summaryrefslogtreecommitdiffstats
path: root/drivers/lguest
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/lguest')
-rw-r--r--drivers/lguest/Kconfig13
-rw-r--r--drivers/lguest/Makefile26
-rw-r--r--drivers/lguest/README47
-rw-r--r--drivers/lguest/core.c398
-rw-r--r--drivers/lguest/hypercalls.c304
-rw-r--r--drivers/lguest/interrupts_and_traps.c706
-rw-r--r--drivers/lguest/lg.h258
-rw-r--r--drivers/lguest/lguest_user.c446
-rw-r--r--drivers/lguest/page_tables.c1239
-rw-r--r--drivers/lguest/segments.c228
-rw-r--r--drivers/lguest/x86/core.c724
-rw-r--r--drivers/lguest/x86/switcher_32.S388
12 files changed, 0 insertions, 4777 deletions
diff --git a/drivers/lguest/Kconfig b/drivers/lguest/Kconfig
deleted file mode 100644
index 169172d2ba05..000000000000
--- a/drivers/lguest/Kconfig
+++ /dev/null
@@ -1,13 +0,0 @@
-config LGUEST
- tristate "Linux hypervisor example code"
- depends on X86_32 && EVENTFD && TTY && PCI_DIRECT
- select HVC_DRIVER
- ---help---
- This is a very simple module which allows you to run
- multiple instances of the same Linux kernel, using the
- "lguest" command found in the tools/lguest directory.
-
- Note that "lguest" is pronounced to rhyme with "fell quest",
- not "rustyvisor". See tools/lguest/lguest.txt.
-
- If unsure, say N. If curious, say M. If masochistic, say Y.
diff --git a/drivers/lguest/Makefile b/drivers/lguest/Makefile
deleted file mode 100644
index 16f52ee73994..000000000000
--- a/drivers/lguest/Makefile
+++ /dev/null
@@ -1,26 +0,0 @@
-# Host requires the other files, which can be a module.
-obj-$(CONFIG_LGUEST) += lg.o
-lg-y = core.o hypercalls.o page_tables.o interrupts_and_traps.o \
- segments.o lguest_user.o
-
-lg-$(CONFIG_X86_32) += x86/switcher_32.o x86/core.o
-
-Preparation Preparation!: PREFIX=P
-Guest: PREFIX=G
-Drivers: PREFIX=D
-Launcher: PREFIX=L
-Host: PREFIX=H
-Switcher: PREFIX=S
-Mastery: PREFIX=M
-Beer:
- @for f in Preparation Guest Drivers Launcher Host Switcher Mastery; do echo "{==- $$f -==}"; make -s $$f; done; echo "{==-==}"
-Preparation Preparation! Guest Drivers Launcher Host Switcher Mastery:
- @sh ../../tools/lguest/extract $(PREFIX) `find ../../* -name '*.[chS]' -wholename '*lguest*'`
-Puppy:
- @clear
- @printf " __ \n (___()'\`;\n /, /\`\n \\\\\\\"--\\\\\\ \n"
- @sleep 2; clear; printf "\n\n Sit!\n\n"; sleep 1; clear
- @printf " __ \n ()'\`; \n /\\|\` \n / | \n(/_)_|_ \n"
- @sleep 2; clear; printf "\n\n Stand!\n\n"; sleep 1; clear
- @printf " __ \n ()'\`; \n /\\|\` \n /._.= \n /| / \n(_\_)_ \n"
- @sleep 2; clear; printf "\n\n Good puppy!\n\n"; sleep 1; clear
diff --git a/drivers/lguest/README b/drivers/lguest/README
deleted file mode 100644
index b7db39a64c66..000000000000
--- a/drivers/lguest/README
+++ /dev/null
@@ -1,47 +0,0 @@
-Welcome, friend reader, to lguest.
-
-Lguest is an adventure, with you, the reader, as Hero. I can't think of many
-5000-line projects which offer both such capability and glimpses of future
-potential; it is an exciting time to be delving into the source!
-
-But be warned; this is an arduous journey of several hours or more! And as we
-know, all true Heroes are driven by a Noble Goal. Thus I offer a Beer (or
-equivalent) to anyone I meet who has completed this documentation.
-
-So get comfortable and keep your wits about you (both quick and humorous).
-Along your way to the Noble Goal, you will also gain masterly insight into
-lguest, and hypervisors and x86 virtualization in general.
-
-Our Quest is in seven parts: (best read with C highlighting turned on)
-
-I) Preparation
- - In which our potential hero is flown quickly over the landscape for a
- taste of its scope. Suitable for the armchair coders and other such
- persons of faint constitution.
-
-II) Guest
- - Where we encounter the first tantalising wisps of code, and come to
- understand the details of the life of a Guest kernel.
-
-III) Drivers
- - Whereby the Guest finds its voice and become useful, and our
- understanding of the Guest is completed.
-
-IV) Launcher
- - Where we trace back to the creation of the Guest, and thus begin our
- understanding of the Host.
-
-V) Host
- - Where we master the Host code, through a long and tortuous journey.
- Indeed, it is here that our hero is tested in the Bit of Despair.
-
-VI) Switcher
- - Where our understanding of the intertwined nature of Guests and Hosts
- is completed.
-
-VII) Mastery
- - Where our fully fledged hero grapples with the Great Question:
- "What next?"
-
-make Preparation!
-Rusty Russell.
diff --git a/drivers/lguest/core.c b/drivers/lguest/core.c
deleted file mode 100644
index 395ed1961dbf..000000000000
--- a/drivers/lguest/core.c
+++ /dev/null
@@ -1,398 +0,0 @@
-/*P:400
- * This contains run_guest() which actually calls into the Host<->Guest
- * Switcher and analyzes the return, such as determining if the Guest wants the
- * Host to do something. This file also contains useful helper routines.
-:*/
-#include <linux/module.h>
-#include <linux/stringify.h>
-#include <linux/stddef.h>
-#include <linux/io.h>
-#include <linux/mm.h>
-#include <linux/sched/signal.h>
-#include <linux/vmalloc.h>
-#include <linux/cpu.h>
-#include <linux/freezer.h>
-#include <linux/highmem.h>
-#include <linux/slab.h>
-#include <asm/paravirt.h>
-#include <asm/pgtable.h>
-#include <linux/uaccess.h>
-#include <asm/poll.h>
-#include <asm/asm-offsets.h>
-#include "lg.h"
-
-unsigned long switcher_addr;
-struct page **lg_switcher_pages;
-static struct vm_struct *switcher_text_vma;
-static struct vm_struct *switcher_stacks_vma;
-
-/* This One Big lock protects all inter-guest data structures. */
-DEFINE_MUTEX(lguest_lock);
-
-/*H:010
- * We need to set up the Switcher at a high virtual address. Remember the
- * Switcher is a few hundred bytes of assembler code which actually changes the
- * CPU to run the Guest, and then changes back to the Host when a trap or
- * interrupt happens.
- *
- * The Switcher code must be at the same virtual address in the Guest as the
- * Host since it will be running as the switchover occurs.
- *
- * Trying to map memory at a particular address is an unusual thing to do, so
- * it's not a simple one-liner.
- */
-static __init int map_switcher(void)
-{
- int i, err;
-
- /*
- * Map the Switcher in to high memory.
- *
- * It turns out that if we choose the address 0xFFC00000 (4MB under the
- * top virtual address), it makes setting up the page tables really
- * easy.
- */
-
- /* We assume Switcher text fits into a single page. */
- if (end_switcher_text - start_switcher_text > PAGE_SIZE) {
- printk(KERN_ERR "lguest: switcher text too large (%zu)\n",
- end_switcher_text - start_switcher_text);
- return -EINVAL;
- }
-
- /*
- * We allocate an array of struct page pointers. map_vm_area() wants
- * this, rather than just an array of pages.
- */
- lg_switcher_pages = kmalloc(sizeof(lg_switcher_pages[0])
- * TOTAL_SWITCHER_PAGES,
- GFP_KERNEL);
- if (!lg_switcher_pages) {
- err = -ENOMEM;
- goto out;
- }
-
- /*
- * Now we actually allocate the pages. The Guest will see these pages,
- * so we make sure they're zeroed.
