diff options
Diffstat (limited to 'Documentation')
-rw-r--r-- | Documentation/ABI/testing/sysfs-block | 42 | ||||
-rw-r--r-- | Documentation/block/biodoc.txt | 6 | ||||
-rw-r--r-- | Documentation/block/cfq-iosched.txt | 32 | ||||
-rw-r--r-- | Documentation/block/null_blk.txt | 2 | ||||
-rw-r--r-- | Documentation/block/queue-sysfs.txt | 23 |
5 files changed, 85 insertions, 20 deletions
diff --git a/Documentation/ABI/testing/sysfs-block b/Documentation/ABI/testing/sysfs-block index 71d184dbb70d..2da04ce6aeef 100644 --- a/Documentation/ABI/testing/sysfs-block +++ b/Documentation/ABI/testing/sysfs-block @@ -235,3 +235,45 @@ Description: write_same_max_bytes is 0, write same is not supported by the device. +What: /sys/block/<disk>/queue/write_zeroes_max_bytes +Date: November 2016 +Contact: Chaitanya Kulkarni <chaitanya.kulkarni@wdc.com> +Description: + Devices that support write zeroes operation in which a + single request can be issued to zero out the range of + contiguous blocks on storage without having any payload + in the request. This can be used to optimize writing zeroes + to the devices. write_zeroes_max_bytes indicates how many + bytes can be written in a single write zeroes command. If + write_zeroes_max_bytes is 0, write zeroes is not supported + by the device. + +What: /sys/block/<disk>/queue/zoned +Date: September 2016 +Contact: Damien Le Moal <damien.lemoal@hgst.com> +Description: + zoned indicates if the device is a zoned block device + and the zone model of the device if it is indeed zoned. + The possible values indicated by zoned are "none" for + regular block devices and "host-aware" or "host-managed" + for zoned block devices. The characteristics of + host-aware and host-managed zoned block devices are + described in the ZBC (Zoned Block Commands) and ZAC + (Zoned Device ATA Command Set) standards. These standards + also define the "drive-managed" zone model. However, + since drive-managed zoned block devices do not support + zone commands, they will be treated as regular block + devices and zoned will report "none". + +What: /sys/block/<disk>/queue/chunk_sectors +Date: September 2016 +Contact: Hannes Reinecke <hare@suse.com> +Description: + chunk_sectors has different meaning depending on the type + of the disk. For a RAID device (dm-raid), chunk_sectors + indicates the size in 512B sectors of the RAID volume + stripe segment. For a zoned block device, either + host-aware or host-managed, chunk_sectors indicates the + size of 512B sectors of the zones of the device, with + the eventual exception of the last zone of the device + which may be smaller. diff --git a/Documentation/block/biodoc.txt b/Documentation/block/biodoc.txt index 918e1e0d0e78..01ddeaf64b0f 100644 --- a/Documentation/block/biodoc.txt +++ b/Documentation/block/biodoc.txt @@ -348,7 +348,7 @@ Drivers can now specify a request prepare function (q->prep_rq_fn) that the block layer would invoke to pre-build device commands for a given request, or perform other preparatory processing for the request. This is routine is called by elv_next_request(), i.e. typically just before servicing a request. -(The prepare function would not be called for requests that have REQ_DONTPREP +(The prepare function would not be called for requests that have RQF_DONTPREP enabled) Aside: @@ -553,8 +553,8 @@ struct request { struct request_list *rl; } -See the rq_flag_bits definitions for an explanation of the various flags -available. Some bits are used by the block layer or i/o scheduler. +See the req_ops and req_flag_bits definitions for an explanation of the various +flags available. Some bits are used by the block layer or i/o scheduler. The behaviour of the various sector counts are almost the same as before, except that since we have multi-segment bios, current_nr_sectors refers diff --git a/Documentation/block/cfq-iosched.txt b/Documentation/block/cfq-iosched.txt index 1e4f835a659d..895bd3813115 100644 --- a/Documentation/block/cfq-iosched.txt +++ b/Documentation/block/cfq-iosched.txt @@ -240,11 +240,11 @@ All cfq queues doing synchronous sequential IO go on to sync-idle tree. On this tree we idle on each queue individually. All synchronous non-sequential queues go on sync-noidle tree. Also any -request which are marked with REQ_NOIDLE go on this service tree. On this -tree we do not idle on individual queues instead idle on the whole group -of queues or the tree. So if there are 4 queues waiting for IO to dispatch -we will idle only once last queue has dispatched the IO and there is -no more IO on this service tree. +synchronous write request which is not marked with REQ_IDLE goes on this +service tree. On this tree we do not idle on individual queues instead idle +on the whole group of queues or the tree. So if there are 4 queues waiting +for IO to dispatch we will idle only once last queue has dispatched the IO +and there is no more IO on this service tree. All async writes go on async service tree. There is no idling on