle_balance = idle_cpu(cpu); - trigger_load_balance(rq, cpu); + trigger_load_balance(rq); #endif rq_last_tick_reset(rq); } @@ -2414,10 +2542,10 @@ static inline void schedule_debug(struct task_struct *prev) { /* * Test if we are atomic. Since do_exit() needs to call into - * schedule() atomically, we ignore that path for now. - * Otherwise, whine if we are scheduling when we should not be. + * schedule() atomically, we ignore that path. Otherwise whine + * if we are scheduling when we should not. */ - if (unlikely(in_atomic_preempt_off() && !prev->exit_state)) + if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD)) __schedule_bug(prev); rcu_sleep_check(); @@ -2761,11 +2889,11 @@ EXPORT_SYMBOL(sleep_on_timeout); */ void rt_mutex_setprio(struct task_struct *p, int prio) { - int oldprio, on_rq, running; + int oldprio, on_rq, running, enqueue_flag = 0; struct rq *rq; const struct sched_class *prev_class; - BUG_ON(prio < 0 || prio > MAX_PRIO); + BUG_ON(prio > MAX_PRIO); rq = __task_rq_lock(p); @@ -2788,6 +2916,7 @@ void rt_mutex_setprio(struct task_struct *p, int prio) } trace_sched_pi_setprio(p, prio); + p->pi_top_task = rt_mutex_get_top_task(p); oldprio = p->prio; prev_class = p->sched_class; on_rq = p->on_rq; @@ -2797,23 +2926,49 @@ void rt_mutex_setprio(struct task_struct *p, int prio) if (running) p->sched_class->put_prev_task(rq, p); - if (rt_prio(prio)) + /* + * Boosting condition are: + * 1. -rt task is running and holds mutex A + * --> -dl task blocks on mutex A + * + * 2. -dl task is running and holds mutex A + * --> -dl task blocks on mutex A and could preempt the + * running task + */ + if (dl_prio(prio)) { + if (!dl_prio(p->normal_prio) || (p->pi_top_task && + dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) { + p->dl.dl_boosted = 1; + p->dl.dl_throttled = 0; + enqueue_flag = ENQUEUE_REPLENISH; + } else + p->dl.dl_boosted = 0; + p->sched_class = &dl_sched_class; + } else if (rt_prio(prio)) { + if (dl_prio(oldprio)) + p->dl.dl_boosted = 0; + if (oldprio < prio) + enqueue_flag = ENQUEUE_HEAD; p->sched_class = &rt_sched_class; - else + } else { + if (dl_prio(oldprio)) + p->dl.dl_boosted = 0; p->sched_class = &fair_sched_class; + } p->prio = prio; if (running) p->sched_class->set_curr_task(rq); if (on_rq) - enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0); + enqueue_task(rq, p, enqueue_flag); check_class_changed(rq, p, prev_class, oldprio); out_unlock: __task_rq_unlock(rq); } #endif + void set_user_nice(struct task_struct *p, long nice) { int old_prio, delta, on_rq; @@ -2831,9 +2986,9 @@ void set_user_nice(struct task_struct *p, long nice) * The RT priorities are set via sched_setscheduler(), but we still * allow the 'normal' nice value to be set - but as expected * it wont have any effect on scheduling until the task is - * SCHED_FIFO/SCHED_RR: + * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR: */ - if (task_has_rt_policy(p)) { + if (task_has_dl_policy(p) || task_has_rt_policy(p)) { p->static_prio = NICE_TO_PRIO(nice); goto out_unlock; } @@ -2988,22 +3143,95 @@ static struct task_struct *find_process_by_pid(pid_t pid) return pid ? find_task_by_vpid(pid) : current; } -/* Actually do priority change: must hold rq lock. */ +/* + * This function initializes the sched_dl_entity of a newly becoming + * SCHED_DEADLINE task. + * + * Only the static values are considered here, the actual runtime and the + * absolute deadline will be properly calculated when the task is enqueued + * for the first time with its new policy. + */ static void -__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio) +__setparam_dl(struct task_struct *p, const struct sched_attr *attr) +{ + struct sched_dl_entity *dl_se = &p->dl; + + init_dl_task_timer(dl_se); + dl_se->dl_runtime = attr->sched_runtime; + dl_se->dl_deadline = attr->sched_deadline; + dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline; + dl_se->flags = attr->sched_flags; + dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime); + dl_se->dl_throttled = 0; + dl_se->dl_new = 1; +} + +/* Actually do priority change: must hold pi & rq lock. */ +static void __setscheduler(struct rq *rq, struct task_struct *p, + const struct sched_attr *attr) { + int policy = attr->sched_policy; + + if (policy == -1) /* setparam */ + policy = p->policy; + p->policy = policy; - p->rt_priority = prio; + + if (dl_policy(policy)) + __setparam_dl(p, attr); + else if (fair_policy(policy)) + p->static_prio = NICE_TO_PRIO(attr->sched_nice); + + /* + * __sched_setscheduler() ensures attr->sched_priority == 0 when + * !rt_policy. Always setting this ensures that things like + * getparam()/getattr() don't report silly values for !rt tasks. + */ + p->rt_priority = attr->sched_priority; + p->normal_prio = normal_prio(p); - /* we are holding p->pi_lock already */ p->prio = rt_mutex_getprio(p); - if (rt_prio(p->prio)) + + if (dl_prio(p->prio)) + p->sched_class = &dl_sched_class; + else if (rt_prio(p->prio)) p->sched_class = &rt_sched_class; else p->sched_class = &fair_sched_class; + set_load_weight(p); } +static void +__getparam_dl(struct task_struct *p, struct sched_attr *attr) +{ + struct sched_dl_entity *dl_se = &p->dl; + + attr->sched_priority = p->rt_priority; + attr->sched_runtime = dl_se->dl_runtime; + attr->sched_deadline = dl_se->dl_deadline; + attr->sched_period = dl_se->dl_period; + attr->sched_flags = dl_se->flags; +} + +/* + * This function validates the new parameters of a -deadline task. + * We ask for the deadline not being zero, and greater or equal + * than the runtime, as well as the period of being zero or + * greater than deadline. Furthermore, we have to be sure that + * user parameters are above the internal resolution (1us); we + * check sched_runtime only since it is always the smaller one. + */ +static bool +__checkparam_dl(const struct sched_attr *attr) +{ + return attr && attr->sched_deadline != 0 && + (attr->sched_period == 0 || + (s64)(attr->sched_period - attr->sched_deadline) >= 0) && + (s64)(attr->sched_deadline - attr->sched_runtime ) >= 0 && + attr->sched_runtime >= (2 << (DL_SCALE - 1)); +} + /* * check the target process has a UID that matches the current process's */ @@ -3020,10 +3248,12 @@ static bool check_same_owner(struct task_struct *p) return match; } -static int __sched_setscheduler(struct task_struct *p, int policy, - const struct sched_param *param, bool user) +static int __sched_setscheduler(struct task_struct *p, + const struct sched_attr *attr, + bool user) { int retval, oldprio, oldpolicy = -1, on_rq, running; + int policy = attr->sched_policy; unsigned long flags; const struct sched_class *prev_class; struct rq *rq; @@ -3037,31 +3267,40 @@ recheck: reset_on_fork = p->sched_reset_on_fork; policy = oldpolicy = p->policy; } else { - reset_on_fork = !!(policy & SCHED_RESET_ON_FORK); - policy &= ~SCHED_RESET_ON_FORK; + reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK); - if (policy != SCHED_FIFO && policy != SCHED_RR && + if (policy != SCHED_DEADLINE && + policy != SCHED_FIFO && policy != SCHED_RR && policy != SCHED_NORMAL && policy != SCHED_BATCH && policy != SCHED_IDLE) return -EINVAL; } + if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK)) + return -EINVAL; + /* * Valid priorities for SCHED_FIFO and SCHED_RR are * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, * SCHED_BATCH and SCHED_IDLE is 0. */ - if (param->sched_priority < 0 || - (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) || - (!p->mm && param->sched_priority > MAX_RT_PRIO-1)) + if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) || + (!p->mm && attr->sched_priority > MAX_RT_PRIO-1)) return -EINVAL; - if (rt_policy(policy) != (param->sched_priority != 0)) + if ((dl_policy(policy) && !__checkparam_dl(attr)) || + (rt_policy(policy) != (attr->sched_priority != 0))) return -EINVAL; /* * Allow unprivileged RT tasks to decrease priority: */ if (user && !capable(CAP_SYS_NICE)) { + if (fair_policy(policy)) { + if (attr->sched_nice < TASK_NICE(p) && + !can_nice(p, attr->sched_nice)) + return -EPERM; + } + if (rt_policy(policy)) { unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO); @@ -3071,8 +3310,8 @@ recheck: return -EPERM; /* can't increase priority */ - if (param->sched_priority > p->rt_priority && - param->sched_priority > rlim_rtprio) + if (attr->sched_priority > p->rt_priority && + attr->sched_priority > rlim_rtprio) return -EPERM; } @@ -3120,14 +3359,21 @@ recheck: /* * If not changing anything there's no need to proceed further: */ - if (unlikely(policy == p->policy && (!rt_policy(policy) || - param->sched_priority == p->rt_priority))) { + if (unlikely(policy == p->policy)) { + if (fair_policy(policy) && attr->sched_nice != TASK_NICE(p)) + goto change; + if (rt_policy(policy) && attr->sched_priority != p->rt_priority) + goto change; + if (dl_policy(policy)) + goto change; + task_rq_unlock(rq, p, &flags); return 0; } +change: -#ifdef CONFIG_RT_GROUP_SCHED if (user) { +#ifdef CONFIG_RT_GROUP_SCHED /* * Do not allow realtime tasks into groups that have no runtime * assigned. @@ -3138,8 +3384,24 @@ recheck: task_rq_unlock(rq, p, &flags); return -EPERM; } - } #endif +#ifdef CONFIG_SMP + if (dl_bandwidth_enabled() && dl_policy(policy)) { + cpumask_t *span = rq->rd->span; + + /* + * Don't allow tasks with an affinity mask smaller than + * the entire root_domain to become SCHED_DEADLINE. We + * will also fail if there's no bandwidth available. + */ + if (!cpumask_subset(span, &p->cpus_allowed) || + rq->rd->dl_bw.bw == 0) { + task_rq_unlock(rq, p, &flags); + return -EPERM; + } + } +#endif + } /* recheck policy now with rq lock held */ if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { @@ -3147,6 +3409,17 @@ recheck: task_rq_unlock(rq, p, &flags); goto recheck; } + + /* + * If setscheduling to SCHED_DEADLINE (or changing the parameters + * of a SCHED_DEADLINE task) we need to check if enough bandwidth + * is available. + */ + if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) { + task_rq_unlock(rq, p, &flags); + return -EBUSY; + } + on_rq = p->on_rq; running = task_current(rq, p); if (on_rq) @@ -3158,7 +3431,7 @@ recheck: oldprio = p->prio; prev_class = p->sched_class; - __setscheduler(rq, p, policy, param->sched_priority); + __setscheduler(rq, p, attr); if (running) p->sched_class->set_curr_task(rq); @@ -3173,6 +3446,26 @@ recheck: return 0; } +static int _sched_setscheduler(struct task_struct *p, int policy, + const struct sched_param *param, bool check) +{ + struct sched_attr attr = { + .sched_policy = policy, + .sched_priority = param->sched_priority, + .sched_nice = PRIO_TO_NICE(p->static_prio), + }; + + /* + * Fixup the legacy SCHED_RESET_ON_FORK hack + */ + if (policy & SCHED_RESET_ON_FORK) { + attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; + policy &= ~SCHED_RESET_ON_FORK; + attr.sched_policy = policy; + } + + return __sched_setscheduler(p, &attr, check); +} /** * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. * @p: the task in question. @@ -3186,10 +3479,16 @@ recheck: int sched_setscheduler(struct task_struct *p, int policy, const struct sched_param *param) { - return __sched_setscheduler(p, policy, param, true); + return _sched_setscheduler(p, policy, param, true); } EXPORT_SYMBOL_GPL(sched_setscheduler); +int sched_setattr(struct task_struct *p, const struct sched_attr *attr) +{ + return __sched_setscheduler(p, attr, true); +} +EXPORT_SYMBOL_GPL(sched_setattr); + /** * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. * @p: the task in question. @@ -3206,7 +3505,7 @@ EXPORT_SYMBOL_GPL(sched_setscheduler); int sched_setscheduler_nocheck(struct task_struct *p, int policy, const struct sched_param *param) { - return __sched_setscheduler(p, policy, param, false); + return _sched_setscheduler(p, policy, param, false); } static int @@ -3231,6 +3530,79 @@ do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) return retval; } +/* + * Mimics kernel/events/core.c perf_copy_attr(). + */ +static int sched_copy_attr(struct sched_attr __user *uattr, + struct sched_attr *attr) +{ + u32 size; + int ret; + + if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0)) + return -EFAULT; + + /* + * zero the full structure, so that a short copy will be nice. + */ + memset(attr, 0, sizeof(*attr)); + + ret = get_user(size, &uattr->size); + if (ret) + return ret; + + if (size > PAGE_SIZE) /* silly large */ + goto err_size; + + if (!size) /* abi compat */ + size = SCHED_ATTR_SIZE_VER0; + + if (size < SCHED_ATTR_SIZE_VER0) + goto err_size; + + /* + * If we're handed a bigger struct than we know of, + * ensure all the unknown bits are 0 - i.e. new + * user-space does not rely on any kernel feature + * extensions we dont know about yet. + */ + if (size > sizeof(*attr)) { + unsigned char __user *addr; + unsigned char __user *end; + unsigned char val; + + addr = (void __user *)uattr + sizeof(*attr); + end = (void __user *)uattr + size; + + for (; addr < end; addr++) { + ret = get_user(val, addr); + if (ret) + return ret; + if (val) + goto err_size; + } + size = sizeof(*attr); + } + + ret = copy_from_user(attr, uattr, size); + if (ret) + return -EFAULT; + + /* + * XXX: do we want to be lenient like existing syscalls; or do we want + * to be strict and return an error on out-of-bounds values? + */ + attr->sched_nice = clamp(attr->sched_nice, -20, 19); + +out: + return ret; + +err_size: + put_user(sizeof(*attr), &uattr->size); + ret = -E2BIG; + goto out; +} + /** * sys_sched_setscheduler - set/change the scheduler policy and RT priority * @pid: the pid in question. @@ -3262,6 +3634,33 @@ SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param) } /** + * sys_sched_setattr - same as above, but with extended sched_attr + * @pid: the pid in question. + * @uattr: structure containing the extended parameters. + */ +SYSCALL_DEFINE2(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr) +{ + struct sched_attr attr; + struct task_struct *p; + int retval; + + if (!uattr || pid < 0) + return -EINVAL; + + if (sched_copy_attr(uattr, &attr)) + return -EFAULT; + + rcu_read_lock(); + retval = -ESRCH; + p = find_process_by_pid(pid); + if (p != NULL) + retval = sched_setattr(p, &attr); + rcu_read_unlock(); + + return retval; +} + +/** * sys_sched_getscheduler - get the policy (scheduling class) of a thread * @pid: the pid in question. * @@ -3316,6 +3715,10 @@ SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param) if (retval) goto out_unlock; + if (task_has_dl_policy(p)) { + retval = -EINVAL; + goto out_unlock; + } lp.sched_priority = p->rt_priority; rcu_read_unlock(); @@ -3331,6 +3734,96 @@ out_unlock: return retval; } +static int sched_read_attr(struct sched_attr __user *uattr, + struct sched_attr *attr, + unsigned int usize) +{ + int ret; + + if (!access_ok(VERIFY_WRITE, uattr, usize)) + return -EFAULT; + + /* + * If we're handed a smaller struct than we know of, + * ensure all the unknown bits are 0 - i.e. old + * user-space does not get uncomplete information. + */ + if (usize < sizeof(*attr)) { + unsigned char *addr; + unsigned char *end; + + addr = (void *)attr + usize; + end = (void *)attr + sizeof(*attr); + + for (; addr < end; addr++) { + if (*addr) + goto err_size; + } + + attr->size = usize; + } + + ret = copy_to_user(uattr, attr, usize); + if (ret) + return -EFAULT; + +out: + return ret; + +err_size: + ret = -E2BIG; + goto out; +} + +/** + * sys_sched_getattr - similar to sched_getparam, but with sched_attr + * @pid: the pid in question. + * @uattr: structure containing the extended parameters. + * @size: sizeof(attr) for fwd/bwd comp. + */ +SYSCALL_DEFINE3(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr, + unsigned int, size) +{ + struct sched_attr attr = { + .size = sizeof(struct sched_attr), + }; + struct task_struct *p; + int retval; + + if (!uattr || pid < 0 || size > PAGE_SIZE || + size < SCHED_ATTR_SIZE_VER0) + return -EINVAL; + + rcu_read_lock(); + p = find_process_by_pid(pid); + retval = -ESRCH; + if (!p) + goto out_unlock; + + retval = security_task_getscheduler(p); + if (retval) + goto out_unlock; + + attr.sched_policy = p->policy; + if (p->sched_reset_on_fork) + attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK; + if (task_has_dl_policy(p)) + __getparam_dl(p, &attr); + else if (task_has_rt_policy(p)) + attr.sched_priority = p->rt_priority; + else + attr.sched_nice = TASK_NICE(p); + + rcu_read_unlock(); + + retval = sched_read_attr(uattr, &attr, size); + return retval; + +out_unlock: + rcu_read_unlock(); + return retval; +} + long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) { cpumask_var_t cpus_allowed, new_mask; @@ -3375,8 +3868,26 @@ long sched_setaffinity(pid_t pid, const struct cpumask *in_mask) if (retval) goto out_unlock; + cpuset_cpus_allowed(p, cpus_allowed); cpumask_and(new_mask, in_mask, cpus_allowed); + + /* + * Since bandwidth control happens on root_domain basis, + * if admission test is enabled, we only admit -deadline + * tasks allowed to run on all the CPUs in the task's + * root_domain. + */ +#ifdef CONFIG_SMP + if (task_has_dl_policy(p)) { + const struct cpumask *span = task_rq(p)->rd->span; + + if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) { + retval = -EBUSY; + goto out_unlock; + } + } +#endif again: retval = set_cpus_allowed_ptr(p, new_mask); @@ -3653,7 +4164,7 @@ again: } double_rq_lock(rq, p_rq); - while (task_rq(p) != p_rq) { + if (task_rq(p) != p_rq) { double_rq_unlock(rq, p_rq); goto again; } @@ -3742,6 +4253,7 @@ SYSCALL_DEFINE1(sched_get_priority_max, int, policy) case SCHED_RR: ret = MAX_USER_RT_PRIO-1; break; + case SCHED_DEADLINE: case SCHED_NORMAL: case SCHED_BATCH: case SCHED_IDLE: @@ -3768,6 +4280,7 @@ SYSCALL_DEFINE1(sched_get_priority_min, int, policy) case SCHED_RR: ret = 1; break; + case SCHED_DEADLINE: case SCHED_NORMAL: case SCHED_BATCH: case SCHED_IDLE: @@ -4514,13 +5027,31 @@ static int sched_cpu_active(struct notifier_block *nfb, static int sched_cpu_inactive(struct notifier_block *nfb, unsigned long action, void *hcpu) { + unsigned long flags; + long cpu = (long)hcpu; + switch (action & ~CPU_TASKS_FROZEN) { case CPU_DOWN_PREPARE: - set_cpu_active((long)hcpu, false); + set_cpu_active(cpu, false); + + /* explicitly allow suspend */ + if (!(action & CPU_TASKS_FROZEN)) { + struct dl_bw *dl_b = dl_bw_of(cpu); + bool overflow; + int cpus; + + raw_spin_lock_irqsave(&dl_b->lock, flags); + cpus = dl_bw_cpus(cpu); + overflow = __dl_overflow(dl_b, cpus, 0, 0); + raw_spin_unlock_irqrestore(&dl_b->lock, flags); + + if (overflow) + return notifier_from_errno(-EBUSY); + } return NOTIFY_OK; - default: - return NOTIFY_DONE; } + + return NOTIFY_DONE; } static int __init migration_init(void) @@ -4739,6 +5270,8 @@ static void free_rootdomain(struct rcu_head *rcu) struct root_domain *rd = container_of(rcu, struct root_domain, rcu); cpupri_cleanup(&rd->cpupri); + cpudl_cleanup(&rd->cpudl); + free_cpumask_var(rd->dlo_mask); free_cpumask_var(rd->rto_mask); free_cpumask_var(rd->online); free_cpumask_var(rd->span); @@ -4790,8 +5323,14 @@ static int init_rootdomain(struct root_domain *rd) goto out; if (!alloc_cpumask_var(&rd->online, GFP_KERNEL)) goto free_span; - if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) + if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL)) goto free_online; + if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) + goto free_dlo_mask; + + init_dl_bw(&rd->dl_bw); + if (cpudl_init(&rd->cpudl) != 0) + goto free_dlo_mask; if (cpupri_init(&rd->cpupri) != 0) goto free_rto_mask; @@ -4799,6 +5338,8 @@ static int init_rootdomain(struct root_domain *rd) free_rto_mask: free_cpumask_var(rd->rto_mask); +free_dlo_mask: + free_cpumask_var(rd->dlo_mask); free_online: free_cpumask_var(rd->online); free_span: @@ -6150,6 +6691,7 @@ void __init sched_init_smp(void) free_cpumask_var(non_isolated_cpus); init_sched_rt_class(); + init_sched_dl_class(); } #else void __init sched_init_smp(void) @@ -6219,13 +6761,15 @@ void __init sched_init(void) #endif /* CONFIG_CPUMASK_OFFSTACK */ } + init_rt_bandwidth(&def_rt_bandwidth, + global_rt_period(), global_rt_runtime()); + init_dl_bandwidth(&def_dl_bandwidth, + global_rt_period(), global_rt_runtime()); + #ifdef CONFIG_SMP init_defrootdomain(); #endif - init_rt_bandwidth(&def_rt_bandwidth, - global_rt_period(), global_rt_runtime()); - #ifdef CONFIG_RT_GROUP_SCHED init_rt_bandwidth(&root_task_group.rt_bandwidth, global_rt_period(), global_rt_runtime()); @@ -6249,6 +6793,7 @@ void __init sched_init(void) rq->calc_load_update = jiffies + LOAD_FREQ; init_cfs_rq(&rq->cfs); init_rt_rq(&rq->rt, rq); + init_dl_rq(&rq->dl, rq); #ifdef CONFIG_FAIR_GROUP_SCHED root_task_group.shares = ROOT_TASK_GROUP_LOAD; INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); @@ -6320,10 +6865,6 @@ void __init sched_init(void) INIT_HLIST_HEAD(&init_task.preempt_notifiers); #endif -#ifdef CONFIG_RT_MUTEXES - plist_head_init(&init_task.pi_waiters); -#endif - /* * The boot idle thread does lazy MMU switching as well: */ @@ -6397,13 +6938,16 @@ EXPORT_SYMBOL(__might_sleep); static void normalize_task(struct rq *rq, struct task_struct *p) { const struct sched_class *prev_class = p->sched_class; + struct sched_attr attr = { + .sched_policy = SCHED_NORMAL, + }; int old_prio = p->prio; int on_rq; on_rq = p->on_rq; if (on_rq) dequeue_task(rq, p, 0); - __setscheduler(rq, p, SCHED_NORMAL, 0); + __setscheduler(rq, p, &attr); if (on_rq) { enqueue_task(rq, p, 0); resched_task(rq->curr); @@ -6433,7 +6977,7 @@ void normalize_rt_tasks(void) p->se.statistics.block_start = 0; #endif - if (!rt_task(p)) { + if (!dl_task(p) && !rt_task(p)) { /* * Renice negative nice level userspace * tasks back to 0: @@ -6628,16 +7172,6 @@ void sched_move_task(struct task_struct *tsk) } #endif /* CONFIG_CGROUP_SCHED */ -#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH) -static unsigned long to_ratio(u64 period, u64 runtime) -{ - if (runtime == RUNTIME_INF) - return 1ULL << 20; - - return div64_u64(runtime << 20, period); -} -#endif - #ifdef CONFIG_RT_GROUP_SCHED /* * Ensure that the real time constraints are schedulable. @@ -6811,24 +7345,13 @@ static long sched_group_rt_period(struct task_group *tg) do_div(rt_period_us, NSEC_PER_USEC); return rt_period_us; } +#endif /* CONFIG_RT_GROUP_SCHED */ +#ifdef CONFIG_RT_GROUP_SCHED static int sched_rt_global_constraints(void) { - u64 runtime, period; int ret = 0; - if (sysctl_sched_rt_period <= 0) - return -EINVAL; - - runtime = global_rt_runtime(); - period = global_rt_period(); - - /* - * Sanity check on the sysctl variables. - */ - if (runtime > period && runtime != RUNTIME_INF) - return -EINVAL; - mutex_lock(&rt_constraints_mutex); read_lock(&tasklist_lock); ret = __rt_schedulable(NULL, 0, 0); @@ -6851,17 +7374,7 @@ static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk) static int sched_rt_global_constraints(void) { unsigned long flags; - int i; - - if (sysctl_sched_rt_period <= 0) - return -EINVAL; - - /* - * There's always some RT tasks in the root group - * -- migration, kstopmachine etc.. - */ - if (sysctl_sched_rt_runtime == 0) - return -EBUSY; + int i, ret = 0; raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); for_each_possible_cpu(i) { @@ -6873,36 +7386,88 @@ static int sched_rt_global_constraints(void) } raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); - return 0; + return ret; } #endif /* CONFIG_RT_GROUP_SCHED */ -int sched_rr_handler(struct ctl_table *table, int write, - void __user *buffer, size_t *lenp, - loff_t *ppos) +static int sched_dl_global_constraints(void) { - int ret; - static DEFINE_MUTEX(mutex); + u64 runtime = global_rt_runtime(); + u64 period = global_rt_period(); + u64 new_bw = to_ratio(period, runtime); + int cpu, ret = 0; - mutex_lock(&mutex); - ret = proc_dointvec(table, write, buffer, lenp, ppos); - /* make sure that internally we keep jiffies */ - /* also, writing zero resets timeslice to default */ - if (!ret && write) { - sched_rr_timeslice = sched_rr_timeslice <= 0 ? - RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice); + /* + * Here we want to check the bandwidth not being set to some + * value smaller than the currently allocated bandwidth in + * any of the root_domains. + * + * FIXME: Cycling on all the CPUs is overdoing, but simpler than + * cycling on root_domains... Discussion on different/better + * solutions is welcome! + */ + for_each_possible_cpu(cpu) { + struct dl_bw *dl_b = dl_bw_of(cpu); + + raw_spin_lock(&dl_b->lock); + if (new_bw < dl_b->total_bw) + ret = -EBUSY; + raw_spin_unlock(&dl_b->lock); + + if (ret) + break; } - mutex_unlock(&mutex); + return ret; } +static void sched_dl_do_global(void) +{ + u64 new_bw = -1; + int cpu; + + def_dl_bandwidth.dl_period = global_rt_period(); + def_dl_bandwidth.dl_runtime = global_rt_runtime(); + + if (global_rt_runtime() != RUNTIME_INF) + new_bw = to_ratio(global_rt_period(), global_rt_runtime()); + + /* + * FIXME: As above... + */ + for_each_possible_cpu(cpu) { + struct dl_bw *dl_b = dl_bw_of(cpu); + + raw_spin_lock(&dl_b->lock); + dl_b->bw = new_bw; + raw_spin_unlock(&dl_b->lock); + } +} + +static int sched_rt_global_validate(void) +{ + if (sysctl_sched_rt_period <= 0) + return -EINVAL; + + if (sysctl_sched_rt_runtime > sysctl_sched_rt_period) + return -EINVAL; + + return 0; +} + +static void sched_rt_do_global(void) +{ + def_rt_bandwidth.rt_runtime = global_rt_runtime(); + def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period()); +} + int sched_rt_handler(struct ctl_table *table, int write, void __user *buffer, size_t *lenp, loff_t *ppos) { - int ret; int old_period, old_runtime; static DEFINE_MUTEX(mutex); + int ret; mutex_lock(&mutex); old_period = sysctl_sched_rt_period; @@ -6911,21 +7476,50 @@ int sched_rt_handler(struct ctl_table *table, int write, ret = proc_dointvec(table, write, buffer, lenp, ppos); if (!ret && write) { + ret = sched_rt_global_validate(); + if (ret) + goto undo; + ret = sched_rt_global_constraints(); - if (ret) { - sysctl_sched_rt_period = old_period; - sysctl_sched_rt_runtime = old_runtime; - } else { - def_rt_bandwidth.rt_runtime = global_rt_runtime(); - def_rt_bandwidth.rt_period = - ns_to_ktime(global_rt_period()); - } + if (ret) + goto undo; + + ret = sched_dl_global_constraints(); + if (ret) + goto undo; + + sched_rt_do_global(); + sched_dl_do_global(); + } + if (0) { +undo: + sysctl_sched_rt_period = old_period; + sysctl_sched_rt_runtime = old_runtime; } mutex_unlock(&mutex); return ret; } +int sched_rr_handler(struct ctl_table *table, int write, + void __user *buffer, size_t *lenp, + loff_t *ppos) +{ + int ret; + static DEFINE_MUTEX(mutex); + + mutex_lock(&mutex); + ret = proc_dointvec(table, write, buffer, lenp, ppos); + /* make sure that internally we keep jiffies */ + /* also, writing zero resets timeslice to default */ + if (!ret && write) { + sched_rr_timeslice = sched_rr_timeslice <= 0 ? + RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice); + } + mutex_unlock(&mutex); + return ret; +} + #ifdef CONFIG_CGROUP_SCHED static inline struct task_group *css_tg(struct cgroup_subsys_state *css) diff --git a/kernel/sched/cpudeadline.c b/kernel/sched/cpudeadline.c new file mode 100644 index 000000000000..045fc74e3f09 --- /dev/null +++ b/kernel/sched/cpudeadline.c @@ -0,0 +1,216 @@ +/* + * kernel/sched/cpudl.c + * + * Global CPU deadline management + * + * Author: Juri Lelli <j.lelli@sssup.it> + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; version 2 + * of the License. + */ + +#include <linux/gfp.h> +#include <linux/kernel.h> +#include "cpudeadline.h" + +static inline int parent(int i) +{ + return (i - 1) >> 1; +} + +static inline int left_child(int i) +{ + return (i << 1) + 1; +} + +static inline int right_child(int i) +{ + return (i << 1) + 2; +} + +static inline int dl_time_before(u64 a, u64 b) +{ + return (s64)(a - b) < 0; +} + +static void cpudl_exchange(struct cpudl *cp, int a, int b) +{ + int cpu_a = cp->elements[a].cpu, cpu_b = cp->elements[b].cpu; + + swap(cp->elements[a], cp->elements[b]); + swap(cp->cpu_to_idx[cpu_a], cp->cpu_to_idx[cpu_b]); +} + +static void cpudl_heapify(struct cpudl *cp, int idx) +{ + int l, r, largest; + + /* adapted from lib/prio_heap.c */ + while(1) { + l = left_child(idx); + r = right_child(idx); + largest = idx; + + if ((l < cp->size) && dl_time_before(cp->elements[idx].dl, + cp->elements[l].dl)) + largest = l; + if ((r < cp->size) && dl_time_before(cp->elements[largest].dl, + cp->elements[r].dl)) + largest = r; + if (largest == idx) + break; + + /* Push idx down the heap one level and bump one up */ + cpudl_exchange(cp, largest, idx); + idx = largest; + } +} + +static void cpudl_change_key(struct cpudl *cp, int idx, u64 new_dl) +{ + WARN_ON(idx > num_present_cpus() || idx == IDX_INVALID); + + if (dl_time_before(new_dl, cp->elements[idx].dl)) { + cp->elements[idx].dl = new_dl; + cpudl_heapify(cp, idx); + } else { + cp->elements[idx].dl = new_dl; + while (idx > 0 && dl_time_before(cp->elements[parent(idx)].dl, + cp->elements[idx].dl)) { + cpudl_exchange(cp, idx, parent(idx)); + idx = parent(idx); + } + } +} + +static inline int cpudl_maximum(struct cpudl *cp) +{ + return cp->elements[0].cpu; +} + +/* + * cpudl_find - find the best (later-dl) CPU in the system + * @cp: the cpudl max-heap context + * @p: the task + * @later_mask: a mask to fill in with the selected CPUs (or NULL) + * + * Returns: int - best CPU (heap maximum if suitable) + */ +int cpudl_find(struct cpudl *cp, struct task_struct *p, + struct cpumask *later_mask) +{ + int best_cpu = -1; + const struct sched_dl_entity *dl_se = &p->dl; + + if (later_mask && cpumask_and(later_mask, cp->free_cpus, + &p->cpus_allowed) && cpumask_and(later_mask, + later_mask, cpu_active_mask)) { + best_cpu = cpumask_any(later_mask); + goto out; + } else if (cpumask_test_cpu(cpudl_maximum(cp), &p->cpus_allowed) && + dl_time_before(dl_se->deadline, cp->elements[0].dl)) { + best_cpu = cpudl_maximum(cp); + if (later_mask) + cpumask_set_cpu(best_cpu, later_mask); + } + +out: + WARN_ON(best_cpu > num_present_cpus() && best_cpu != -1); + + return best_cpu; +} + +/* + * cpudl_set - update the cpudl max-heap + * @cp: the cpudl max-heap context + * @cpu: the target cpu + * @dl: the new earliest deadline for this cpu + * + * Notes: assumes cpu_rq(cpu)->lock is locked + * + * Returns: (void) + */ +void cpudl_set(struct cpudl *cp, int cpu, u64 dl, int is_valid) +{ + int old_idx, new_cpu; + unsigned long flags; + + WARN_ON(cpu > num_present_cpus()); + + raw_spin_lock_irqsave(&cp->lock, flags); + old_idx = cp->cpu_to_idx[cpu]; + if (!is_valid) { + /* remove item */ + if (old_idx == IDX_INVALID) { + /* + * Nothing to remove if old_idx was invalid. + * This could happen if a rq_offline_dl is + * called for a CPU without -dl tasks running. + */ + goto out; + } + new_cpu = cp->elements[cp->size - 1].cpu; + cp->elements[old_idx].dl = cp->elements[cp->size - 1].dl; + cp->elements[old_idx].cpu = new_cpu; + cp->size--; + cp->cpu_to_idx[new_cpu] = old_idx; + cp->cpu_to_idx[cpu] = IDX_INVALID; + while (old_idx > 0 && dl_time_before( + cp->elements[parent(old_idx)].dl, + cp->elements[old_idx].dl)) { + cpudl_exchange(cp, old_idx, parent(old_idx)); + old_idx = parent(old_idx); + } + cpumask_set_cpu(cpu, cp->free_cpus); + cpudl_heapify(cp, old_idx); + + goto out; + } + + if (old_idx == IDX_INVALID) { + cp->size++; + cp->elements[cp->size - 1].dl = 0; + cp->elements[cp->size - 1].cpu = cpu; + cp->cpu_to_idx[cpu] = cp->size - 1; + cpudl_change_key(cp, cp->size - 1, dl); + cpumask_clear_cpu(cpu, cp->free_cpus); + } else { + cpudl_change_key(cp, old_idx, dl); + } + +out: + raw_spin_unlock_irqrestore(&cp->lock, flags); +} + +/* + * cpudl_init - initialize the cpudl structure + * @cp: the cpudl max-heap context + */ +int cpudl_init(struct cpudl *cp) +{ + int i; + + memset(cp, 0, sizeof(*cp)); + raw_spin_lock_init(&cp->lock); + cp->size = 0; + for (i = 0; i < NR_CPUS; i++) + cp->cpu_to_idx[i] = IDX_INVALID; + if (!alloc_cpumask_var(&cp->free_cpus, GFP_KERNEL)) + return -ENOMEM; + cpumask_setall(cp->free_cpus); + + return 0; +} + +/* + * cpudl_cleanup - clean up the cpudl structure + * @cp: the cpudl max-heap context + */ +void cpudl_cleanup(struct cpudl *cp) +{ + /* + * nothing to do for the moment + */ +} diff --git a/kernel/sched/cpudeadline.h b/kernel/sched/cpudeadline.h new file mode 100644 index 000000000000..a202789a412c --- /dev/null +++ b/kernel/sched/cpudeadline.h @@ -0,0 +1,33 @@ +#ifndef _LINUX_CPUDL_H +#define _LINUX_CPUDL_H + +#include <linux/sched.h> + +#define IDX_INVALID -1 + +struct array_item { + u64 dl; + int cpu; +}; + +struct cpudl { + raw_spinlock_t lock; + int size; + int cpu_to_idx[NR_CPUS]; + struct array_item elements[NR_CPUS]; + cpumask_var_t free_cpus; +}; + + +#ifdef CONFIG_SMP +int cpudl_find(struct cpudl *cp, struct task_struct *p, + struct cpumask *later_mask); +void cpudl_set(struct cpudl *cp, int cpu, u64 dl, int is_valid); +int cpudl_init(struct cpudl *cp); +void cpudl_cleanup(struct cpudl *cp); +#else +#define cpudl_set(cp, cpu, dl) do { } while (0) +#define cpudl_init() do { } while (0) +#endif /* CONFIG_SMP */ + +#endif /* _LINUX_CPUDL_H */ diff --git a/kernel/sched/deadline.c b/kernel/sched/deadline.c new file mode 100644 index 000000000000..0de248202879 --- /dev/null +++ b/kernel/sched/deadline.c @@ -0,0 +1,1640 @@ +/* + * Deadline Scheduling Class (SCHED_DEADLINE) + * + * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS). + * + * Tasks that periodically executes their instances for less than their + * runtime won't miss any of their deadlines. + * Tasks that are not periodic or sporadic or that tries to execute more + * than their reserved bandwidth will be slowed down (and may potentially + * miss some of their deadlines), and won't affect any other task. + * + * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>, + * Juri Lelli <juri.lelli@gmail.com>, + * Michael Trimarchi <michael@amarulasolutions.com>, + * Fabio Checconi <fchecconi@gmail.com> + */ +#include "sched.h" + +#include <linux/slab.h> + +struct dl_bandwidth def_dl_bandwidth; + +static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se) +{ + return container_of(dl_se, struct task_struct, dl); +} + +static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq) +{ + return container_of(dl_rq, struct rq, dl); +} + +static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se) +{ + struct task_struct *p = dl_task_of(dl_se); + struct rq *rq = task_rq(p); + + return &rq->dl; +} + +static inline int on_dl_rq(struct sched_dl_entity *dl_se) +{ + return !RB_EMPTY_NODE(&dl_se->rb_node); +} + +static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq) +{ + struct sched_dl_entity *dl_se = &p->dl; + + return dl_rq->rb_leftmost == &dl_se->rb_node; +} + +void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime) +{ + raw_spin_lock_init(&dl_b->dl_runtime_lock); + dl_b->dl_period = period; + dl_b->dl_runtime = runtime; +} + +extern unsigned long to_ratio(u64 period, u64 runtime); + +void init_dl_bw(struct dl_bw *dl_b) +{ + raw_spin_lock_init(&dl_b->lock); + raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock); + if (global_rt_runtime() == RUNTIME_INF) + dl_b->bw = -1; + else + dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime()); + raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock); + dl_b->total_bw = 0; +} + +void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq) +{ + dl_rq->rb_root = RB_ROOT; + +#ifdef CONFIG_SMP + /* zero means no -deadline tasks */ + dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0; + + dl_rq->dl_nr_migratory = 0; + dl_rq->overloaded = 0; + dl_rq->pushable_dl_tasks_root = RB_ROOT; +#else + init_dl_bw(&dl_rq->dl_bw); +#endif +} + +#ifdef CONFIG_SMP + +static inline int dl_overloaded(struct rq *rq) +{ + return atomic_read(&rq->rd->dlo_count); +} + +static inline void dl_set_overload(struct rq *rq) +{ + if (!rq->online) + return; + + cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask); + /* + * Must be visible before the overload count is + * set (as in sched_rt.c). + * + * Matched by the barrier in pull_dl_task(). + */ + smp_wmb(); + atomic_inc(&rq->rd->dlo_count); +} + +static inline void dl_clear_overload(struct rq *rq) +{ + if (!rq->online) + return; + + atomic_dec(&rq->rd->dlo_count); + cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask); +} + +static void update_dl_migration(struct dl_rq *dl_rq) +{ + if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_total > 1) { + if (!dl_rq->overloaded) { + dl_set_overload(rq_of_dl_rq(dl_rq)); + dl_rq->overloaded = 1; + } + } else if (dl_rq->overloaded) { + dl_clear_overload(rq_of_dl_rq(dl_rq)); + dl_rq->overloaded = 0; + } +} + +static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) +{ + struct task_struct *p = dl_task_of(dl_se); + dl_rq = &rq_of_dl_rq(dl_rq)->dl; + + dl_rq->dl_nr_total++; + if (p->nr_cpus_allowed > 1) + dl_rq->dl_nr_migratory++; + + update_dl_migration(dl_rq); +} + +static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) +{ + struct task_struct *p = dl_task_of(dl_se); + dl_rq = &rq_of_dl_rq(dl_rq)->dl; + + dl_rq->dl_nr_total--; + if (p->nr_cpus_allowed > 1) + dl_rq->dl_nr_migratory--; + + update_dl_migration(dl_rq); +} + +/* + * The list of pushable -deadline task is not a plist, like in + * sched_rt.c, it is an rb-tree with tasks ordered by deadline. + */ +static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) +{ + struct dl_rq *dl_rq = &rq->dl; + struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_node; + struct rb_node *parent = NULL; + struct task_struct *entry; + int leftmost = 1; + + BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks)); + + while (*link) { + parent = *link; + entry = rb_entry(parent, struct task_struct, + pushable_dl_tasks); + if (dl_entity_preempt(&p->dl, &entry->dl)) + link = &parent->rb_left; + else { + link = &parent->rb_right; + leftmost = 0; + } + } + + if (leftmost) + dl_rq->pushable_dl_tasks_leftmost = &p->pushable_dl_tasks; + + rb_link_node(&p->pushable_dl_tasks, parent, link); + rb_insert_color(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root); +} + +static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) +{ + struct dl_rq *dl_rq = &rq->dl; + + if (RB_EMPTY_NODE(&p->pushable_dl_tasks)) + return; + + if (dl_rq->pushable_dl_tasks_leftmost == &p->pushable_dl_tasks) { + struct rb_node *next_node; + + next_node = rb_next(&p->pushable_dl_tasks); + dl_rq->pushable_dl_tasks_leftmost = next_node; + } + + rb_erase(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root); + RB_CLEAR_NODE(&p->pushable_dl_tasks); +} + +static inline int has_pushable_dl_tasks(struct rq *rq) +{ + return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root); +} + +static int push_dl_task(struct rq *rq); + +#else + +static inline +void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p) +{ +} + +static inline +void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p) +{ +} + +static inline +void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) +{ +} + +static inline +void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) +{ +} + +#endif /* CONFIG_SMP */ + +static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags); +static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags); +static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, + int