- */
- for (i = 0; i < TOTAL_SWITCHER_PAGES; i++) {
- lg_switcher_pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
- if (!lg_switcher_pages[i]) {
- err = -ENOMEM;
- goto free_some_pages;
- }
- }
-
- /*
- * Copy in the compiled-in Switcher code (from x86/switcher_32.S).
- * It goes in the first page, which we map in momentarily.
- */
- memcpy(kmap(lg_switcher_pages[0]), start_switcher_text,
- end_switcher_text - start_switcher_text);
- kunmap(lg_switcher_pages[0]);
-
- /*
- * We place the Switcher underneath the fixmap area, which is the
- * highest virtual address we can get. This is important, since we
- * tell the Guest it can't access this memory, so we want its ceiling
- * as high as possible.
- */
- switcher_addr = FIXADDR_START - TOTAL_SWITCHER_PAGES*PAGE_SIZE;
-
- /*
- * Now we reserve the "virtual memory area"s we want. We might
- * not get them in theory, but in practice it's worked so far.
- *
- * We want the switcher text to be read-only and executable, and
- * the stacks to be read-write and non-executable.
- */
- switcher_text_vma = __get_vm_area(PAGE_SIZE, VM_ALLOC|VM_NO_GUARD,
- switcher_addr,
- switcher_addr + PAGE_SIZE);
-
- if (!switcher_text_vma) {
- err = -ENOMEM;
- printk("lguest: could not map switcher pages high\n");
- goto free_pages;
- }
-
- switcher_stacks_vma = __get_vm_area(SWITCHER_STACK_PAGES * PAGE_SIZE,
- VM_ALLOC|VM_NO_GUARD,
- switcher_addr + PAGE_SIZE,
- switcher_addr + TOTAL_SWITCHER_PAGES * PAGE_SIZE);
- if (!switcher_stacks_vma) {
- err = -ENOMEM;
- printk("lguest: could not map switcher pages high\n");
- goto free_text_vma;
- }
-
- /*
- * This code actually sets up the pages we've allocated to appear at
- * switcher_addr. map_vm_area() takes the vma we allocated above, the
- * kind of pages we're mapping (kernel text pages and kernel writable
- * pages respectively), and a pointer to our array of struct pages.
- */
- err = map_vm_area(switcher_text_vma, PAGE_KERNEL_RX, lg_switcher_pages);
- if (err) {
- printk("lguest: text map_vm_area failed: %i\n", err);
- goto free_vmas;
- }
-
- err = map_vm_area(switcher_stacks_vma, PAGE_KERNEL,
- lg_switcher_pages + SWITCHER_TEXT_PAGES);
- if (err) {
- printk("lguest: stacks map_vm_area failed: %i\n", err);
- goto free_vmas;
- }
-
- /*
- * Now the Switcher is mapped at the right address, we can't fail!
- */
- printk(KERN_INFO "lguest: mapped switcher at %p\n",
- switcher_text_vma->addr);
- /* And we succeeded... */
- return 0;
-
-free_vmas:
- /* Undoes map_vm_area and __get_vm_area */
- vunmap(switcher_stacks_vma->addr);
-free_text_vma:
- vunmap(switcher_text_vma->addr);
-free_pages:
- i = TOTAL_SWITCHER_PAGES;
-free_some_pages:
- for (--i; i >= 0; i--)
- __free_pages(lg_switcher_pages[i], 0);
- kfree(lg_switcher_pages);
-out:
- return err;
-}
-/*:*/
-
-/* Cleaning up the mapping when the module is unloaded is almost... too easy. */
-static void unmap_switcher(void)
-{
- unsigned int i;
-
- /* vunmap() undoes *both* map_vm_area() and __get_vm_area(). */
- vunmap(switcher_text_vma->addr);
- vunmap(switcher_stacks_vma->addr);
- /* Now we just need to free the pages we copied the switcher into */
- for (i = 0; i < TOTAL_SWITCHER_PAGES; i++)
- __free_pages(lg_switcher_pages[i], 0);
- kfree(lg_switcher_pages);
-}
-
-/*H:032
- * Dealing With Guest Memory.
- *
- * Before we go too much further into the Host, we need to grok the routines
- * we use to deal with Guest memory.
- *
- * When the Guest gives us (what it thinks is) a physical address, we can use
- * the normal copy_from_user() & copy_to_user() on the corresponding place in
- * the memory region allocated by the Launcher.
- *
- * But we can't trust the Guest: it might be trying to access the Launcher
- * code. We have to check that the range is below the pfn_limit the Launcher
- * gave us. We have to make sure that addr + len doesn't give us a false
- * positive by overflowing, too.
- */
-bool lguest_address_ok(const struct lguest *lg,
- unsigned long addr, unsigned long len)
-{
- return addr+len <= lg->pfn_limit * PAGE_SIZE && (addr+len >= addr);
-}
-
-/*
- * This routine copies memory from the Guest. Here we can see how useful the
- * kill_lguest() routine we met in the Launcher can be: we return a random
- * value (all zeroes) instead of needing to return an error.
- */
-void __lgread(struct lg_cpu *cpu, void *b, unsigned long addr, unsigned bytes)
-{
- if (!lguest_address_ok(cpu->lg, addr, bytes)
- || copy_from_user(b, cpu->lg->mem_base + addr, bytes) != 0) {
- /* copy_from_user should do this, but as we rely on it... */
- memset(b, 0, bytes);
- kill_guest(cpu, "bad read address %#lx len %u", addr, bytes);
- }
-}
-
-/* This is the write (copy into Guest) version. */
-void __lgwrite(struct lg_cpu *cpu, unsigned long addr, const void *b,
- unsigned bytes)
-{
- if (!lguest_address_ok(cpu->lg, addr, bytes)
- || copy_to_user(cpu->lg->mem_base + addr, b, bytes) != 0)
- kill_guest(cpu, "bad write address %#lx len %u", addr, bytes);
-}
-/*:*/
-
-/*H:030
- * Let's jump straight to the the main loop which runs the Guest.
- * Remember, this is called by the Launcher reading /dev/lguest, and we keep
- * going around and around until something interesting happens.
- */
-int run_guest(struct lg_cpu *cpu, unsigned long __user *user)
-{
- /* If the launcher asked for a register with LHREQ_GETREG */
- if (cpu->reg_read) {
- if (put_user(*cpu->reg_read, user))
- return -EFAULT;
- cpu->reg_read = NULL;
- return sizeof(*cpu->reg_read);
- }
-
- /* We stop running once the Guest is dead. */
- while (!cpu->lg->dead) {
- unsigned int irq;
- bool more;
-
- /* First we run any hypercalls the Guest wants done. */
- if (cpu->hcall)
- do_hypercalls(cpu);
-
- /* Do we have to tell the Launcher about a trap? */
- if (cpu->pending.trap) {
- if (copy_to_user(user, &cpu->pending,
- sizeof(cpu->pending)))
- return -EFAULT;
- return sizeof(cpu->pending);
- }
-
- /*
- * All long-lived kernel loops need to check with this horrible
- * thing called the freezer. If the Host is trying to suspend,
- * it stops us.
- */
- try_to_freeze();
-
- /* Check for signals */
- if (signal_pending(current))
- return -ERESTARTSYS;
-
- /*
- * Check if there are any interrupts which can be delivered now:
- * if so, this sets up the hander to be executed when we next
- * run the Guest.
- */
- irq = interrupt_pending(cpu, &more);
- if (irq < LGUEST_IRQS)
- try_deliver_interrupt(cpu, irq, more);
-
- /*
- * Just make absolutely sure the Guest is still alive. One of
- * those hypercalls could have been fatal, for example.
- */
- if (cpu->lg->dead)
- break;
-
- /*
- * If the Guest asked to be stopped, we sleep. The Guest's
- * clock timer will wake us.
- */
- if (cpu->halted) {
- set_current_state(TASK_INTERRUPTIBLE);
- /*
- * Just before we sleep, make sure no interrupt snuck in
- * which we should be doing.
