summaryrefslogtreecommitdiffstats
path: root/Documentation
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/atomic_ops.txt14
-rw-r--r--Documentation/memory-barriers.txt14
2 files changed, 26 insertions, 2 deletions
diff --git a/Documentation/atomic_ops.txt b/Documentation/atomic_ops.txt
index d46306fea230..f20c10c2858f 100644
--- a/Documentation/atomic_ops.txt
+++ b/Documentation/atomic_ops.txt
@@ -418,6 +418,20 @@ brothers:
*/
smp_mb__after_clear_bit();
+There are two special bitops with lock barrier semantics (acquire/release,
+same as spinlocks). These operate in the same way as their non-_lock/unlock
+postfixed variants, except that they are to provide acquire/release semantics,
+respectively. This means they can be used for bit_spin_trylock and
+bit_spin_unlock type operations without specifying any more barriers.
+
+ int test_and_set_bit_lock(unsigned long nr, unsigned long *addr);
+ void clear_bit_unlock(unsigned long nr, unsigned long *addr);
+ void __clear_bit_unlock(unsigned long nr, unsigned long *addr);
+
+The __clear_bit_unlock version is non-atomic, however it still implements
+unlock barrier semantics. This can be useful if the lock itself is protecting
+the other bits in the word.
+
Finally, there are non-atomic versions of the bitmask operations
provided. They are used in contexts where some other higher-level SMP
locking scheme is being used to protect the bitmask, and thus less
diff --git a/Documentation/memory-barriers.txt b/Documentation/memory-barriers.txt
index 650657c54733..4e17beba2379 100644
--- a/Documentation/memory-barriers.txt
+++ b/Documentation/memory-barriers.txt
@@ -1479,7 +1479,8 @@ kernel.
Any atomic operation that modifies some state in memory and returns information
about the state (old or new) implies an SMP-conditional general memory barrier
-(smp_mb()) on each side of the actual operation. These include:
+(smp_mb()) on each side of the actual operation (with the exception of
+explicit lock operations, described later). These include:
xchg();
cmpxchg();
@@ -1536,10 +1537,19 @@ If they're used for constructing a lock of some description, then they probably
do need memory barriers as a lock primitive generally has to do things in a
specific order.
-
Basically, each usage case has to be carefully considered as to whether memory
barriers are needed or not.
+The following operations are special locking primitives:
+
+ test_and_set_bit_lock();
+ clear_bit_unlock();
+ __clear_bit_unlock();
+
+These implement LOCK-class and UNLOCK-class operations. These should be used in
+preference to other operations when implementing locking primitives, because
+their implementations can be optimised on many architectures.
+
[!] Note that special memory barrier primitives are available for these
situations because on some CPUs the atomic instructions used imply full memory
barriers, and so barrier instructions are superfluous in conjunction with them,