flags); + +/* + * We are being explicitly informed that a new instance is starting, + * and this means that: + * - the absolute deadline of the entity has to be placed at + * current time + relative deadline; + * - the runtime of the entity has to be set to the maximum value. + * + * The capability of specifying such event is useful whenever a -deadline + * entity wants to (try to!) synchronize its behaviour with the scheduler's + * one, and to (try to!) reconcile itself with its own scheduling + * parameters. + */ +static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se, + struct sched_dl_entity *pi_se) +{ + struct dl_rq *dl_rq = dl_rq_of_se(dl_se); + struct rq *rq = rq_of_dl_rq(dl_rq); + + WARN_ON(!dl_se->dl_new || dl_se->dl_throttled); + + /* + * We use the regular wall clock time to set deadlines in the + * future; in fact, we must consider execution overheads (time + * spent on hardirq context, etc.). + */ + dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; + dl_se->runtime = pi_se->dl_runtime; + dl_se->dl_new = 0; +} + +/* + * Pure Earliest Deadline First (EDF) scheduling does not deal with the + * possibility of a entity lasting more than what it declared, and thus + * exhausting its runtime. + * + * Here we are interested in making runtime overrun possible, but we do + * not want a entity which is misbehaving to affect the scheduling of all + * other entities. + * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS) + * is used, in order to confine each entity within its own bandwidth. + * + * This function deals exactly with that, and ensures that when the runtime + * of a entity is replenished, its deadline is also postponed. That ensures + * the overrunning entity can't interfere with other entity in the system and + * can't make them miss their deadlines. Reasons why this kind of overruns + * could happen are, typically, a entity voluntarily trying to overcome its + * runtime, or it just underestimated it during sched_setscheduler_ex(). + */ +static void replenish_dl_entity(struct sched_dl_entity *dl_se, + struct sched_dl_entity *pi_se) +{ + struct dl_rq *dl_rq = dl_rq_of_se(dl_se); + struct rq *rq = rq_of_dl_rq(dl_rq); + + BUG_ON(pi_se->dl_runtime <= 0); + + /* + * This could be the case for a !-dl task that is boosted. + * Just go with full inherited parameters. + */ + if (dl_se->dl_deadline == 0) { + dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; + dl_se->runtime = pi_se->dl_runtime; + } + + /* + * We keep moving the deadline away until we get some + * available runtime for the entity. This ensures correct + * handling of situations where the runtime overrun is + * arbitrary large. + */ + while (dl_se->runtime <= 0) { + dl_se->deadline += pi_se->dl_period; + dl_se->runtime += pi_se->dl_runtime; + } + + /* + * At this point, the deadline really should be "in + * the future" with respect to rq->clock. If it's + * not, we are, for some reason, lagging too much! + * Anyway, after having warn userspace abut that, + * we still try to keep the things running by + * resetting the deadline and the budget of the + * entity. + */ + if (dl_time_before(dl_se->deadline, rq_clock(rq))) { + static bool lag_once = false; + + if (!lag_once) { + lag_once = true; + printk_sched("sched: DL replenish lagged to much\n"); + } + dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; + dl_se->runtime = pi_se->dl_runtime; + } +} + +/* + * Here we check if --at time t-- an entity (which is probably being + * [re]activated or, in general, enqueued) can use its remaining runtime + * and its current deadline _without_ exceeding the bandwidth it is + * assigned (function returns true if it can't). We are in fact applying + * one of the CBS rules: when a task wakes up, if the residual runtime + * over residual deadline fits within the allocated bandwidth, then we + * can keep the current (absolute) deadline and residual budget without + * disrupting the schedulability of the system. Otherwise, we should + * refill the runtime and set the deadline a period in the future, + * because keeping the current (absolute) deadline of the task would + * result in breaking guarantees promised to other tasks. + * + * This function returns true if: + * + * runtime / (deadline - t) > dl_runtime / dl_period , + * + * IOW we can't recycle current parameters. + * + * Notice that the bandwidth check is done against the period. For + * task with deadline equal to period this is the same of using + * dl_deadline instead of dl_period in the equation above. + */ +static bool dl_entity_overflow(struct sched_dl_entity *dl_se, + struct sched_dl_entity *pi_se, u64 t) +{ + u64 left, right; + + /* + * left and right are the two sides of the equation above, + * after a bit of shuffling to use multiplications instead + * of divisions. + * + * Note that none of the time values involved in the two + * multiplications are absolute: dl_deadline and dl_runtime + * are the relative deadline and the maximum runtime of each + * instance, runtime is the runtime left for the last instance + * and (deadline - t), since t is rq->clock, is the time left + * to the (absolute) deadline. Even if overflowing the u64 type + * is very unlikely to occur in both cases, here we scale down + * as we want to avoid that risk at all. Scaling down by 10 + * means that we reduce granularity to 1us. We are fine with it, + * since this is only a true/false check and, anyway, thinking + * of anything below microseconds resolution is actually fiction + * (but still we want to give the user that illusion >;). + */ + left = (pi_se->dl_period >> DL_SCALE) * (dl_se->runtime >> DL_SCALE); + right = ((dl_se->deadline - t) >> DL_SCALE) * + (pi_se->dl_runtime >> DL_SCALE); + + return dl_time_before(right, left); +} + +/* + * When a -deadline entity is queued back on the runqueue, its runtime and + * deadline might need updating. + * + * The policy here is that we update the deadline of the entity only if: + * - the current deadline is in the past, + * - using the remaining runtime with the current deadline would make + * the entity exceed its bandwidth. + */ +static void update_dl_entity(struct sched_dl_entity *dl_se, + struct sched_dl_entity *pi_se) +{ + struct dl_rq *dl_rq = dl_rq_of_se(dl_se); + struct rq *rq = rq_of_dl_rq(dl_rq); + + /* + * The arrival of a new instance needs special treatment, i.e., + * the actual scheduling parameters have to be "renewed". + */ + if (dl_se->dl_new) { + setup_new_dl_entity(dl_se, pi_se); + return; + } + + if (dl_time_before(dl_se->deadline, rq_clock(rq)) || + dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) { + dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline; + dl_se->runtime = pi_se->dl_runtime; + } +} + +/* + * If the entity depleted all its runtime, and if we want it to sleep + * while waiting for some new execution time to become available, we + * set the bandwidth enforcement timer to the replenishment instant + * and try to activate it. + * + * Notice that it is important for the caller to know if the timer + * actually started or not (i.e., the replenishment instant is in + * the future or in the past). + */ +static int start_dl_timer(struct sched_dl_entity *dl_se, bool boosted) +{ + struct dl_rq *dl_rq = dl_rq_of_se(dl_se); + struct rq *rq = rq_of_dl_rq(dl_rq); + ktime_t now, act; + ktime_t soft, hard; + unsigned long range; + s64 delta; + + if (boosted) + return 0; + /* + * We want the timer to fire at the deadline, but considering + * that it is actually coming from rq->clock and not from + * hrtimer's time base reading. + */ + act = ns_to_ktime(dl_se->deadline); + now = hrtimer_cb_get_time(&dl_se->dl_timer); + delta = ktime_to_ns(now) - rq_clock(rq); + act = ktime_add_ns(act, delta); + + /* + * If the expiry time already passed, e.g., because the value + * chosen as the deadline is too small, don't even try to + * start the timer in the past! + */ + if (ktime_us_delta(act, now) < 0) + return 0; + + hrtimer_set_expires(&dl_se->dl_timer, act); + + soft = hrtimer_get_softexpires(&dl_se->dl_timer); + hard = hrtimer_get_expires(&dl_se->dl_timer); + range = ktime_to_ns(ktime_sub(hard, soft)); + __hrtimer_start_range_ns(&dl_se->dl_timer, soft, + range, HRTIMER_MODE_ABS, 0); + + return hrtimer_active(&dl_se->dl_timer); +} + +/* + * This is the bandwidth enforcement timer callback. If here, we know + * a task is not on its dl_rq, since the fact that the timer was running + * means the task is throttled and needs a runtime replenishment. + * + * However, what we actually do depends on the fact the task is active, + * (it is on its rq) or has been removed from there by a call to + * dequeue_task_dl(). In the former case we must issue the runtime + * replenishment and add the task back to the dl_rq; in the latter, we just + * do nothing but clearing dl_throttled, so that runtime and deadline + * updating (and the queueing back to dl_rq) will be done by the + * next call to enqueue_task_dl(). + */ +static enum hrtimer_restart dl_task_timer(struct hrtimer *timer) +{ + struct sched_dl_entity *dl_se = container_of(timer, + struct sched_dl_entity, + dl_timer); + struct task_struct *p = dl_task_of(dl_se); + struct rq *rq = task_rq(p); + raw_spin_lock(&rq->lock); + + /* + * We need to take care of a possible races here. In fact, the + * task might have changed its scheduling policy to something + * different from SCHED_DEADLINE or changed its reservation + * parameters (through sched_setscheduler()). + */ + if (!dl_task(p) || dl_se->dl_new) + goto unlock; + + sched_clock_tick(); + update_rq_clock(rq); + dl_se->dl_throttled = 0; + if (p->on_rq) { + enqueue_task_dl(rq, p, ENQUEUE_REPLENISH); + if (task_has_dl_policy(rq->curr)) + check_preempt_curr_dl(rq, p, 0); + else + resched_task(rq->curr); +#ifdef CONFIG_SMP + /* + * Queueing this task back might have overloaded rq, + * check if we need to kick someone away. + */ + if (has_pushable_dl_tasks(rq)) + push_dl_task(rq); +#endif + } +unlock: + raw_spin_unlock(&rq->lock); + + return HRTIMER_NORESTART; +} + +void init_dl_task_timer(struct sched_dl_entity *dl_se) +{ + struct hrtimer *timer = &dl_se->dl_timer; + + if (hrtimer_active(timer)) { + hrtimer_try_to_cancel(timer); + return; + } + + hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); + timer->function = dl_task_timer; +} + +static +int dl_runtime_exceeded(struct rq *rq, struct sched_dl_entity *dl_se) +{ + int dmiss = dl_time_before(dl_se->deadline, rq_clock(rq)); + int rorun = dl_se->runtime <= 0; + + if (!rorun && !dmiss) + return 0; + + /* + * If we are beyond our current deadline and we are still + * executing, then we have already used some of the runtime of + * the next instance. Thus, if we do not account that, we are + * stealing bandwidth from the system at each deadline miss! + */ + if (dmiss) { + dl_se->runtime = rorun ? dl_se->runtime : 0; + dl_se->runtime -= rq_clock(rq) - dl_se->deadline; + } + + return 1; +} + +/* + * Update the current task's runtime statistics (provided it is still + * a -deadline task and has not been removed from the dl_rq). + */ +static void update_curr_dl(struct rq *rq) +{ + struct task_struct *curr = rq->curr; + struct sched_dl_entity *dl_se = &curr->dl; + u64 delta_exec; + + if (!dl_task(curr) || !on_dl_rq(dl_se)) + return; + + /* + * Consumed budget is computed considering the time as + * observed by schedulable tasks (excluding time spent + * in hardirq context, etc.). Deadlines are instead + * computed using hard walltime. This seems to be the more + * natural solution, but the full ramifications of this + * approach need further study. + */ + delta_exec = rq_clock_task(rq) - curr->se.exec_start; + if (unlikely((s64)delta_exec < 0)) + delta_exec = 0; + + schedstat_set(curr->se.statistics.exec_max, + max(curr->se.statistics.exec_max, delta_exec)); + + curr->se.sum_exec_runtime += delta_exec; + account_group_exec_runtime(curr, delta_exec); + + curr->se.exec_start = rq_clock_task(rq); + cpuacct_charge(curr, delta_exec); + + sched_rt_avg_update(rq, delta_exec); + + dl_se->runtime -= delta_exec; + if (dl_runtime_exceeded(rq, dl_se)) { + __dequeue_task_dl(rq, curr, 0); + if (likely(start_dl_timer(dl_se, curr->dl.dl_boosted))) + dl_se->dl_throttled = 1; + else + enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH); + + if (!is_leftmost(curr, &rq->dl)) + resched_task(curr); + } + + /* + * Because -- for now -- we share the rt bandwidth, we need to + * account our runtime there too, otherwise actual rt tasks + * would be able to exceed the shared quota. + * + * Account to the root rt group for now. + * + * The solution we're working towards is having the RT groups scheduled + * using deadline servers -- however there's a few nasties to figure + * out before that can happen. + */ + if (rt_bandwidth_enabled()) { + struct rt_rq *rt_rq = &rq->rt; + + raw_spin_lock(&rt_rq->rt_runtime_lock); + rt_rq->rt_time += delta_exec; + /* + * We'll let actual RT tasks worry about the overflow here, we + * have our own CBS to keep us inline -- see above. + */ + raw_spin_unlock(&rt_rq->rt_runtime_lock); + } +} + +#ifdef CONFIG_SMP + +static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu); + +static inline u64 next_deadline(struct rq *rq) +{ + struct task_struct *next = pick_next_earliest_dl_task(rq, rq->cpu); + + if (next && dl_prio(next->prio)) + return next->dl.deadline; + else + return 0; +} + +static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) +{ + struct rq *rq = rq_of_dl_rq(dl_rq); + + if (dl_rq->earliest_dl.curr == 0 || + dl_time_before(deadline, dl_rq->earliest_dl.curr)) { + /* + * If the dl_rq had no -deadline tasks, or if the new task + * has shorter deadline than the current one on dl_rq, we + * know that the previous earliest becomes our next earliest, + * as the new task becomes the earliest itself. + */ + dl_rq->earliest_dl.next = dl_rq->earliest_dl.curr; + dl_rq->earliest_dl.curr = deadline; + cpudl_set(&rq->rd->cpudl, rq->cpu, deadline, 1); + } else if (dl_rq->earliest_dl.next == 0 || + dl_time_before(deadline, dl_rq->earliest_dl.next)) { + /* + * On the other hand, if the new -deadline task has a + * a later deadline than the earliest one on dl_rq, but + * it is earlier than the next (if any), we must + * recompute the next-earliest. + */ + dl_rq->earliest_dl.next = next_deadline(rq); + } +} + +static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) +{ + struct rq *rq = rq_of_dl_rq(dl_rq); + + /* + * Since we may have removed our earliest (and/or next earliest) + * task we must recompute them. + */ + if (!dl_rq->dl_nr_running) { + dl_rq->earliest_dl.curr = 0; + dl_rq->earliest_dl.next = 0; + cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0); + } else { + struct rb_node *leftmost = dl_rq->rb_leftmost; + struct sched_dl_entity *entry; + + entry = rb_entry(leftmost, struct sched_dl_entity, rb_node); + dl_rq->earliest_dl.curr = entry->deadline; + dl_rq->earliest_dl.next = next_deadline(rq); + cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline, 1); + } +} + +#else + +static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {} +static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {} + +#endif /* CONFIG_SMP */ + +static inline +void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) +{ + int prio = dl_task_of(dl_se)->prio; + u64 deadline = dl_se->deadline; + + WARN_ON(!dl_prio(prio)); + dl_rq->dl_nr_running++; + + inc_dl_deadline(dl_rq, deadline); + inc_dl_migration(dl_se, dl_rq); +} + +static inline +void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq) +{ + int prio = dl_task_of(dl_se)->prio; + + WARN_ON(!dl_prio(prio)); + WARN_ON(!dl_rq->dl_nr_running); + dl_rq->dl_nr_running--; + + dec_dl_deadline(dl_rq, dl_se->deadline); + dec_dl_migration(dl_se, dl_rq); +} + +static void __enqueue_dl_entity(struct sched_dl_entity *dl_se) +{ + struct dl_rq *dl_rq = dl_rq_of_se(dl_se); + struct rb_node **link = &dl_rq->rb_root.rb_node; + struct rb_node *parent = NULL; + struct sched_dl_entity *entry; + int leftmost = 1; + + BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node)); + + while (*link) { + parent = *link; + entry = rb_entry(parent, struct sched_dl_entity, rb_node); + if (dl_time_before(dl_se->deadline, entry->deadline)) + link = &parent->rb_left; + else { + link = &parent->rb_right; + leftmost = 0; + } + } + + if (leftmost) + dl_rq->rb_leftmost = &dl_se->rb_node; + + rb_link_node(&dl_se->rb_node, parent, link); + rb_insert_color(&dl_se->rb_node, &dl_rq->rb_root); + + inc_dl_tasks(dl_se, dl_rq); +} + +static void __dequeue_dl_entity(struct sched_dl_entity *dl_se) +{ + struct dl_rq *dl_rq = dl_rq_of_se(dl_se); + + if (RB_EMPTY_NODE(&dl_se->rb_node)) + return; + + if (dl_rq->rb_leftmost == &dl_se->rb_node) { + struct rb_node *next_node; + + next_node = rb_next(&dl_se->rb_node); + dl_rq->rb_leftmost = next_node; + } + + rb_erase(&dl_se->rb_node, &dl_rq->rb_root); + RB_CLEAR_NODE(&dl_se->rb_node); + + dec_dl_tasks(dl_se, dl_rq); +} + +static void +enqueue_dl_entity(struct sched_dl_entity *dl_se, + struct sched_dl_entity *pi_se, int flags) +{ + BUG_ON(on_dl_rq(dl_se)); + + /* + * If this is a wakeup or a new instance, the scheduling + * parameters of the task might need updating. Otherwise, + * we want a replenishment of its runtime. + */ + if (!dl_se->dl_new && flags & ENQUEUE_REPLENISH) + replenish_dl_entity(dl_se, pi_se); + else + update_dl_entity(dl_se, pi_se); + + __enqueue_dl_entity(dl_se); +} + +static void dequeue_dl_entity(struct sched_dl_entity *dl_se) +{ + __dequeue_dl_entity(dl_se); +} + +static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags) +{ + struct task_struct *pi_task = rt_mutex_get_top_task(p); + struct sched_dl_entity *pi_se = &p->dl; + + /* + * Use the scheduling parameters of the top pi-waiter + * task if we have one and its (relative) deadline is + * smaller than our one... OTW we keep our runtime and + * deadline. + */ + if (pi_task && p->dl.dl_boosted && dl_prio(pi_task->normal_prio)) + pi_se = &pi_task->dl; + + /* + * If p is throttled, we do nothing. In fact, if it exhausted + * its budget it needs a replenishment and, since it now is on + * its rq, the bandwidth timer callback (which clearly has not + * run yet) will take care of this. + */ + if (p->dl.dl_throttled) + return; + + enqueue_dl_entity(&p->dl, pi_se, flags); + + if (!task_current(rq, p) && p->nr_cpus_allowed > 1) + enqueue_pushable_dl_task(rq, p); + + inc_nr_running(rq); +} + +static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) +{ + dequeue_dl_entity(&p->dl); + dequeue_pushable_dl_task(rq, p); +} + +static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags) +{ + update_curr_dl(rq); + __dequeue_task_dl(rq, p, flags); + + dec_nr_running(rq); +} + +/* + * Yield task semantic for -deadline tasks is: + * + * get off from the CPU until our next instance, with + * a new runtime. This is of little use now, since we + * don't have a bandwidth reclaiming mechanism. Anyway, + * bandwidth reclaiming is planned for the future, and + * yield_task_dl will indicate that some spare budget + * is available for other task instances to use it. + */ +static void yield_task_dl(struct rq *rq) +{ + struct task_struct *p = rq->curr; + + /* + * We make the task go to sleep until its current deadline by + * forcing its runtime to zero. This way, update_curr_dl() stops + * it and the bandwidth timer will wake it up and will give it + * new scheduling parameters (thanks to dl_new=1). + */ + if (p->dl.runtime > 0) { + rq->curr->dl.dl_new = 1; + p->dl.runtime = 0; + } + update_curr_dl(rq); +} + +#ifdef CONFIG_SMP + +static int find_later_rq(struct task_struct *task); + +static int +select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags) +{ + struct task_struct *curr; + struct rq *rq; + + if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK) + goto out; + + rq = cpu_rq(cpu); + + rcu_read_lock(); + curr = ACCESS_ONCE(rq->curr); /* unlocked access */ + + /* + * If we are dealing with a -deadline task, we must + * decide where to wake it up. + * If it has a later deadline and the current task + * on this rq can't move (provided the waking task + * can!) we prefer to send it somewhere else. On the + * other hand, if it has a shorter deadline, we + * try to make it stay here, it might be important. + */ + if (unlikely(dl_task(curr)) && + (curr->nr_cpus_allowed < 2 || + !dl_entity_preempt(&p->dl, &curr->dl)) && + (p->nr_cpus_allowed > 1)) { + int target = find_later_rq(p); + + if (target != -1) + cpu = target; + } + rcu_read_unlock(); + +out: + return cpu; +} + +static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p) +{ + /* + * Current can't be migrated, useless to reschedule, + * let's hope p can move out. + */ + if (rq->curr->nr_cpus_allowed == 1 || + cpudl_find(&rq->rd->cpudl, rq->curr, NULL) == -1) + return; + + /* + * p is migratable, so let's not schedule it and + * see if it is pushed or pulled somewhere else. + */ + if (p->nr_cpus_allowed != 1 && + cpudl_find(&rq->rd->cpudl, p, NULL) != -1) + return; + + resched_task(rq->curr); +} + +#endif /* CONFIG_SMP */ + +/* + * Only called when both the current and waking task are -deadline + * tasks. + */ +static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, + int flags) +{ + if (dl_entity_preempt(&p->dl, &rq->curr->dl)) { + resched_task(rq->curr); + return; + } + +#ifdef CONFIG_SMP + /* + * In the unlikely case current and p have the same deadline + * let us try to decide what's the best thing to do... + */ + if ((p->dl.deadline == rq->curr->dl.deadline) && + !test_tsk_need_resched(rq->curr)) + check_preempt_equal_dl(rq, p); +#endif /* CONFIG_SMP */ +} + +#ifdef CONFIG_SCHED_HRTICK +static void start_hrtick_dl(struct rq *rq, struct task_struct *p) +{ + s64 delta = p->dl.dl_runtime - p->dl.runtime; + + if (delta > 10000) + hrtick_start(rq, p->dl.runtime); +} +#endif + +static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq, + struct dl_rq *dl_rq) +{ + struct rb_node *left = dl_rq->rb_leftmost; + + if (!left) + return NULL; + + return rb_entry(left, struct sched_dl_entity, rb_node); +} + +struct task_struct *pick_next_task_dl(struct rq *rq) +{ + struct sched_dl_entity *dl_se; + struct task_struct *p; + struct dl_rq *dl_rq; + + dl_rq = &rq->dl; + + if (unlikely(!dl_rq->dl_nr_running)) + return NULL; + + dl_se = pick_next_dl_entity(rq, dl_rq); + BUG_ON(!dl_se); + + p = dl_task_of(dl_se); + p->se.exec_start = rq_clock_task(rq); + + /* Running task will never be pushed. */ + dequeue_pushable_dl_task(rq, p); + +#ifdef CONFIG_SCHED_HRTICK + if (hrtick_enabled(rq)) + start_hrtick_dl(rq, p); +#endif + +#ifdef CONFIG_SMP + rq->post_schedule = has_pushable_dl_tasks(rq); +#endif /* CONFIG_SMP */ + + return p; +} + +static void put_prev_task_dl(struct rq *rq, struct task_struct *p) +{ + update_curr_dl(rq); + + if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1) + enqueue_pushable_dl_task(rq, p); +} + +static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued) +{ + update_curr_dl(rq); + +#ifdef CONFIG_SCHED_HRTICK + if (hrtick_enabled(rq) && queued && p->dl.runtime > 0) + start_hrtick_dl(rq, p); +#endif +} + +static void task_fork_dl(struct task_struct *p) +{ + /* + * SCHED_DEADLINE tasks cannot fork and this is achieved through + * sched_fork() + */ +} + +static void task_dead_dl(struct task_struct *p) +{ + struct hrtimer *timer = &p->dl.dl_timer; + struct dl_bw *dl_b = dl_bw_of(task_cpu(p)); + + /* + * Since we are TASK_DEAD we won't slip out of the domain! + */ + raw_spin_lock_irq(&dl_b->lock); + dl_b->total_bw -= p->dl.dl_bw; + raw_spin_unlock_irq(&dl_b->lock); + + hrtimer_cancel(timer); +} + +static void set_curr_task_dl(struct rq *rq) +{ + struct task_struct *p = rq->curr; + + p->se.exec_start = rq_clock_task(rq); + + /* You can't push away the running task */ + dequeue_pushable_dl_task(rq, p); +} + +#ifdef CONFIG_SMP + +/* Only try algorithms three times */ +#define DL_MAX_TRIES 3 + +static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu) +{ + if (!task_running(rq, p) && + (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) && + (p->nr_cpus_allowed > 1)) + return 1; + + return 0; +} + +/* Returns the second earliest -deadline task, NULL otherwise */ +static struct task_struct *pick_next_earliest_dl_task(struct rq *rq, int cpu) +{ + struct rb_node *next_node = rq->dl.rb_leftmost; + struct sched_dl_entity *dl_se; + struct task_struct *p = NULL; + +next_node: + next_node = rb_next(next_node); + if (next_node) { + dl_se = rb_entry(next_node, struct sched_dl_entity, rb_node); + p = dl_task_of(dl_se); + + if (pick_dl_task(rq, p, cpu)) + return p; + + goto next_node; + } + + return NULL; +} + +static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl); + +static int find_later_rq(struct task_struct *task) +{ + struct sched_domain *sd; + struct cpumask *later_mask = __get_cpu_var(local_cpu_mask_dl); + int this_cpu = smp_processor_id(); + int best_cpu, cpu = task_cpu(task); + + /* Make sure the mask is initialized first */ + if (unlikely(!later_mask)) + return -1; + + if (task->nr_cpus_allowed == 1) + return -1; + + best_cpu = cpudl_find(&task_rq(task)->rd->cpudl, + task, later_mask); + if (best_cpu == -1) + return -1; + + /* + * If we are here, some target has been found, + * the most suitable of which is cached in best_cpu. + * This is, among the runqueues where the current tasks + * have later deadlines than the task's one, the rq + * with the latest possible one. + * + * Now we check how well this matches with task's + * affinity and system topology. + * + * The last cpu where the task run is our first + * guess, since it is most likely cache-hot there. + */ + if (cpumask_test_cpu(cpu, later_mask)) + return cpu; + /* + * Check if this_cpu is to be skipped (i.e., it is + * not in the mask) or not. + */ + if (!cpumask_test_cpu(this_cpu, later_mask)) + this_cpu = -1; + + rcu_read_lock(); + for_each_domain(cpu, sd) { + if (sd->flags & SD_WAKE_AFFINE) { + + /* + * If possible, preempting this_cpu is + * cheaper than migrating. + */ + if (this_cpu != -1 && + cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { + rcu_read_unlock(); + return this_cpu; + } + + /* + * Last chance: if best_cpu is valid and is + * in the mask, that becomes our choice. + */ + if (best_cpu < nr_cpu_ids && + cpumask_test_cpu(best_cpu, sched_domain_span(sd))) { + rcu_read_unlock(); + return best_cpu; + } + } + } + rcu_read_unlock(); + + /* + * At this point, all our guesses failed, we just return + * 'something', and let the caller sort the things out. + */ + if (this_cpu != -1) + return this_cpu; + + cpu = cpumask_any(later_mask); + if (cpu < nr_cpu_ids) + return cpu; + + return -1; +} + +/* Locks the rq it finds */ +static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq) +{ + struct rq *later_rq = NULL; + int tries; + int cpu; + + for (tries = 0; tries < DL_MAX_TRIES; tries++) { + cpu = find_later_rq(task); + + if ((cpu == -1) || (cpu == rq->cpu)) + break; + + later_rq = cpu_rq(cpu); + + /* Retry if something changed. */ + if (double_lock_balance(rq, later_rq)) { + if (unlikely(task_rq(task) != rq || + !cpumask_test_cpu(later_rq->cpu, + &task->cpus_allowed) || + task_running(rq, task) || !task->on_rq)) { + double_unlock_balance(rq, later_rq); + later_rq = NULL; + break; + } + } + + /* + * If the rq we found has no -deadline task, or + * its earliest one has a later deadline than our + * task, the rq is a good one. + */ + if (!later_rq->dl.dl_nr_running || + dl_time_before(task->dl.deadline, + later_rq->dl.earliest_dl.curr)) + break; + + /* Otherwise we try again. */ + double_unlock_balance(rq, later_rq); + later_rq = NULL; + } + + return later_rq; +} + +static struct task_struct *pick_next_pushable_dl_task(struct rq *rq) +{ + struct task_struct *p; + + if (!has_pushable_dl_tasks(rq)) + return NULL; + + p = rb_entry(rq->dl.pushable_dl_tasks_leftmost, + struct task_struct, pushable_dl_tasks); + + BUG_ON(rq->cpu != task_cpu(p)); + BUG_ON(task_current(rq, p)); + BUG_ON(p->nr_cpus_allowed <= 1); + + BUG_ON(!p->on_rq); + BUG_ON(!dl_task(p)); + + return p; +} + +/* + * See if the non running -deadline tasks on this rq + * can be sent to some other CPU where they can preempt + * and start executing. + */ +static int push_dl_task(struct rq *rq) +{ + struct task_struct *next_task; + struct rq *later_rq; + + if (!rq->dl.overloaded) + return 0; + + next_task = pick_next_pushable_dl_task(rq); + if (!next_task) + return 0; + +retry: + if (unlikely(next_task == rq->curr)) { + WARN_ON(1); + return 0; + } + + /* + * If next_task preempts rq->curr, and rq->curr + * can move away, it makes sense to just reschedule + * without going further in pushing next_task. + */ + if (dl_task(rq->curr) && + dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) && + rq->curr->nr_cpus_allowed > 1) { + resched_task(rq->curr); + return 0; + } + + /* We might release rq lock */ + get_task_struct(next_task); + + /* Will lock the rq it'll find */ + later_rq = find_lock_later_rq(next_task, rq); + if (!later_rq) { + struct task_struct *task; + + /* + * We must check all this again, since + * find_lock_later_rq releases rq->lock and it is + * then possible that next_task has migrated. + */ + task = pick_next_pushable_dl_task(rq); + if (task_cpu(next_task) == rq->cpu && task == next_task) { + /* + * The task is still there. We don't try + * again, some other cpu will pull it when ready. + */ + dequeue_pushable_dl_task(rq, next_task); + goto out; + } + + if (!task) + /* No more tasks */ + goto out; + + put_task_struct(next_task); + next_task = task; + goto retry; + } + + deactivate_task(rq, next_task, 0); + set_task_cpu(next_task, later_rq->cpu); + activate_task(later_rq, next_task, 0); + + resched_task(later_rq->curr); + + double_unlock_balance(rq, later_rq); + +out: + put_task_struct(next_task); + + return 1; +} + +static void push_dl_tasks(struct rq *rq) +{ + /* Terminates as it moves a -deadline task */ + while (push_dl_task(rq)) + ; +} + +static int pull_dl_task(struct rq *this_rq) +{ + int this_cpu = this_rq->cpu, ret = 0, cpu; + struct task_struct *p; + struct rq *src_rq; + u64 dmin = LONG_MAX; + + if (likely(!dl_overloaded(this_rq))) + return 0; + + /* + * Match the barrier from dl_set_overloaded; this guarantees that if we + * see overloaded we must also see the dlo_mask bit. + */ + smp_rmb(); + + for_each_cpu(cpu, this_rq->rd->dlo_mask) { + if (this_cpu == cpu) + continue; + + src_rq = cpu_rq(cpu); + + /* + * It looks racy, abd it is! However, as in sched_rt.c, + * we are fine with this. + */ + if (this_rq->dl.dl_nr_running && + dl_time_before(this_rq->dl.earliest_dl.curr, + src_rq->dl.earliest_dl.next)) + continue; + + /* Might drop this_rq->lock */ + double_lock_balance(this_rq, src_rq); + + /* + * If there are no more pullable tasks on the + * rq, we're done with it. + */ + if (src_rq->dl.dl_nr_running <= 1) + goto skip; + + p = pick_next_earliest_dl_task(src_rq, this_cpu); + + /* + * We found a task to be pulled if: + * - it preempts our current (if there's one), + * - it will preempt the last one we pulled (if any). + */ + if (p && dl_time_before(p->dl.deadline, dmin) && + (!this_rq->dl.dl_nr_running || + dl_time_before(p->dl.deadline, + this_rq->dl.earliest_dl.curr))) { + WARN_ON(p == src_rq->curr); + WARN_ON(!p->on_rq); + + /* + * Then we pull iff p has actually an earlier + * deadline than the current task of its runqueue. + */ + if (dl_time_before(p->dl.deadline, + src_rq->curr->dl.deadline)) + goto skip; + + ret = 1; + + deactivate_task(src_rq, p, 0); + set_task_cpu(p, this_cpu); + activate_task(this_rq, p, 0); + dmin = p->dl.deadline; + + /* Is there any other task even earlier? */ + } +skip: + double_unlock_balance(this_rq, src_rq); + } + + return ret; +} + +static void pre_schedule_dl(struct rq *rq, struct task_struct *prev) +{ + /* Try to pull other tasks here */ + if (dl_task(prev)) + pull_dl_task(rq); +} + +static void post_schedule_dl(struct rq *rq) +{ + push_dl_tasks(rq); +} + +/* + * Since the task is not running and a reschedule is not going to happen + * anytime soon on its runqueue, we try pushing it away now. + */ +static void task_woken_dl(struct rq *rq, struct task_struct *p) +{ + if (!task_running(rq, p) && + !test_tsk_need_resched(rq->curr) && + has_pushable_dl_tasks(rq) && + p->nr_cpus_allowed > 1 && + dl_task(rq->curr) && + (rq->curr->nr_cpus_allowed < 2 || + dl_entity_preempt(&rq->curr->dl, &p->dl))) { + push_dl_tasks(rq); + } +} + +static void set_cpus_allowed_dl(struct task_struct *p, + const struct cpumask *new_mask) +{ + struct rq *rq; + int weight; + + BUG_ON(!dl_task(p)); + + /* + * Update only if the task is actually running (i.e., + * it is on the rq AND it is not throttled). + */ + if (!on_dl_rq(&p->dl)) + return; + + weight = cpumask_weight(new_mask); + + /* + * Only update if the process changes its state from whether it + * can migrate or not. + */ + if ((p->nr_cpus_allowed > 1) == (weight > 1)) + return; + + rq = task_rq(p); + + /* + * The process used to be able to migrate OR it can now migrate + */ + if (weight <= 1) { + if (!task_current(rq, p)) + dequeue_pushable_dl_task(rq, p); + BUG_ON(!rq->dl.dl_nr_migratory); + rq->dl.dl_nr_migratory--; + } else { + if (!task_current(rq, p)) + enqueue_pushable_dl_task(rq, p); + rq->dl.dl_nr_migratory++; + } + + update_dl_migration(&rq->dl); +} + +/* Assumes rq->lock is held */ +static void rq_online_dl(struct rq *rq) +{ + if (rq->dl.overloaded) + dl_set_overload(rq); + + if (rq->dl.dl_nr_running > 0) + cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr, 1); +} + +/* Assumes rq->lock is held */ +static void rq_offline_dl(struct rq *rq) +{ + if (rq->dl.overloaded) + dl_clear_overload(rq); + + cpudl_set(&rq->rd->cpudl, rq->cpu, 0, 0); +} + +void init_sched_dl_class(void) +{ + unsigned int i; + + for_each_possible_cpu(i) + zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i), + GFP_KERNEL, cpu_to_node(i)); +} + +#endif /* CONFIG_SMP */ + +static void switched_from_dl(struct rq *rq, struct task_struct *p) +{ + if (hrtimer_active(&p->dl.dl_timer) && !dl_policy(p->policy)) + hrtimer_try_to_cancel(&p->dl.dl_timer); + +#ifdef CONFIG_SMP + /* + * Since this might be the only -deadline task on the rq, + * this is the right place to try to pull some other one + * from an overloaded cpu, if any. + */ + if (!rq->dl.dl_nr_running) + pull_dl_task(rq); +#endif +} + +/* + * When switching to -deadline, we may overload the rq, then + * we try to push someone off, if possible. + */ +static void switched_to_dl(struct rq *rq, struct task_struct *p) +{ + int check_resched = 1; + + /* + * If p is throttled, don't consider the possibility + * of preempting rq->curr, the check will be done right + * after its runtime will get replenished. + */ + if (unlikely(p->dl.dl_throttled)) + return; + + if (p->on_rq || rq->curr != p) { +#ifdef CONFIG_SMP + if (rq->dl.overloaded && push_dl_task(rq) && rq != task_rq(p)) + /* Only reschedule if pushing failed */ + check_resched = 0; +#endif /* CONFIG_SMP */ + if (check_resched && task_has_dl_policy(rq->curr)) + check_preempt_curr_dl(rq, p, 0); + } +} + +/* + * If the scheduling parameters of a -deadline task changed, + * a push or pull operation might be needed. + */ +static void prio_changed_dl(struct rq *rq, struct task_struct *p, + int oldprio) +{ + if (p->on_rq || rq->curr == p) { +#ifdef CONFIG_SMP + /* + * This might be too much, but unfortunately + * we don't have the old deadline value, and + * we can't argue if the task is increasing + * or lowering its prio, so... + */ + if (!rq->dl.overloaded) + pull_dl_task(rq); + + /* + * If we now have a earlier deadline task than p, + * then reschedule, provided p is still on this + * runqueue. + */ + if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline) && + rq->curr == p) + resched_task(p); +#else + /* + * Again, we don't know if p has a earlier + * or later deadline, so let's blindly set a + * (maybe not needed) rescheduling point. + */ + resched_task(p); +#endif /* CONFIG_SMP */ + } else + switched_to_dl(rq, p); +} + +const struct sched_class dl_sched_class = { + .next = &rt_sched_class, + .enqueue_task = enqueue_task_dl, + .dequeue_task = dequeue_task_dl, + .yield_task = yield_task_dl, + + .check_preempt_curr = check_preempt_curr_dl, + + .pick_next_task = pick_next_task_dl, + .put_prev_task = put_prev_task_dl, + +#ifdef CONFIG_SMP + .select_task_rq = select_task_rq_dl, + .set_cpus_allowed = set_cpus_allowed_dl, + .rq_online = rq_online_dl, + .rq_offline = rq_offline_dl, + .pre_schedule = pre_schedule_dl, + .post_schedule = post_schedule_dl, + .task_woken = task_woken_dl, +#endif + + .set_curr_task = set_curr_task_dl, + .task_tick = task_tick_dl, + .task_fork = task_fork_dl, + .task_dead = task_dead_dl, + + .prio_changed = prio_changed_dl, + .switched_from = switched_from_dl, + .switched_to = switched_to_dl, +}; diff --git a/kernel/sched/debug.c b/kernel/sched/debug.c index 5c34d1817e8f..dd52e7ffb10e 100644 --- a/kernel/sched/debug.c +++ b/kernel/sched/debug.c @@ -139,7 +139,7 @@ print_task(struct seq_file *m, struct rq *rq, struct task_struct *p) 0LL, 0LL, 0LL, 0L, 0LL, 0L, 0LL, 0L); #endif #ifdef CONFIG_NUMA_BALANCING - SEQ_printf(m, " %d", cpu_to_node(task_cpu(p))); + SEQ_printf(m, " %d", task_node(p)); #endif #ifdef CONFIG_CGROUP_SCHED SEQ_printf(m, " %s", task_group_path(task_group(p))); @@ -371,7 +371,7 @@ static void sched_debug_header(struct seq_file *m) PN(cpu_clk); P(jiffies); #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK - P(sched_clock_stable); + P(sched_clock_stable()); #endif #undef PN #undef P diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c index e64b0794060e..b24b6cfde9aa 100644 --- a/kernel/sched/fair.c +++ b/kernel/sched/fair.c @@ -872,15 +872,6 @@ static unsigned int task_scan_max(struct task_struct *p) return max(smin, smax); } -/* - * Once a preferred node is selected the scheduler balancer will prefer moving - * a task to that node for sysctl_numa_balancing_settle_count number of PTE - * scans. This will give the process the chance to accumulate more faults on - * the preferred node but still allow the scheduler to move the task again if - * the nodes CPUs are overloaded. - */ -unsigned int sysctl_numa_balancing_settle_count __read_mostly = 4; - static void account_numa_enqueue(struct rq *rq, struct task_struct *p) { rq->nr_numa_running += (p->numa_preferred_nid != -1); @@ -930,7 +921,8 @@ static inline unsigned long group_faults(struct task_struct *p, int nid) if (!p->numa_group) return 0; - return p->numa_group->faults[2*nid] + p->numa_group->faults[2*nid+1]; + return p->numa_group->faults[task_faults_idx(nid, 0)] + + p->numa_group->faults[task_faults_idx(nid, 1)]; } /* @@ -1023,7 +1015,7 @@ struct task_numa_env { struct numa_stats src_stats, dst_stats; - int imbalance_pct, idx; + int imbalance_pct; struct task_struct *best_task; long best_imp; @@ -1211,7 +1203,7 @@ static int task_numa_migrate(struct task_struct *p) * elsewhere, so there is no point in (re)trying. */ if (unlikely(!sd)) { - p->numa_preferred_nid = cpu_to_node(task_cpu(p)); + p->numa_preferred_nid = task_node(p); return -EINVAL; } @@ -1278,7 +1270,7 @@ static void numa_migrate_preferred(struct task_struct *p) p->numa_migrate_retry = jiffies + HZ; /* Success if task is already running on preferred CPU */ - if (cpu_to_node(task_cpu(p)) == p->numa_preferred_nid) + if (task_node(p) == p->numa_preferred_nid) return; /* Otherwise, try migrate to a CPU on the preferred node */ @@ -1350,7 +1342,6 @@ static void update_task_scan_period(struct task_struct *p, * scanning faster if shared accesses dominate as it may * simply bounce migrations uselessly */ - period_slot = DIV_ROUND_UP(diff, NUMA_PERIOD_SLOTS); ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared)); diff = (diff * ratio) / NUMA_PERIOD_SLOTS; } @@ -4101,12 +4092,16 @@ static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) */ static struct sched_group * find_idlest_group(struct sched_domain *sd, struct task_struct *p, - int this_cpu, int load_idx) + int this_cpu, int sd_flag) { struct sched_group *idlest = NULL, *group = sd->groups; unsigned long min_load = ULONG_MAX, this_load = 0; + int load_idx = sd->forkexec_idx; int imbalance = 100 + (sd->imbalance_pct-100)/2; + if (sd_flag & SD_BALANCE_WAKE) + load_idx = sd->wake_idx; + do { unsigned long load, avg_load; int local_group; @@ -4274,7 +4269,6 @@ select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_f } while (sd) { - int load_idx = sd->forkexec_idx; struct sched_group *group; int weight; @@ -4283,10 +4277,7 @@ select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_f continue; } - if (sd_flag & SD_BALANCE_WAKE) - load_idx = sd->wake_idx; - - group = find_idlest_group(sd, p, cpu, load_idx); + group = find_idlest_group(sd, p, cpu, sd_flag); if (!group) { sd = sd->child; continue; @@ -5512,7 +5503,6 @@ static inline void update_sg_lb_stats(struct lb_env *env, struct sched_group *group, int load_idx, int local_group, struct sg_lb_stats *sgs) { - unsigned long nr_running; unsigned long load; int i; @@ -5521,8 +5511,6 @@ static inline void update_sg_lb_stats(struct lb_env *env, for_each_cpu_and(i, sched_group_cpus(group), env->cpus) { struct rq *rq = cpu_rq(i); - nr_running = rq->nr_running; - /* Bias balancing toward cpus of our domain */ if (local_group) load = target_load(i, load_idx); @@ -5530,7 +5518,7 @@ static inline void update_sg_lb_stats(struct lb_env *env, load = source_load(i, load_idx); sgs->group_load += load; - sgs->sum_nr_running += nr_running; + sgs->sum_nr_running += rq->nr_running; #ifdef CONFIG_NUMA_BALANCING sgs->nr_numa_running += rq->nr_numa_running; sgs->nr_preferred_running += rq->nr_preferred_running; @@ -6521,7 +6509,7 @@ static struct { unsigned long next_balance; /* in jiffy units */ } nohz ____cacheline_aligned; -static inline int find_new_ilb(int call_cpu) +static inline int find_new_ilb(void) { int ilb = cpumask_first(nohz.idle_cpus_mask); @@ -6536,13 +6524,13 @@ static inline int find_new_ilb(int call_cpu) * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle * CPU (if there is one). */ -static void nohz_balancer_kick(int cpu) +static void nohz_balancer_kick(void) { int ilb_cpu; nohz.next_balance++; - ilb_cpu = find_new_ilb(cpu); + ilb_cpu = find_new_ilb(); if (ilb_cpu >= nr_cpu_ids) return; @@ -6652,10 +6640,10 @@ void update_max_interval(void) * * Balancing parameters are set up in init_sched_domains. */ -static void rebalance_domains(int cpu, enum cpu_idle_type idle) +static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle) { int continue_balancing = 1; - struct rq *rq = cpu_rq(cpu); + int cpu = rq->cpu; unsigned long interval; struct sched_domain *sd; /* Earliest time when we have to do rebalance again */ @@ -6752,9 +6740,9 @@ out: * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the * rebalancing for all the cpus for whom scheduler ticks are stopped. */ -static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) +static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { - struct rq *this_rq = cpu_rq(this_cpu); + int this_cpu = this_rq->cpu; struct rq *rq; int balance_cpu; @@ -6781,7 +6769,7 @@ static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) update_idle_cpu_load(rq); raw_spin_unlock_irq(&rq->lock); - rebalance_domains(balance_cpu, CPU_IDLE); + rebalance_domains(rq, CPU_IDLE); if (time_after(this_rq->next_balance, rq->next_balance)) this_rq->next_balance = rq->next_balance; @@ -6800,14 +6788,14 @@ end: * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler * domain span are idle. */ -static inline int nohz_kick_needed(struct rq *rq, int cpu) +static inline int nohz_kick_needed(struct rq *rq) { unsigned long now = jiffies; struct sched_domain *sd; struct sched_group_power *sgp; - int nr_busy; + int nr_busy, cpu = rq->cpu; - if (unlikely(idle_cpu(cpu))) + if (unlikely(rq->idle_balance)) return 0; /* @@ -6856,7 +6844,7 @@ need_kick: return 1; } #else -static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { } +static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { } #endif /* @@ -6865,38 +6853,39 @@ static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { } */ static void run_rebalance_domains(struct softirq_action *h) { - int this_cpu = smp_processor_id(); - struct rq *this_rq = cpu_rq(this_cpu); + struct rq *this_rq = this_rq(); enum cpu_idle_type idle = this_rq->idle_balance ? CPU_IDLE : CPU_NOT_IDLE; - rebalance_domains(this_cpu, idle); + rebalance_domains(this_rq, idle); /* * If this cpu has a pending nohz_balance_kick, then do the * balancing on behalf of the other idle cpus whose ticks are * stopped. */ - nohz_idle_balance(this_cpu, idle); + nohz_idle_balance(this_rq, idle); } -static inline int on_null_domain(int cpu) +static inline int on_null_domain(struct rq *rq) { - return !rcu_dereference_sched(cpu_rq(cpu)->sd); + return !rcu_dereference_sched(rq->sd); } /* * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. */ -void trigger_load_balance(struct rq *rq, int cpu) +void trigger_load_balance(struct rq *rq) { /* Don't need to rebalance while attached to NULL domain */ - if (time_after_eq(jiffies, rq->next_balance) && - likely(!on_null_domain(cpu))) + if (unlikely(on_null_domain(rq))) + return; + + if (time_after_eq(jiffies, rq->next_balance)) raise_softirq(SCHED_SOFTIRQ); #ifdef CONFIG_NO_HZ_COMMON - if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu))) - nohz_balancer_kick(cpu); + if (nohz_kick_needed(rq)) + nohz_balancer_kick(); #endif } diff --git a/kernel/sched/rt.c b/kernel/sched/rt.c index 1c4065575fa2..a2740b775b45 100644 --- a/kernel/sched/rt.c +++ b/kernel/sched/rt.c @@ -1738,7 +1738,7 @@ static void task_woken_rt(struct rq *rq, struct task_struct *p) !test_tsk_need_resched(rq->curr) && has_pushable_tasks(rq) && p->nr_cpus_allowed > 1 && - rt_task(rq->curr) && + (dl_task(rq->curr) || rt_task(rq->curr)) && (rq->curr->nr_cpus_allowed < 2 || rq->curr->prio <= p->prio)) push_rt_tasks(rq); diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h index 88c85b21d633..c2119fd20f8b 100644 --- a/kernel/sched/sched.h +++ b/kernel/sched/sched.h @@ -2,6 +2,7 @@ #include <linux/sched.h> #include <linux/sched/sysctl.h> #include <linux/sched/rt.h> +#include <linux/sched/deadline.h> #include <linux/mutex.h> #include <linux/spinlock.h> #include <linux/stop_machine.h> @@ -9,6 +10,7 @@ #include <linux/slab.h> #include "cpupri.h" +#include "cpudeadline.h" #include "cpuacct.h" struct rq; @@ -73,6 +75,13 @@ extern void update_cpu_load_active(struct rq *this_rq); #define NICE_0_SHIFT SCHED_LOAD_SHIFT /* + * Single value that decides SCHED_DEADLINE internal math precision. + * 10 -> just above 1us + * 9 -> just above 0.5us + */ +#define DL_SCALE (10) + +/* * These are the 'tuning knobs' of the scheduler: */ @@ -81,11 +90,19 @@ extern void update_cpu_load_active(struct rq *this_rq); */ #define RUNTIME_INF ((u64)~0ULL) +static inline int fair_policy(int policy) +{ + return policy == SCHED_NORMAL || policy == SCHED_BATCH; +} + static inline int rt_policy(int policy) { - if (policy == SCHED_FIFO || policy == SCHED_RR) - return 1; - return 0; + return policy == SCHED_FIFO || policy == SCHED_RR; +} + +static inline int dl_policy(int policy) +{ + return policy == SCHED_DEADLINE; } static inline int task_has_rt_policy(struct task_struct *p) @@ -93,6 +110,25 @@ static inline int task_has_rt_policy(struct task_struct *p) return rt_policy(p->policy); } +static inline int task_has_dl_policy(struct task_struct *p) +{ + return dl_policy(p->policy); +} + +static inline bool dl_time_before(u64 a, u64 b) +{ + return (s64)(a - b) < 0; +} + +/* + * Tells if entity @a should preempt entity @b. + */ +static inline bool +dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b) +{ + return dl_time_before(a->deadline, b->deadline); +} + /* * This is the priority-queue data structure of the RT scheduling class: */ @@ -108,6 +144,47 @@ struct rt_bandwidth { u64 rt_runtime; struct hrtimer rt_period_timer; }; +/* + * To keep the bandwidth of -deadline tasks and groups under control + * we need some place where: + * - store the maximum -deadline bandwidth of the system (the group); + * - cache the fraction of that bandwidth that is currently allocated. + * + * This is all done in the data structure below. It is similar to the + * one used for RT-throttling (rt_bandwidth), with the main difference + * that, since here we are only interested in admission control, we + * do not decrease any runtime while the group "executes", neither we + * need a timer to replenish it. + * + * With respect to SMP, the bandwidth is given on a per-CPU basis, + * meaning that: + * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU; + * - dl_total_bw array contains, in the i-eth element, the currently + * allocated bandwidth on the i-eth CPU. + * Moreover, groups consume bandwidth on each CPU, while tasks only + * consume bandwidth on the CPU they're running on. + * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw + * that will be shown the next time the proc or cgroup controls will + * be red. It on its turn can be changed by writing on its own + * control. + */ +struct dl_bandwidth { + raw_spinlock_t dl_runtime_lock; + u64 dl_runtime; + u64 dl_period; +}; + +static inline int dl_bandwidth_enabled(void) +{ + return sysctl_sched_rt_runtime >= 0; +} + +extern struct dl_bw *dl_bw_of(int i); + +struct dl_bw { + raw_spinlock_t lock; + u64 bw, total_bw; +}; extern struct mutex sched_domains_mutex; @@ -364,6 +441,42 @@ struct rt_rq { #endif }; +/* Deadline class' related fields in a runqueue */ +struct dl_rq { + /* runqueue is an rbtree, ordered by deadline */ + struct rb_root rb_root; + struct rb_node *rb_leftmost; + + unsigned long dl_nr_running; + +#ifdef CONFIG_SMP + /* + * Deadline values of the currently executing and the + * earliest ready task on this rq. Caching these facilitates + * the decision wether or not a ready but not running task + * should migrate somewhere else. + */ + struct { + u64 curr; + u64 next; + } earliest_dl; + + unsigned long dl_nr_migratory; + unsigned long dl_nr_total; + int overloaded; + + /* + * Tasks on this rq that can be pushed away. They are kept in + * an rb-tree, ordered by tasks' deadlines, with caching + * of the leftmost (earliest deadline) element. + */ + struct rb_root pushable_dl_tasks_root; + struct rb_node *pushable_dl_tasks_leftmost; +#else + struct dl_bw dl_bw; +#endif +}; + #ifdef CONFIG_SMP /* @@ -382,6 +495,15 @@ struct root_domain { cpumask_var_t online; /* + * The bit corresponding to a CPU gets set here if such CPU has more + * than one runnable -deadline task (as it is below for RT tasks). + */ + cpumask_var_t dlo_mask; + atomic_t dlo_count; + struct dl_bw dl_bw; + struct cpudl cpudl; + + /* * The "RT overload" flag: it gets set if a CPU has more than * one runnable RT task. */ @@ -432,6 +554,7 @@ struct rq { struct cfs_rq cfs; struct rt_rq rt; + struct dl_rq dl; #ifdef CONFIG_FAIR_GROUP_SCHED /* list of leaf cfs_rq on this cpu: */ @@ -827,8 +950,6 @@ static inline u64 global_rt_runtime(void) return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; } - - static inline int task_current(struct rq *rq, struct task_struct *p) { return rq->curr == p; @@ -988,6 +1109,7 @@ static const u32 prio_to_wmult[40] = { #else #define ENQUEUE_WAKING 0 #endif +#define ENQUEUE_REPLENISH 8 #define DEQUEUE_SLEEP 1 @@ -1023,6 +1145,7 @@ struct sched_class { void (*set_curr_task) (struct rq *rq); void (*task_tick) (struct rq *rq, struct task_struct *p, int queued); void (*task_fork) (struct task_struct *p); + void (*task_dead) (struct task_struct *p); void (*switched_from) (struct rq *this_rq, struct task_struct *task); void (*switched_to) (struct rq *this_rq, struct task_struct *task); @@ -1042,6 +1165,7 @@ struct sched_class { for (class = sched_class_highest; class; class = class->next) extern const struct sched_class stop_sched_class; +extern const struct sched_class dl_sched_class; extern const struct sched_class rt_sched_class; extern const struct sched_class fair_sched_class; extern const struct sched_class idle_sched_class; @@ -1051,7 +1175,7 @@ extern const struct sched_class idle_sched_class; extern void update_group_power(struct sched_domain *sd, int cpu); -extern void trigger_load_balance(struct rq *rq, int cpu); +extern void trigger_load_balance(struct rq *rq); extern void idle_balance(int this_cpu, struct rq *this_rq); extern void idle_enter_fair(struct rq *this_rq); @@ -1068,8 +1192,11 @@ static inline void idle_balance(int cpu, struct rq *rq) extern void sysrq_sched_debug_show(void); extern void sched_init_granularity(void); extern void update_max_interval(void); + +extern void init_sched_dl_class(void); extern void init_sched_rt_class(void); extern void init_sched_fair_class(void); +extern void init_sched_dl_class(void); extern void resched_task(struct task_struct *p); extern void resched_cpu(int cpu); @@ -1077,6 +1204,12 @@ extern void resched_cpu(int cpu); extern struct rt_bandwidth def_rt_bandwidth; extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); +extern struct dl_bandwidth def_dl_bandwidth; +extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime); +extern void init_dl_task_timer(struct sched_dl_entity *dl_se); + +unsigned long to_ratio(u64 period, u64 runtime); + extern void update_idle_cpu_load(struct rq *this_rq); extern void init_task_runnable_average(struct task_struct *p); @@ -1353,6 +1486,7 @@ extern void print_rt_stats(struct seq_file *m, int cpu); extern void init_cfs_rq(struct cfs_rq *cfs_rq); extern void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq); +extern void init_dl_rq(struct dl_rq *dl_rq, struct rq *rq); extern void cfs_bandwidth_usage_inc(void); extern void cfs_bandwidth_usage_dec(void); diff --git a/kernel/sched/stop_task.c b/kernel/sched/stop_task.c index 47197de8abd9..fdb6bb0b3356 100644 --- a/kernel/sched/stop_task.c +++ b/kernel/sched/stop_task.c @@ -103,7 +103,7 @@ get_rr_interval_stop(struct rq *rq, struct task_struct *task) * Simple, special scheduling class for the per-CPU stop tasks: */ const struct sched_class stop_sched_class = { - .next = &rt_sched_class, + .next = &dl_sched_class, .enqueue_task = enqueue_task_stop, .dequeue_task = dequeue_task_stop, diff --git a/kernel/softirq.c b/kernel/softirq.c index 9a4500e4c189..8b93b3770f85 100644 --- a/kernel/softirq.c +++ b/kernel/softirq.c @@ -89,7 +89,7 @@ static void wakeup_softirqd(void) * where hardirqs are disabled legitimately: */ #ifdef CONFIG_TRACE_IRQFLAGS -static void __local_bh_disable(unsigned long ip, unsigned int cnt) +void __local_bh_disable_ip(unsigned long ip, unsigned int cnt) { unsigned long flags; @@ -107,33 +107,21 @@ static void __local_bh_disable(unsigned long ip, unsigned int cnt) /* * Were softirqs turned off above: */ - if (softirq_count() == cnt) + if (softirq_count() == (cnt & SOFTIRQ_MASK)) trace_softirqs_off(ip); raw_local_irq_restore(flags); if (preempt_count() == cnt) trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); } -#else /* !CONFIG_TRACE_IRQFLAGS */ -static inline void __local_bh_disable(unsigned long ip, unsigned int cnt) -{ - preempt_count_add(cnt); - barrier(); -} +EXPORT_SYMBOL(__local_bh_disable_ip); #endif /* CONFIG_TRACE_IRQFLAGS */ -void local_bh_disable(void) -{ - __local_bh_disable(_RET_IP_, SOFTIRQ_DISABLE_OFFSET); -} - -EXPORT_SYMBOL(local_bh_disable); - static void __local_bh_enable(unsigned int cnt) { WARN_ON_ONCE(!irqs_disabled()); - if (softirq_count() == cnt) + if (softirq_count() == (cnt & SOFTIRQ_MASK)) trace_softirqs_on(_RET_IP_); preempt_count_sub(cnt); } @@ -151,7 +139,7 @@ void _local_bh_enable(void) EXPORT_SYMBOL(_local_bh_enable); -static inline void _local_bh_enable_ip(unsigned long ip) +void __local_bh_enable_ip(unsigned long ip, unsigned int cnt) { WARN_ON_ONCE(in_irq() || irqs_disabled()); #ifdef CONFIG_TRACE_IRQFLAGS @@ -166,7 +154,7 @@ static inline void _local_bh_enable_ip(unsigned long ip) * Keep preemption disabled until we are done with * softirq processing: */ - preempt_count_sub(SOFTIRQ_DISABLE_OFFSET - 1); + preempt_count_sub(cnt - 1); if (unlikely(!in_interrupt() && local_softirq_pending())) { /* @@ -182,18 +170,7 @@ static inline void _local_bh_enable_ip(unsigned long ip) #endif preempt_check_resched(); } - -void local_bh_enable(void) -{ - _local_bh_enable_ip(_RET_IP_); -} -EXPORT_SYMBOL(local_bh_enable); - -void local_bh_enable_ip(unsigned long ip) -{ - _local_bh_enable_ip(ip); -} -EXPORT_SYMBOL(local_bh_enable_ip); +EXPORT_SYMBOL(__local_bh_enable_ip); /* * We restart softirq processing for at most MAX_SOFTIRQ_RESTART times, @@ -264,7 +241,7 @@ asmlinkage void __do_softirq(void) pending = local_softirq_pending(); account_irq_enter_time(current); - __local_bh_disable(_RET_IP_, SOFTIRQ_OFFSET); + __local_bh_disable_ip(_RET_IP_, SOFTIRQ_OFFSET); in_hardirq = lockdep_softirq_start(); cpu = smp_processor_id(); diff --git a/kernel/sysctl.c b/kernel/sysctl.c index 34a604726d0b..c8da99f905cf 100644 --- a/kernel/sysctl.c +++ b/kernel/sysctl.c @@ -385,13 +385,6 @@ static struct ctl_table kern_table[] = { .proc_handler = proc_dointvec, }, { - .procname = "numa_balancing_settle_count", - .data = &sysctl_numa_balancing_settle_count, - .maxlen = sizeof(unsigned int), - .mode = 0644, - .proc_handler = proc_dointvec, - }, - { .procname = "numa_balancing_migrate_deferred", .data = &sysctl_numa_balancing_migrate_deferred, .maxlen = sizeof(unsigned int), diff --git a/kernel/time/tick-sched.c b/kernel/time/tick-sched.c index ea20f7d1ac2c..c833249ab0fb 100644 --- a/kernel/time/tick-sched.c +++ b/kernel/time/tick-sched.c @@ -177,7 +177,7 @@ static bool can_stop_full_tick(void) * TODO: kick full dynticks CPUs when * sched_clock_stable is set. */ - if (!sched_clock_stable) { + if (!sched_clock_stable()) { trace_tick_stop(0, "unstable sched clock\n"); /* * Don't allow the user to think they can get diff --git a/kernel/trace/ring_buffer.c b/kernel/trace/ring_buffer.c index cc2f66f68dc5..294b8a271a04 100644 --- a/kernel/trace/ring_buffer.c +++ b/kernel/trace/ring_buffer.c @@ -2558,7 +2558,7 @@ rb_reserve_next_event(struct ring_buffer *buffer, if (unlikely(test_time_stamp(delta))) { int local_clock_stable = 1; #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK - local_clock_stable = sched_clock_stable; + local_clock_stable = sched_clock_stable(); #endif WARN_ONCE(delta > (1ULL << 59), KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s", diff --git a/kernel/trace/trace_sched_wakeup.c b/kernel/trace/trace_sched_wakeup.c index fee77e15d815..6e32635e5e57 100644 --- a/kernel/trace/trace_sched_wakeup.c +++ b/kernel/trace/trace_sched_wakeup.c @@ -16,6 +16,7 @@ #include <linux/uaccess.h> #include <linux/ftrace.h> #include <linux/sched/rt.h> +#include <linux/sched/deadline.h> #include <trace/events/sched.h> #include "trace.h" @@ -27,6 +28,8 @@ static int wakeup_cpu; static int wakeup_current_cpu; static unsigned wakeup_prio = -1; static int wakeup_rt; +static int wakeup_dl; +static int tracing_dl = 0; static arch_spinlock_t wakeup_lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; @@ -437,6 +440,7 @@ static void __wakeup_reset(struct trace_array *tr) { wakeup_cpu = -1; wakeup_prio = -1; + tracing_dl = 0; if (wakeup_task) put_task_struct(wakeup_task); @@ -472,9 +476,17 @@ probe_wakeup(void *ignore, struct task_struct *p, int success) tracing_record_cmdline(p); tracing_record_cmdline(current); - if ((wakeup_rt && !rt_task(p)) || - p->prio >= wakeup_prio || - p->prio >= current->prio) + /* + * Semantic is like this: + * - wakeup tracer handles all tasks in the system, independently + * from their scheduling class; + * - wakeup_rt tracer handles tasks belonging to sched_dl and + * sched_rt class; + * - wakeup_dl handles tasks belonging to sched_dl class only. + */ + if (tracing_dl || (wakeup_dl && !dl_task(p)) || + (wakeup_rt && !dl_task(p) && !rt_task(p)) || + (!dl_task(p) && (p->prio >= wakeup_prio || p->prio >= current->prio))) return; pc = preempt_count(); @@ -486,7 +498,8 @@ probe_wakeup(void *ignore, struct task_struct *p, int success) arch_spin_lock(&wakeup_lock); /* check for races. */ - if (!tracer_enabled || p->prio >= wakeup_prio) + if (!tracer_enabled || tracing_dl || + (!dl_task(p) && p->prio >= wakeup_prio)) goto out_locked; /* reset the trace */ @@ -496,6 +509,15 @@ probe_wakeup(void *ignore, struct task_struct *p, int success) wakeup_current_cpu = wakeup_cpu; wakeup_prio = p->prio; + /* + * Once you start tracing a -deadline task, don't bother tracing + * another task until the first one wakes up. + */ + if (dl_task(p)) + tracing_dl = 1; + else + tracing_dl = 0; + wakeup_task = p; get_task_struct(wakeup_task); @@ -597,16 +619,25 @@ static int __wakeup_tracer_init(struct trace_array *tr) static int wakeup_tracer_init(struct trace_array *tr) { + wakeup_dl = 0; wakeup_rt = 0; return __wakeup_tracer_init(tr); } static int wakeup_rt_tracer_init(struct trace_array *tr) { + wakeup_dl = 0; wakeup_rt = 1; return __wakeup_tracer_init(tr); } +static int wakeup_dl_tracer_init(struct trace_array *tr) +{ + wakeup_dl = 1; + wakeup_rt = 0; + return __wakeup_tracer_init(tr); +} + static void wakeup_tracer_reset(struct trace_array *tr) { int lat_flag = save_flags & TRACE_ITER_LATENCY_FMT; @@ -674,6 +705,28 @@ static struct tracer wakeup_rt_tracer __read_mostly = .use_max_tr = true, }; +static struct tracer wakeup_dl_tracer __read_mostly = +{ + .name = "wakeup_dl", + .init = wakeup_dl_tracer_init, + .reset = wakeup_tracer_reset, + .start = wakeup_tracer_start, + .stop = wakeup_tracer_stop, + .wait_pipe = poll_wait_pipe, + .print_max = true, + .print_header = wakeup_print_header, + .print_line = wakeup_print_line, + .flags = &tracer_flags, + .set_flag = wakeup_set_flag, + .flag_changed = wakeup_flag_changed, +#ifdef CONFIG_FTRACE_SELFTEST + .selftest = trace_selftest_startup_wakeup, +#endif + .open = wakeup_trace_open, + .close = wakeup_trace_close, + .use_max_tr = true, +}; + __init static int init_wakeup_tracer(void) { int ret; @@ -686,6 +739,10 @@ __init static int init_wakeup_tracer(void) if (ret) return ret; + ret = register_tracer(&wakeup_dl_tracer); + if (ret) + return ret; + return 0; } core_initcall(init_wakeup_tracer); diff --git a/kernel/trace/trace_selftest.c b/kernel/trace/trace_selftest.c index a7329b7902f8..e98fca60974f 100644 --- a/kernel/trace/trace_selftest.c +++ b/kernel/trace/trace_selftest.c @@ -1022,11 +1022,16 @@ trace_selftest_startup_nop(struct tracer *trace, struct trace_array *tr) #ifdef CONFIG_SCHED_TRACER static int trace_wakeup_test_thread(void *data) { - /* Make this a RT thread, doesn't need to be too high */ - static const struct sched_param param = { .sched_priority = 5 }; + /* Make this a -deadline thread */ + static const struct sched_attr attr = { + .sched_policy = SCHED_DEADLINE, + .sched_runtime = 100000ULL, + .sched_deadline = 10000000ULL, + .sched_period = 10000000ULL + }; struct completion *x = data; - sched_setscheduler(current, SCHED_FIFO, ¶m); + sched_setattr(current, &attr); /* Make it know we have a new prio */ complete(x); @@ -1040,8 +1045,8 @@ static int trace_wakeup_test_thread(void *data) /* we are awake, now wait to disappear */ while (!kthread_should_stop()) { /* - * This is an RT task, do short sleeps to let - * others run. + * This will likely be the system top priority + * task, do short sleeps to let others run. */ msleep(100); } @@ -1054,21 +1059,21 @@ trace_selftest_startup_wakeup(struct tracer *trace, struct trace_array *tr) { unsigned long save_max = tracing_max_latency; struct task_struct *p; - struct completion isrt; + struct completion is_ready; unsigned long count; int ret; - init_completion(&isrt); + init_completion(&is_ready); - /* create a high prio thread */ - p = kthread_run(trace_wakeup_test_thread, &isrt, "ftrace-test"); + /* create a -deadline thread */ + p = kthread_run(trace_wakeup_test_thread, &is_ready, "ftrace-test"); if (IS_ERR(p)) { printk(KERN_CONT "Failed to create ftrace wakeup test thread "); return -1; } - /* make sure the thread is running at an RT prio */ - wait_for_completion(&isrt); + /* make sure the thread is running at -deadline policy */ + wait_for_completion(&is_ready); /* start the tracing */ ret = tracer_init(trace, tr); @@ -1082,19 +1087,19 @@ trace_selftest_startup_wakeup(struct tracer *trace, struct trace_array *tr) while (p->on_rq) { /* - * Sleep to make sure the RT thread is asleep too. + * Sleep to make sure the -deadline thread is asleep too. * On virtual machines we can't rely on timings, * but we want to make sure this test still works. */ msleep(100); } - init_completion(&isrt); + init_completion(&is_ready); wake_up_process(p); /* Wait for the task to wake up */ - wait_for_completion(&isrt); + wait_for_completion(&is_ready); /* stop the tracing. */ tracing_stop(); diff --git a/net/ipv4/tcp.c b/net/ipv4/tcp.c index c4638e6f0238..82de78603686 100644 --- a/net/ipv4/tcp.c +++ b/net/ipv4/tcp.c @@ -1623,11 +1623,11 @@ int tcp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, (len > sysctl_tcp_dma_copybreak) && !(flags & MSG_PEEK) && !sysctl_tcp_low_latency && net_dma_find_channel()) { - preempt_enable_no_resched(); + preempt_enable(); tp->ucopy.pinned_list = dma_pin_iovec_pages(msg->msg_iov, len); } else { - preempt_enable_no_resched(); + preempt_enable(); } } #endif |