- */
- if (interrupt_pending(cpu, &more) < LGUEST_IRQS)
- set_current_state(TASK_RUNNING);
- else
- schedule();
- continue;
- }
-
- /*
- * OK, now we're ready to jump into the Guest. First we put up
- * the "Do Not Disturb" sign:
- */
- local_irq_disable();
-
- /* Actually run the Guest until something happens. */
- lguest_arch_run_guest(cpu);
-
- /* Now we're ready to be interrupted or moved to other CPUs */
- local_irq_enable();
-
- /* Now we deal with whatever happened to the Guest. */
- lguest_arch_handle_trap(cpu);
- }
-
- /* Special case: Guest is 'dead' but wants a reboot. */
- if (cpu->lg->dead == ERR_PTR(-ERESTART))
- return -ERESTART;
-
- /* The Guest is dead => "No such file or directory" */
- return -ENOENT;
-}
-
-/*H:000
- * Welcome to the Host!
- *
- * By this point your brain has been tickled by the Guest code and numbed by
- * the Launcher code; prepare for it to be stretched by the Host code. This is
- * the heart. Let's begin at the initialization routine for the Host's lg
- * module.
- */
-static int __init init(void)
-{
- int err;
-
- /* Lguest can't run under Xen, VMI or itself. It does Tricky Stuff. */
- if (get_kernel_rpl() != 0) {
- printk("lguest is afraid of being a guest\n");
- return -EPERM;
- }
-
- /* First we put the Switcher up in very high virtual memory. */
- err = map_switcher();
- if (err)
- goto out;
-
- /* We might need to reserve an interrupt vector. */
- err = init_interrupts();
- if (err)
- goto unmap;
-
- /* /dev/lguest needs to be registered. */
- err = lguest_device_init();
- if (err)
- goto free_interrupts;
-
- /* Finally we do some architecture-specific setup. */
- lguest_arch_host_init();
-
- /* All good! */
- return 0;
-
-free_interrupts:
- free_interrupts();
-unmap:
- unmap_switcher();
-out:
- return err;
-}
-
-/* Cleaning up is just the same code, backwards. With a little French. */
-static void __exit fini(void)
-{
- lguest_device_remove();
- free_interrupts();
- unmap_switcher();
-
- lguest_arch_host_fini();
-}
-/*:*/
-
-/*
- * The Host side of lguest can be a module. This is a nice way for people to
- * play with it.
- */
-module_init(init);
-module_exit(fini);
-MODULE_LICENSE("GPL");
-MODULE_AUTHOR("Rusty Russell <rusty@rustcorp.com.au>");
diff --git a/drivers/lguest/hypercalls.c b/drivers/lguest/hypercalls.c
deleted file mode 100644
index 601f81c04873..000000000000
--- a/drivers/lguest/hypercalls.c
+++ /dev/null
@@ -1,304 +0,0 @@
-/*P:500
- * Just as userspace programs request kernel operations through a system
- * call, the Guest requests Host operations through a "hypercall". You might
- * notice this nomenclature doesn't really follow any logic, but the name has
- * been around for long enough that we're stuck with it. As you'd expect, this
- * code is basically a one big switch statement.
-:*/
-
-/* Copyright (C) 2006 Rusty Russell IBM Corporation
-
- This program is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program; if not, write to the Free Software
- Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
-*/
-#include <linux/uaccess.h>
-#include <linux/syscalls.h>
-#include <linux/mm.h>
-#include <linux/ktime.h>
-#include <asm/page.h>
-#include <asm/pgtable.h>
-#include "lg.h"
-
-/*H:120
- * This is the core hypercall routine: where the Guest gets what it wants.
- * Or gets killed. Or, in the case of LHCALL_SHUTDOWN, both.
- */
-static void do_hcall(struct lg_cpu *cpu, struct hcall_args *args)
-{
- switch (args->arg0) {
- case LHCALL_FLUSH_ASYNC:
- /*
- * This call does nothing, except by breaking out of the Guest
- * it makes us process all the asynchronous hypercalls.
- */
- break;
- case LHCALL_SEND_INTERRUPTS:
- /*
- * This call does nothing too, but by breaking out of the Guest
- * it makes us process any pending interrupts.
- */
- break;
- case LHCALL_LGUEST_INIT:
- /*
- * You can't get here unless you're already initialized. Don't
- * do that.
- */
- kill_guest(cpu, "already have lguest_data");
- break;
- case LHCALL_SHUTDOWN: {
- char msg[128];
- /*
- * Shutdown is such a trivial hypercall that we do it in five
- * lines right here.
- *
- * If the lgread fails, it will call kill_guest() itself; the
- * kill_guest() with the message will be ignored.
- */
- __lgread(cpu, msg, args->arg1, sizeof(msg));
- msg[sizeof(msg)-1] = '\0';
- kill_guest(cpu, "CRASH: %s", msg);
- if (args->arg2 == LGUEST_SHUTDOWN_RESTART)
- cpu->lg->dead = ERR_PTR(-ERESTART);
- break;
- }
- case LHCALL_FLUSH_TLB:
- /* FLUSH_TLB comes in two flavors, depending on the argument: */
- if (args->arg1)
- guest_pagetable_clear_all(cpu);
- else
- guest_pagetable_flush_user(cpu);
- break;
-
- /*
- * All these calls simply pass the arguments through to the right
- * routines.
- */
- case LHCALL_NEW_PGTABLE:
- guest_new_pagetable(cpu, args->arg1);
- break;
- case LHCALL_SET_STACK:
- guest_set_stack(cpu, args->arg1, args->arg2, args->arg3);
- break;
- case LHCALL_SET_PTE:
-#ifdef CONFIG_X86_PAE
- guest_set_pte(cpu, args->arg1, args->arg2,
- __pte(args->arg3 | (u64)args->arg4 << 32));
-#else
- guest_set_pte(cpu, args->arg1, args->arg2, __pte(args->arg3));
-#endif
- break;
- case LHCALL_SET_PGD:
- guest_set_pgd(cpu->lg, args->arg1, args->arg2);
- break;
-#ifdef CONFIG_X86_PAE
- case LHCALL_SET_PMD:
- guest_set_pmd(cpu->lg, args->arg1, args->arg2);
- break;
-#endif
- case LHCALL_SET_CLOCKEVENT:
- guest_set_clockevent(cpu, args->arg1);
- break;
- case LHCALL_HALT:
- /* Similarly, this sets the halted flag for run_guest(). */
- cpu->halted = 1;
- break;
- default:
- /* It should be an architecture-specific hypercall. */
- if (lguest_arch_do_hcall(cpu, args))
- kill_guest(cpu, "Bad hypercall %li\n", args->arg0);
- }
-}
-
-/*H:124
- * Asynchronous hypercalls are easy: we just look in the array in the
- * Guest's "struct lguest_data" to see if any new ones are marked "ready".
- *
- * We are careful to do these in order: obviously we respect the order the
- * Guest put them in the ring, but we also promise the Guest that they will
- * happen before any normal hypercall (which is why we check this before
- * checking for a normal hcall).
- */
-static void do_async_hcalls(struct lg_cpu *cpu)
-{
- unsigned int i;
- u8 st[LHCALL_RING_SIZE];
-
- /* For simplicity, we copy the entire call status array in at once. */
- if (copy_from_user(&st, &cpu->lg->lguest_data->hcall_status, sizeof(st)))
- return;
-
- /* We process "struct lguest_data"s hcalls[] ring once. */
- for (i = 0; i < ARRAY_SIZE(st); i++) {
- struct hcall_args args;
- /*
- * We remember where we were up to from last time. This makes
- * sure that the hypercalls are done in the order the Guest
- * places them in the ring.
- */
- unsigned int n = cpu->next_hcall;
-
- /* 0xFF means there's no call here (yet). */
- if (st[n] == 0xFF)
- break;
-
- /*
- * OK, we have hypercall. Increment the "next_hcall" cursor,
- * and wrap back to 0 if we reach the end.
- */
- if (++cpu->next_hcall == LHCALL_RING_SIZE)
- cpu->next_hcall = 0;
-
- /*
- * Copy the hypercall arguments into a local copy of the
- * hcall_args struct.
- */
- if (copy_from_user(&args, &cpu->lg->lguest_data->hcalls[n],
- sizeof(struct hcall_args))) {
- kill_guest(cpu, "Fetching async hypercalls");
- break;
- }
-
- /* Do the hypercall, same as a normal one. */
- do_hcall(cpu, &args);
-
- /* Mark the hypercall done. */
- if (put_user(0xFF, &cpu->lg->lguest_data->hcall_status[n])) {
- kill_guest(cpu, "Writing result for async hypercall");
- break;
- }
-
- /*
- * Stop doing hypercalls if they want to notify the Launcher:
- * it needs to service this first.