async queues. @@ -257,17 +257,17 @@ tree idling provides isolation with buffered write queues on async tree. FAQ === -Q1. Why to idle at all on queues marked with REQ_NOIDLE. +Q1. Why to idle at all on queues not marked with REQ_IDLE. -A1. We only do tree idle (all queues on sync-noidle tree) on queues marked - with REQ_NOIDLE. This helps in providing isolation with all the sync-idle +A1. We only do tree idle (all queues on sync-noidle tree) on queues not marked + with REQ_IDLE. This helps in providing isolation with all the sync-idle queues. Otherwise in presence of many sequential readers, other synchronous IO might not get fair share of disk. For example, if there are 10 sequential readers doing IO and they get - 100ms each. If a REQ_NOIDLE request comes in, it will be scheduled - roughly after 1 second. If after completion of REQ_NOIDLE request we - do not idle, and after a couple of milli seconds a another REQ_NOIDLE + 100ms each. If a !REQ_IDLE request comes in, it will be scheduled + roughly after 1 second. If after completion of !REQ_IDLE request we + do not idle, and after a couple of milli seconds a another !REQ_IDLE request comes in, again it will be scheduled after 1second. Repeat it and notice how a workload can lose its disk share and suffer due to multiple sequential readers. @@ -276,16 +276,16 @@ A1. We only do tree idle (all queues on sync-noidle tree) on queues marked context of fsync, and later some journaling data is written. Journaling data comes in only after fsync has finished its IO (atleast for ext4 that seemed to be the case). Now if one decides not to idle on fsync - thread due to REQ_NOIDLE, then next journaling write will not get + thread due to !REQ_IDLE, then next journaling write will not get scheduled for another second. A process doing small fsync, will suffer badly in presence of multiple sequential readers. - Hence doing tree idling on threads using REQ_NOIDLE flag on requests + Hence doing tree idling on threads using !REQ_IDLE flag on requests provides isolation from multiple sequential readers and at the same time we do not idle on individual threads. -Q2. When to specify REQ_NOIDLE -A2. I would think whenever one is doing synchronous write and not expecting +Q2. When to specify REQ_IDLE +A2. I would think whenever one is doing synchronous write and expecting more writes to be dispatched from same context soon, should be able - to specify REQ_NOIDLE on writes and that probably should work well for + to specify REQ_IDLE on writes and that probably should work well for most of the cases. diff --git a/Documentation/block/null_blk.txt b/Documentation/block/null_blk.txt index d8880ca30af4..3140dbd860d8 100644 --- a/Documentation/block/null_blk.txt +++ b/Documentation/block/null_blk.txt @@ -72,4 +72,4 @@ use_per_node_hctx=[0/1]: Default: 0 queue for each CPU node in the system. use_lightnvm=[0/1]: Default: 0 - Register device with LightNVM. Requires blk-mq to be used. + Register device with LightNVM. Requires blk-mq and CONFIG_NVM to be enabled. diff --git a/Documentation/block/queue-sysfs.txt b/Documentation/block/queue-sysfs.txt index 2a3904030dea..51642159aedb 100644 --- a/Documentation/block/queue-sysfs.txt +++ b/Documentation/block/queue-sysfs.txt @@ -58,6 +58,20 @@ When read, this file shows the total number of block IO polls and how many returned success. Writing '0' to this file will disable polling for this device. Writing any non-zero value will enable this feature. +io_poll_delay (RW) +------------------ +If polling is enabled, this controls what kind of polling will be +performed. It defaults to -1, which is classic polling. In this mode, +the CPU will repeatedly ask for completions without giving up any time. +If set to 0, a hybrid polling mode is used, where the kernel will attempt +to make an educated guess at when the IO will complete. Based on this +guess, the kernel will put the process issuing IO to sleep for an amount +of time, before entering a classic poll loop. This mode might be a +little slower than pure classic polling, but it will be more efficient. +If set to a value larger than 0, the kernel will put the process issuing +IO to sleep for this amont of microseconds before entering classic +polling. + iostats (RW) ------------- This file is used to control (on/off) the iostats accounting of the @@ -169,5 +183,14 @@ This is the number of bytes the device can write in a single write-same command. A value of '0' means write-same is not supported by this device. +wb_lat_usec (RW) +---------------- +If the device is registered for writeback throttling, then this file shows +the target minimum read latency. If this latency is exceeded in a given +window of time (see wb_window_usec), then the writeback throttling will start +scaling back writes. Writing a value of '0' to this file disables the +feature. Writing a value of '-1' to this file resets the value to the +default setting. + Jens Axboe <jens.axboe@oracle.com>, February 2009 |