- */
- if (cpu->pending.trap)
- break;
- }
-}
-
-/*
- * Last of all, we look at what happens first of all. The very first time the
- * Guest makes a hypercall, we end up here to set things up:
- */
-static void initialize(struct lg_cpu *cpu)
-{
- /*
- * You can't do anything until you're initialized. The Guest knows the
- * rules, so we're unforgiving here.
- */
- if (cpu->hcall->arg0 != LHCALL_LGUEST_INIT) {
- kill_guest(cpu, "hypercall %li before INIT", cpu->hcall->arg0);
- return;
- }
-
- if (lguest_arch_init_hypercalls(cpu))
- kill_guest(cpu, "bad guest page %p", cpu->lg->lguest_data);
-
- /*
- * The Guest tells us where we're not to deliver interrupts by putting
- * the instruction address into "struct lguest_data".
- */
- if (get_user(cpu->lg->noirq_iret, &cpu->lg->lguest_data->noirq_iret))
- kill_guest(cpu, "bad guest page %p", cpu->lg->lguest_data);
-
- /*
- * We write the current time into the Guest's data page once so it can
- * set its clock.
- */
- write_timestamp(cpu);
-
- /* page_tables.c will also do some setup. */
- page_table_guest_data_init(cpu);
-
- /*
- * This is the one case where the above accesses might have been the
- * first write to a Guest page. This may have caused a copy-on-write
- * fault, but the old page might be (read-only) in the Guest
- * pagetable.
- */
- guest_pagetable_clear_all(cpu);
-}
-/*:*/
-
-/*M:013
- * If a Guest reads from a page (so creates a mapping) that it has never
- * written to, and then the Launcher writes to it (ie. the output of a virtual
- * device), the Guest will still see the old page. In practice, this never
- * happens: why would the Guest read a page which it has never written to? But
- * a similar scenario might one day bite us, so it's worth mentioning.
- *
- * Note that if we used a shared anonymous mapping in the Launcher instead of
- * mapping /dev/zero private, we wouldn't worry about cop-on-write. And we
- * need that to switch the Launcher to processes (away from threads) anyway.
-:*/
-
-/*H:100
- * Hypercalls
- *
- * Remember from the Guest, hypercalls come in two flavors: normal and
- * asynchronous. This file handles both of types.
- */
-void do_hypercalls(struct lg_cpu *cpu)
-{
- /* Not initialized yet? This hypercall must do it. */
- if (unlikely(!cpu->lg->lguest_data)) {
- /* Set up the "struct lguest_data" */
- initialize(cpu);
- /* Hcall is done. */
- cpu->hcall = NULL;
- return;
- }
-
- /*
- * The Guest has initialized.
- *
- * Look in the hypercall ring for the async hypercalls:
- */
- do_async_hcalls(cpu);
-
- /*
- * If we stopped reading the hypercall ring because the Guest did a
- * NOTIFY to the Launcher, we want to return now. Otherwise we do
- * the hypercall.
- */
- if (!cpu->pending.trap) {
- do_hcall(cpu, cpu->hcall);
- /*
- * Tricky point: we reset the hcall pointer to mark the
- * hypercall as "done". We use the hcall pointer rather than
- * the trap number to indicate a hypercall is pending.
- * Normally it doesn't matter: the Guest will run again and
- * update the trap number before we come back here.
- *
- * However, if we are signalled or the Guest sends I/O to the
- * Launcher, the run_guest() loop will exit without running the
- * Guest. When it comes back it would try to re-run the
- * hypercall. Finding that bug sucked.
- */
- cpu->hcall = NULL;
- }
-}
-
-/*
- * This routine supplies the Guest with time: it's used for wallclock time at
- * initial boot and as a rough time source if the TSC isn't available.
- */
-void write_timestamp(struct lg_cpu *cpu)
-{
- struct timespec now;
- ktime_get_real_ts(&now);
- if (copy_to_user(&cpu->lg->lguest_data->time,
- &now, sizeof(struct timespec)))
- kill_guest(cpu, "Writing timestamp");
-}
diff --git a/drivers/lguest/interrupts_and_traps.c b/drivers/lguest/interrupts_and_traps.c
deleted file mode 100644
index 67392b6ab845..000000000000
--- a/drivers/lguest/interrupts_and_traps.c
+++ /dev/null
@@ -1,706 +0,0 @@
-/*P:800
- * Interrupts (traps) are complicated enough to earn their own file.
- * There are three classes of interrupts:
- *
- * 1) Real hardware interrupts which occur while we're running the Guest,
- * 2) Interrupts for virtual devices attached to the Guest, and
- * 3) Traps and faults from the Guest.
- *
- * Real hardware interrupts must be delivered to the Host, not the Guest.
- * Virtual interrupts must be delivered to the Guest, but we make them look
- * just like real hardware would deliver them. Traps from the Guest can be set
- * up to go directly back into the Guest, but sometimes the Host wants to see
- * them first, so we also have a way of "reflecting" them into the Guest as if
- * they had been delivered to it directly.
-:*/
-#include <linux/uaccess.h>
-#include <linux/interrupt.h>
-#include <linux/module.h>
-#include <linux/sched.h>
-#include "lg.h"
-
-/* Allow Guests to use a non-128 (ie. non-Linux) syscall trap. */
-static unsigned int syscall_vector = IA32_SYSCALL_VECTOR;
-module_param(syscall_vector, uint, 0444);
-
-/* The address of the interrupt handler is split into two bits: */
-static unsigned long idt_address(u32 lo, u32 hi)
-{
- return (lo & 0x0000FFFF) | (hi & 0xFFFF0000);
-}
-
-/*
- * The "type" of the interrupt handler is a 4 bit field: we only support a
- * couple of types.
- */
-static int idt_type(u32 lo, u32 hi)
-{
- return (hi >> 8) & 0xF;
-}
-
-/* An IDT entry can't be used unless the "present" bit is set. */
-static bool idt_present(u32 lo, u32 hi)
-{
- return (hi & 0x8000);
-}
-
-/*
- * We need a helper to "push" a value onto the Guest's stack, since that's a
- * big part of what delivering an interrupt does.
- */
-static void push_guest_stack(struct lg_cpu *cpu, unsigned long *gstack, u32 val)
-{
- /* Stack grows upwards: move stack then write value. */
- *gstack -= 4;
- lgwrite(cpu, *gstack, u32, val);
-}
-
-/*H:210
- * The push_guest_interrupt_stack() routine saves Guest state on the stack for
- * an interrupt or trap. The mechanics of delivering traps and interrupts to
- * the Guest are the same, except some traps have an "error code" which gets
- * pushed onto the stack as well: the caller tells us if this is one.
- *
- * We set up the stack just like the CPU does for a real interrupt, so it's
- * identical for the Guest (and the standard "iret" instruction will undo
- * it).
- */
-static void push_guest_interrupt_stack(struct lg_cpu *cpu, bool has_err)
-{
- unsigned long gstack, origstack;
- u32 eflags, ss, irq_enable;
- unsigned long virtstack;
-
- /*
- * There are two cases for interrupts: one where the Guest is already
- * in the kernel, and a more complex one where the Guest is in
- * userspace. We check the privilege level to find out.
- */
- if ((cpu->regs->ss&0x3) != GUEST_PL) {
- /*
- * The Guest told us their kernel stack with the SET_STACK
- * hypercall: both the virtual address and the segment.
- */
- virtstack = cpu->esp1;
- ss = cpu->ss1;
-
- origstack = gstack = guest_pa(cpu, virtstack);
- /*
- * We push the old stack segment and pointer onto the new
- * stack: when the Guest does an "iret" back from the interrupt
- * handler the CPU will notice they're dropping privilege
- * levels and expect these here.
- */
- push_guest_stack(cpu, &gstack, cpu->regs->ss);
- push_guest_stack(cpu, &gstack, cpu->regs->esp);
- } else {
- /* We're staying on the same Guest (kernel) stack. */
- virtstack = cpu->regs->esp;
- ss = cpu->regs->ss;
-
- origstack = gstack = guest_pa(cpu, virtstack);
- }
-
- /*
- * Remember that we never let the Guest actually disable interrupts, so
- * the "Interrupt Flag" bit is always set. We copy that bit from the
- * Guest's "irq_enabled" field into the eflags word: we saw the Guest
- * copy it back in "lguest_iret".
- */
- eflags = cpu->regs->eflags;
- if (get_user(irq_enable, &cpu->lg->lguest_data->irq_enabled) == 0
- && !(irq_enable & X86_EFLAGS_IF))
- eflags &= ~X86_EFLAGS_IF;
-
- /*
- * An interrupt is expected to push three things on the stack: the old
- * "eflags" word, the old code segment, and the old instruction
- * pointer.
- */
- push_guest_stack(cpu, &gstack, eflags);
- push_guest_stack(cpu, &gstack, cpu->regs->cs);
- push_guest_stack(cpu, &gstack, cpu->regs->eip);
-
- /* For the six traps which supply an error code, we push that, too. */
- if (has_err)
- push_guest_stack(cpu, &gstack, cpu->regs->errcode);
-
- /* Adjust the stack pointer and stack segment. */
- cpu->regs->ss = ss;
- cpu->regs->esp = virtstack + (gstack - origstack);
-}
-
-/*
- * This actually makes the Guest start executing the given interrupt/trap
- * handler.
- *
- * "lo" and "hi" are the two parts of the Interrupt Descriptor Table for this
- * interrupt or trap. It's split into two parts for traditional reasons: gcc
- * on i386 used to be frightened by 64 bit numbers.
- */
-static void guest_run_interrupt(struct lg_cpu *cpu, u32 lo, u32 hi)
-{
- /* If we're already in the kernel, we don't change stacks. */
- if ((cpu->regs->ss&0x3) != GUEST_PL)
- cpu->regs->ss = cpu->esp1;
-
- /*
- * Set the code segment and the address to execute.
- */
- cpu->regs->cs = (__KERNEL_CS|GUEST_PL);
- cpu->regs->eip = idt_address(lo, hi);
-
- /*
- * Trapping always clears these flags:
- * TF: Trap flag
- * VM: Virtual 8086 mode
- * RF: Resume
- * NT: Nested task.
- */
- cpu->regs->eflags &=
- ~(X86_EFLAGS_TF|X86_EFLAGS_VM|X86_EFLAGS_RF|X86_EFLAGS_NT);
-
- /*
- * There are two kinds of interrupt handlers: 0xE is an "interrupt
- * gate" which expects interrupts to be disabled on entry.
- */
- if (idt_type(lo, hi) == 0xE)
- if (put_user(0, &cpu->lg->lguest_data->irq_enabled))
- kill_guest(cpu, "Disabling interrupts");
-}
-
-/* This restores the eflags word which was pushed on the stack by a trap */
-static void restore_eflags(struct lg_cpu *cpu)
-{
- /* This is the physical address of the stack. */
- unsigned long stack_pa = guest_pa(cpu, cpu->regs->esp);
-
- /*
- * Stack looks like this:
- * Address Contents
- * esp EIP
- * esp + 4 CS
- * esp + 8 EFLAGS
- */
- cpu->regs->eflags = lgread(cpu, stack_pa + 8, u32);
- cpu->regs->eflags &=
- ~(X86_EFLAGS_TF|X86_EFLAGS_VM|X86_EFLAGS_RF|X86_EFLAGS_NT);
-}
-
-/*H:205
- * Virtual Interrupts.
- *
- * interrupt_pending() returns the first pending interrupt which isn't blocked
- * by the Guest. It is called before every entry to the Guest, and just before
- * we go to sleep when the Guest has halted itself.
- */
-unsigned int interrupt_pending(struct lg_cpu *cpu, bool *more)
-{
- unsigned int irq;
- DECLARE_BITMAP(blk, LGUEST_IRQS);
-
- /* If the Guest hasn't even initialized yet, we can do nothing. */
- if (!cpu->lg->lguest_data)
- return LGUEST_IRQS;
-
- /*
- * Take our "irqs_pending" array and remove any interrupts the Guest
- * wants blocked: the result ends up in "blk".
- */
- if (copy_from_user(&blk, cpu->lg->lguest_data->blocked_interrupts,
- sizeof(blk)))
- return LGUEST_IRQS;
- bitmap_andnot(blk, cpu->irqs_pending, blk, LGUEST_IRQS);
-
- /* Find the first interrupt. */
- irq = find_first_bit(blk, LGUEST_IRQS);
- *more = find_next_bit(blk, LGUEST_IRQS, irq+1);
-
- return irq;
-}
-
-/*
- * This actually diverts the Guest to running an interrupt handler, once an
- * interrupt has been identified by interrupt_pending().
- */
-void try_deliver_interrupt(struct lg_cpu *cpu, unsigned int irq, bool more)
-{
- struct desc_struct *idt;
-
- BUG_ON(irq >= LGUEST_IRQS);
-
- /* If they're halted, interrupts restart them. */
- if (cpu->halted) {
- /* Re-enable interrupts. */
- if (put_user(X86_EFLAGS_IF, &cpu->lg->lguest_data->irq_enabled))
- kill_guest(cpu, "Re-enabling interrupts");
- cpu->halted = 0;
- } else {
- /* Otherwise we check if they have interrupts disabled. */
- u32 irq_enabled;
- if (get_user(irq_enabled, &cpu->lg->lguest_data->irq_enabled))
- irq_enabled = 0;
- if (!irq_enabled) {
- /* Make sure they know an IRQ is pending. */
- put_user(X86_EFLAGS_IF,
- &cpu->lg->lguest_data->irq_pending);
- return;
- }
- }
-
- /*
- * Look at the IDT entry the Guest gave us for this interrupt. The
- * first 32 (FIRST_EXTERNAL_VECTOR) entries are for traps, so we skip
- * over them.
- */
- idt = &cpu->arch.idt[FIRST_EXTERNAL_VECTOR+irq];
- /* If they don't have a handler (yet?), we just ignore it */
- if (idt_present(idt->a, idt->b)) {
- /* OK, mark it no longer pending and deliver it. */
- clear_bit(irq, cpu->irqs_pending);
-
- /*
- * They may be about to iret, where they asked us never to
- * deliver interrupts. In this case, we can emulate that iret
- * then immediately deliver the interrupt. This is basically
- * a noop: the iret would pop the interrupt frame and restore
- * eflags, and then we'd set it up again. So just restore the
- * eflags word and jump straight to the handler in this case.
- *
- * Denys Vlasenko points out that this isn't quite right: if
- * the iret was returning to userspace, then that interrupt
- * would reset the stack pointer (which the Guest told us
- * about via LHCALL_SET_STACK). But unless the Guest is being
- * *really* weird, that will be the same as the current stack
- * anyway.
- */
- if (cpu->regs->eip == cpu->lg->noirq_iret) {
- restore_eflags(cpu);
- } else {
- /*
- * set_guest_interrupt() takes a flag to say whether
- * this interrupt pushes an error code onto the stack
- * as well: virtual interrupts never do.
- */
- push_guest_interrupt_stack(cpu, false);
- }
- /* Actually make Guest cpu jump to handler. */
- guest_run_interrupt(cpu, idt->a, idt->b);
- }
-
- /*
- * Every time we deliver an interrupt, we update the timestamp in the
- * Guest's lguest_data struct. It would be better for the Guest if we
- * did this more often, but it can actually be quite slow: doing it
- * here is a compromise which means at least it gets updated every
- * timer interrupt.
- */
- write_timestamp(cpu);
-
- /*
- * If there are no other interrupts we want to deliver, clear
- * the pending flag.
- */
- if (!more)
- put_user(0, &cpu->lg->lguest_data->irq_pending);
-}
-
-/* And this is the routine when we want to set an interrupt for the Guest. */
-void set_interrupt(struct lg_cpu *cpu, unsigned int irq)
-{
- /*
- * Next time the Guest runs, the core code will see if it can deliver
- * this interrupt.
- */
- set_bit(irq, cpu->irqs_pending);
-
- /*
- * Make sure it sees it; it might be asleep (eg. halted), or running
- * the Guest right now, in which case kick_process() will knock it out.
- */
- if (!wake_up_process(cpu->tsk))
- kick_process(cpu->tsk);
-}
-/*:*/
-
-/*
- * Linux uses trap 128 for system calls. Plan9 uses 64, and Ron Minnich sent
- * me a patch, so we support that too. It'd be a big step for lguest if half
- * the Plan 9 user base were to start using it.
- *
- * Actually now I think of it, it's possible that Ron *is* half the Plan 9
- * userbase. Oh well.
- */
-bool could_be_syscall(unsigned int num)
-{
- /* Normal Linux IA32_SYSCALL_VECTOR or reserved vector? */
- return num == IA32_SYSCALL_VECTOR || num == syscall_vector;
-}
-
-/* The syscall vector it wants must be unused by Host. */
-bool check_syscall_vector(struct lguest *lg)
-{
- u32 vector;
-
- if (get_user(vector, &lg->lguest_data->syscall_vec))
- return false;
-
- return could_be_syscall(vector);
-}
-
-int init_interrupts(void)
-{
- /* If they want some strange system call vector, reserve it now */
- if (syscall_vector != IA32_SYSCALL_VECTOR) {
- if (test_bit(syscall_vector, used_vectors) ||
- vector_used_by_percpu_irq(syscall_vector)) {
- printk(KERN_ERR "lg: couldn't reserve syscall %u\n",
- syscall_vector);
- return -EBUSY;
- }
- set_bit(syscall_vector, used_vectors);
- }
-
- return 0;
-}
-
-void free_interrupts(void)
-{
- if (syscall_vector != IA32_SYSCALL_VECTOR)
- clear_bit(syscall_vector, used_vectors);
-}
-
-/*H:220
- * Now we've got the routines to deliver interrupts, delivering traps like
- * page fault is easy. The only trick is that Intel decided that some traps
- * should have error codes:
- */
-static bool has_err(unsigned int trap)
-{
- return (trap == 8 || (trap >= 10 && trap <= 14) || trap == 17);
-}
-
-/* deliver_trap() returns true if it could deliver the trap. */
-bool deliver_trap(struct lg_cpu *cpu, unsigned int num)
-{
- /*
- * Trap numbers are always 8 bit, but we set an impossible trap number
- * for traps inside the Switcher, so check that here.
- */
- if (num >= ARRAY_SIZE(cpu->arch.idt))
- return false;
-
- /*
- * Early on the Guest hasn't set the IDT entries (or maybe it put a
- * bogus one in): if we fail here, the Guest will be killed.
- */
- if (!idt_present(cpu->arch.idt[num].a, cpu->arch.idt[num].b))
- return false;
- push_guest_interrupt_stack(cpu, has_err(num));
- guest_run_interrupt(cpu, cpu->arch.idt[num].a,
- cpu->arch.idt[num].b);
- return true;
-}
-
-/*H:250
- * Here's the hard part: returning to the Host every time a trap happens
- * and then calling deliver_trap() and re-entering the Guest is slow.
- * Particularly because Guest userspace system calls are traps (usually trap
- * 128).
- *
- * So we'd like to set up the IDT to tell the CPU to deliver traps directly
- * into the Guest. This is possible, but the complexities cause the size of
- * this file to double! However, 150 lines of code is worth writing for taking
- * system calls down from 1750ns to 270ns. Plus, if lguest didn't do it, all
- * the other hypervisors would beat it up at lunchtime.
- *
- * This routine indicates if a particular trap number could be delivered
- * directly.
- *
- * Unfortunately, Linux 4.6 started using an interrupt gate instead of a
- * trap gate for syscalls, so this trick is ineffective. See Mastery for
- * how we could do this anyway...
- */
-static bool direct_trap(unsigned int num)
-{
- /*
- * Hardware interrupts don't go to the Guest at all (except system
- * call).
- */
- if (num >= FIRST_EXTERNAL_VECTOR && !could_be_syscall(num))
- return false;
-
- /*
- * The Host needs to see page faults (for shadow paging and to save the
- * fault address), general protection faults (in/out emulation) and
- * device not available (TS handling) and of course, the hypercall trap.
- */
- return num != 14 && num != 13 && num != 7 && num != LGUEST_TRAP_ENTRY;
-}
-/*:*/
-
-/*M:005
- * The Guest has the ability to turn its interrupt gates into trap gates,
- * if it is careful. The Host will let trap gates can go directly to the
- * Guest, but the Guest needs the interrupts atomically disabled for an
- * interrupt gate. The Host could provide a mechanism to register more
- * "no-interrupt" regions, and the Guest could point the trap gate at
- * instructions within that region, where it can safely disable interrupts.
- */
-
-/*M:006
- * The Guests do not use the sysenter (fast system call) instruction,
- * because it's hardcoded to enter privilege level 0 and so can't go direct.
- * It's about twice as fast as the older "int 0x80" system call, so it might
- * still be worthwhile to handle it in the Switcher and lcall down to the
- * Guest. The sysenter semantics are hairy tho: search for that keyword in
- * entry.S
-:*/
-
-/*H:260
- * When we make traps go directly into the Guest, we need to make sure
- * the kernel stack is valid (ie. mapped in the page tables). Otherwise, the
- * CPU trying to deliver the trap will fault while trying to push the interrupt
- * words on the stack: this is called a double fault, and it forces us to kill
- * the Guest.
- *
- * Which is deeply unfair, because (literally!) it wasn't the Guests' fault.
- */
-void pin_stack_pages(struct lg_cpu *cpu)
-{
- unsigned int i;
-
- /*
- * Depending on the CONFIG_4KSTACKS option, the Guest can have one or
- * two pages of stack space.
- */
- for (i = 0; i < cpu->lg->stack_pages; i++)
- /*
- * The stack grows *upwards*, so the address we're given is the
- * start of the page after the kernel stack. Subtract one to
- * get back onto the first stack page, and keep subtracting to
- * get to the rest of the stack pages.
- */
- pin_page(cpu, cpu->esp1 - 1 - i * PAGE_SIZE);
-}
-
-/*
- * Direct traps also mean that we need to know whenever the Guest wants to use
- * a different kernel stack, so we can change the guest TSS to use that
- * stack. The TSS entries expect a virtual address, so unlike most addresses
- * the Guest gives us, the "esp" (stack pointer) value here is virtual, not
- * physical.
- *
- * In Linux each process has its own kernel stack, so this happens a lot: we
- * change stacks on each context switch.
- */
-void guest_set_stack(struct lg_cpu *cpu, u32 seg, u32 esp, unsigned int pages)
-{
- /*
- * You're not allowed a stack segment with privilege level 0: bad Guest!
- */
- if ((seg & 0x3) != GUEST_PL)
- kill_guest(cpu, "bad stack segment %i", seg);
- /* We only expect one or two stack pages. */
- if (pages > 2)
- kill_guest(cpu, "bad stack pages %u", pages);
- /* Save where the stack is, and how many pages */
- cpu->ss1 = seg;
- cpu->esp1 = esp;
- cpu->lg->stack_pages = pages;
- /* Make sure the new stack pages are mapped */
- pin_stack_pages(cpu);
-}
-
-/*
- * All this reference to mapping stacks leads us neatly into the other complex
- * part of the Host: page table handling.
- */
-
-/*H:235
- * This is the routine which actually checks the Guest's IDT entry and
- * transfers it into the entry in "struct lguest":
- */
-static void set_trap(struct lg_cpu *cpu, struct desc_struct *trap,
- unsigned int num, u32 lo, u32 hi)
-{
- u8 type = idt_type(lo, hi);
-
- /* We zero-out a not-present entry */
- if (!idt_present(lo, hi)) {
- trap->a = trap->b = 0;
- return;
- }
-
- /* We only support interrupt and trap gates. */
- if (type != 0xE && type != 0xF)
- kill_guest(cpu, "bad IDT type %i", type);
-
- /*
- * We only copy the handler address, present bit, privilege level and
- * type. The privilege level controls where the trap can be triggered
- * manually with an "int" instruction. This is usually GUEST_PL,
- * except for system calls which userspace can use.
- */
- trap->a = ((__KERNEL_CS|GUEST_PL)<<16) | (lo&0x0000FFFF);
- trap->b = (hi&0xFFFFEF00);
-}
-
-/*H:230
- * While we're here, dealing with delivering traps and interrupts to the
- * Guest, we might as well complete the picture: how the Guest tells us where
- * it wants them to go. This would be simple, except making traps fast
- * requires some tricks.
- *
- * We saw the Guest setting Interrupt Descriptor Table (IDT) entries with the
- * LHCALL_LOAD_IDT_ENTRY hypercall before: that comes here.
- */
-void load_guest_idt_entry(struct lg_cpu *cpu, unsigned int num, u32 lo, u32 hi)
-{
- /*
- * Guest never handles: NMI, doublefault, spurious interrupt or
- * hypercall. We ignore when it tries to set them.
- */
- if (num == 2 || num == 8 || num == 15 || num == LGUEST_TRAP_ENTRY)
- return;
-
- /*
- * Mark the IDT as changed: next time the Guest runs we'll know we have
- * to copy this again.
- */
- cpu->changed |= CHANGED_IDT;
-
- /* Check that the Guest doesn't try to step outside the bounds. */
- if (num >= ARRAY_SIZE(cpu->arch.idt))
- kill_guest(cpu, "Setting idt entry %u", num);
- else
- set_trap(cpu, &cpu->arch.idt[num], num, lo, hi);
-}
-
-/*
- * The default entry for each interrupt points into the Switcher routines which
- * simply return to the Host. The run_guest() loop will then call
- * deliver_trap() to bounce it back into the Guest.
- */
-static void default_idt_entry(struct desc_struct *idt,
- int trap,
- const unsigned long handler,
- const struct desc_struct *base)
-{
- /* A present interrupt gate. */
- u32 flags = 0x8e00;
-
- /*
- * Set the privilege level on the entry for the hypercall: this allows
- * the Guest to use the "int" instruction to trigger it.
- */
- if (trap == LGUEST_TRAP_ENTRY)
- flags |= (GUEST_PL << 13);
- else if (base)
- /*
- * Copy privilege level from what Guest asked for. This allows
- * debug (int 3) traps from Guest userspace, for example.
- */
- flags |= (base->b & 0x6000);
-
- /* Now pack it into the IDT entry in its weird format. */
- idt->a = (LGUEST_CS<<16) | (handler&0x0000FFFF);
- idt->b = (handler&0xFFFF0000) | flags;
-}
-
-/* When the Guest first starts, we put default entries into the IDT. */
-void setup_default_idt_entries(struct lguest_ro_state *state,
- const unsigned long *def)
-{
- unsigned int i;
-
- for (i = 0; i < ARRAY_SIZE(state->guest_idt); i++)
- default_idt_entry(&state->guest_idt[i], i, def[i], NULL);
-}
-
-/*H:240
- * We don't use the IDT entries in the "struct lguest" directly, instead
- * we copy them into the IDT which we've set up for Guests on this CPU, just
- * before we run the Guest. This routine does that copy.
- */
-void copy_traps(const struct lg_cpu *cpu, struct desc_struct *idt,
- const unsigned long *def)
-{
- unsigned int i;
-
- /*
- * We can simply copy the direct traps, otherwise we use the default
- * ones in the Switcher: they will return to the Host.
- */
- for (i = 0; i < ARRAY_SIZE(cpu->arch.idt); i++) {
- const struct desc_struct *gidt = &cpu->arch.idt[i];
-
- /* If no Guest can ever override this trap, leave it alone. */
- if (!direct_trap(i))
- continue;
-
- /*
- * Only trap gates (type 15) can go direct to the Guest.
- * Interrupt gates (type 14) disable interrupts as they are
- * entered, which we never let the Guest do. Not present
- * entries (type 0x0) also can't go direct, of course.
- *
- * If it can't go direct, we still need to copy the priv. level:
- * they might want to give userspace access to a software
- * interrupt.
- */
- if (idt_type(gidt->a, gidt->b) == 0xF)
- idt[i] = *gidt;
- else
- default_idt_entry(&idt[i], i, def[i], gidt);
- }
-}
-
-/*H:200
- * The Guest Clock.
- *
- * There are two sources of virtual interrupts. We saw one in lguest_user.c:
- * the Launcher sending interrupts for virtual devices. The other is the Guest
- * timer interrupt.
- *
- * The Guest uses the LHCALL_SET_CLOCKEVENT hypercall to tell us how long to
- * the next timer interrupt (in nanoseconds). We use the high-resolution timer
- * infrastructure to set a callback at that time.
- *
- * 0 means "turn off the clock".
- */
-void guest_set_clockevent(struct lg_cpu *cpu, unsigned long delta)
-{
- ktime_t expires;
-
- if (unlikely(delta == 0)) {
- /* Clock event device is shutting down. */
- hrtimer_cancel(&cpu->hrt);
- return;
- }
-
- /*
- * We use wallclock time here, so the Guest might not be running for
- * all the time between now and the timer interrupt it asked for. This
- * is almost always the right thing to do.
- */
- expires = ktime_add_ns(ktime_get_real(), delta);
- hrtimer_start(&cpu->hrt, expires, HRTIMER_MODE_ABS);
-}
-
-/* This is the function called when the Guest's timer expires. */
-static enum hrtimer_restart clockdev_fn(struct hrtimer *timer)
-{
- struct lg_cpu *cpu = container_of(timer, struct lg_cpu, hrt);
-
- /* Remember the first interrupt is the timer interrupt. */
- set_interrupt(cpu, 0);
- return HRTIMER_NORESTART;
-}
-
-/* This sets up the timer for this Guest. */
-void init_clockdev(struct lg_cpu *cpu)
-{
- hrtimer_init(&cpu->hrt, CLOCK_REALTIME, HRTIMER_MODE_ABS);
- cpu->hrt.function = clockdev_fn;
-}
diff --git a/drivers/lguest/lg.h b/drivers/lguest/lg.h
deleted file mode 100644
index 2356a2318034..000000000000
--- a/drivers/lguest/lg.h
+++ /dev/null
@@ -1,258 +0,0 @@
-#ifndef _LGUEST_H
-#define _LGUEST_H
-
-#ifndef __ASSEMBLY__
-#include <linux/types.h>
-#include <linux/init.h>
-#include <linux/stringify.h>
-#include <linux/lguest.h>
-#include <linux/lguest_launcher.h>
-#include <linux/wait.h>
-#include <linux/hrtimer.h>
-#include <linux/err.h>
-#include <linux/slab.h>
-
-#include <asm/lguest.h>
-
-struct pgdir {
- unsigned long gpgdir;
- bool switcher_mapped;
- int last_host_cpu;
- pgd_t *pgdir;
-};
-
-/* We have two pages shared with guests, per cpu. */
-struct lguest_pages {
- /* This is the stack page mapped rw in guest */
- char spare[PAGE_SIZE - sizeof(struct lguest_regs)];
- struct lguest_regs regs;
-
- /* This is the host state & guest descriptor page, ro in guest */
- struct lguest_ro_state state;
-} __attribute__((aligned(PAGE_SIZE)));
-
-#define CHANGED_IDT 1
-#define CHANGED_GDT 2
-#define CHANGED_GDT_TLS 4 /* Actually a subset of CHANGED_GDT */
-#define CHANGED_ALL 3
-
-struct lg_cpu {
- unsigned int id;
- struct lguest *lg;
- struct task_struct *tsk;
- struct mm_struct *mm; /* == tsk->mm, but that becomes NULL on exit */
-
- u32 cr2;
- u32 esp1;
- u16 ss1;
-
- /* Bitmap of what has changed: see CHANGED_* above. */
- int changed;
-
- /* Pending operation. */
- struct lguest_pending pending;
-
- unsigned long *reg_read; /* register from LHREQ_GETREG */
-
- /* At end of a page shared mapped over lguest_pages in guest. */
- unsigned long regs_page;
- struct lguest_regs *regs;
-
- struct lguest_pages *last_pages;
-
- /* Initialization mode: linear map everything. */
- bool linear_pages;
- int cpu_pgd; /* Which pgd this cpu is currently using */
-
- /* If a hypercall was asked for, this points to the arguments. */
- struct hcall_args *hcall;
- u32 next_hcall;
-
- /* Virtual clock device */
- struct hrtimer hrt;
-
- /* Did the Guest tell us to halt? */
- int halted;
-
- /* Pending virtual interrupts */
- DECLARE_BITMAP(irqs_pending, LGUEST_IRQS);
-
- struct lg_cpu_arch arch;
-};
-
-/* The private info the thread maintains about the guest. */
-struct lguest {
- struct lguest_data __user *lguest_data;
- struct lg_cpu cpus[NR_CPUS];
- unsigned int nr_cpus;
-
- /* Valid guest memory pages must be < this. */
- u32 pfn_limit;
-
- /* Device memory is >= pfn_limit and < device_limit. */
- u32 device_limit;
-
- /*
- * This provides the offset to the base of guest-physical memory in the
- * Launcher.
- */
- void __user *mem_base;
- unsigned long kernel_address;
-
- struct pgdir pgdirs[4];
-
- unsigned long noirq_iret;
-
- unsigned int stack_pages;
- u32 tsc_khz;
-
- /* Dead? */
- const char *dead;
-};
-
-extern struct mutex lguest_lock;
-
-/* core.c: */
-bool lguest_address_ok(const struct lguest *lg,
- unsigned long addr, unsigned long len);
-void __lgread(struct lg_cpu *, void *, unsigned long, unsigned);
-void __lgwrite(struct lg_cpu *, unsigned long, const void *, unsigned);
-extern struct page **lg_switcher_pages;
-
-/*H:035
- * Using memory-copy operations like that is usually inconvient, so we
- * have the following helper macros which read and write a specific type (often
- * an unsigned long).
- *
- * This reads into a variable of the given type then returns that.
- */
-#define lgread(cpu, addr, type) \
- ({ type _v; __lgread((cpu), &_v, (addr), sizeof(_v)); _v; })
-
-/* This checks that the variable is of the given type, then writes it out. */
-#define lgwrite(cpu, addr, type, val) \
- do { \
- typecheck(type, val); \
- __lgwrite((cpu), (addr), &(val), sizeof(val)); \
- } while(0)
-/* (end of memory access helper routines) :*/
-
-int run_guest(struct lg_cpu *cpu, unsigned long __user *user);
-
-/*
- * Helper macros to obtain the first 12 or the last 20 bits, this is only the
- * first step in the migration to the kernel types. pte_pfn is already defined
- * in the kernel.
- */
-#define pgd_flags(x) (pgd_val(x) & ~PAGE_MASK)
-#define pgd_pfn(x) (pgd_val(x) >> PAGE_SHIFT)
-#define pmd_flags(x) (pmd_val(x) & ~PAGE_MASK)
-#define pmd_pfn(x) (pmd_val(x) >> PAGE_SHIFT)
-
-/* interrupts_and_traps.c: */
-unsigned int interrupt_pending(struct lg_cpu *cpu, bool *more);
-void try_deliver_interrupt(struct lg_cpu *cpu, unsigned int irq, bool more);
-void set_interrupt(struct lg_cpu *cpu, unsigned int irq);
-bool deliver_trap(struct lg_cpu *cpu, unsigned int num);
-void load_guest_idt_entry(struct lg_cpu *cpu, unsigned int i,
- u32 low, u32 hi);
-void guest_set_stack(struct lg_cpu *cpu, u32 seg, u32 esp, unsigned int pages);
-void pin_stack_pages(struct lg_cpu *cpu);
-void setup_default_idt_entries(struct lguest_ro_state *state,
- const unsigned long *def);
-void copy_traps(const struct lg_cpu *cpu, struct desc_struct *idt,
- const unsigned long *def);
-void guest_set_clockevent(struct lg_cpu *cpu, unsigned long delta);
-bool send_notify_to_eventfd(struct lg_cpu *cpu);
-void init_clockdev(struct lg_cpu *cpu);
-bool check_syscall_vector(struct lguest *lg);
-bool could_be_syscall(unsigned int num);
-int init_interrupts(void);
-void free_interrupts(void);
-
-/* segments.c: */
-void setup_default_gdt_entries(struct lguest_ro_state *state);
-void setup_guest_gdt(struct lg_cpu *cpu);
-void load_guest_gdt_entry(struct lg_cpu *cpu, unsigned int i,
- u32 low, u32 hi);
-void guest_load_tls(struct lg_cpu *cpu, unsigned long tls_array);
-void copy_gdt(const struct lg_cpu *cpu, struct desc_struct *gdt);
-void copy_gdt_tls(const struct lg_cpu *cpu, struct desc_struct *gdt);
-
-/* page_tables.c: */
-int init_guest_pagetable(struct lguest *lg);
-void free_guest_pagetable(struct lguest *lg);
-void guest_new_pagetable(struct lg_cpu *cpu, unsigned long pgtable);
-void guest_set_pgd(struct lguest *lg, unsigned long gpgdir, u32 i);
-#ifdef CONFIG_X86_PAE
-void guest_set_pmd(struct lguest *lg, unsigned long gpgdir, u32 i);
-#endif
-void guest_pagetable_clear_all(struct lg_cpu *cpu);
-void guest_pagetable_flush_user(struct lg_cpu *cpu);
-void guest_set_pte(struct lg_cpu *cpu, unsigned long gpgdir,
- unsigned long vaddr, pte_t val);
-void map_switcher_in_guest(struct lg_cpu *cpu, struct lguest_pages *pages);
-bool demand_page(struct lg_cpu *cpu, unsigned long cr2, int errcode,
- unsigned long *iomem);
-void pin_page(struct lg_cpu *cpu, unsigned long vaddr);
-bool __guest_pa(struct lg_cpu *cpu, unsigned long vaddr, unsigned long *paddr);
-unsigned long guest_pa(struct lg_cpu *cpu, unsigned long vaddr);
-void page_table_guest_data_init(struct lg_cpu *cpu);
-
-/* <arch>/core.c: */
-void lguest_arch_host_init(void);
-void lguest_arch_host_fini(void);
-void lguest_arch_run_guest(struct lg_cpu *cpu);
-void lguest_arch_handle_trap(struct lg_cpu *cpu);
-int lguest_arch_init_hypercalls(struct lg_cpu *cpu);
-int lguest_arch_do_hcall(struct lg_cpu *cpu, struct hcall_args *args);
-void lguest_arch_setup_regs(struct lg_cpu *cpu, unsigned long start);
-unsigned long *lguest_arch_regptr(struct lg_cpu *cpu, size_t reg_off, bool any);
-
-/* <arch>/switcher.S: */
-extern char start_switcher_text[], end_switcher_text[], switch_to_guest[];
-
-/* lguest_user.c: */
-int lguest_device_init(void);
-void lguest_device_remove(void);
-
-/* hypercalls.c: */
-void do_hypercalls(struct lg_cpu *cpu);
-void write_timestamp(struct lg_cpu *cpu);
-
-/*L:035
- * Let's step aside for the moment, to study one important routine that's used
- * widely in the Host code.
- *
- * There are many cases where the Guest can do something invalid, like pass crap
- * to a hypercall. Since only the Guest kernel can make hypercalls, it's quite
- * acceptable to simply terminate the Guest and give the Launcher a nicely
- * formatted reason. It's also simpler for the Guest itself, which doesn't
- * need to check most hypercalls for "success"; if you're still running, it
- * succeeded.
- *
- * Once this is called, the Guest will never run again, so most Host code can
- * call this then continue as if nothing had happened. This means many
- * functions don't have to explicitly return an error code, which keeps the
- * code simple.
- *
- * It also means that this can be called more than once: only the first one is
- * remembered. The only trick is that we still need to kill the Guest even if
- * we can't allocate memory to store the reason. Linux has a neat way of
- * packing error codes into invalid pointers, so we use that here.
- *
- * Like any macro which uses an "if", it is safely wrapped in a run-once "do {
- * } while(0)".
- */
-#define kill_guest(cpu, fmt...) \
-do { \
- if (!(cpu)->lg->dead) { \
- (cpu)->lg->dead = kasprintf(GFP_ATOMIC, fmt); \
- if (!(cpu)->lg->dead) \
- (cpu)->lg->dead = ERR_PTR(-ENOMEM); \
- } \
-} while(0)
-/* (End of aside) :*/
-
-#endif /* __ASSEMBLY__ */
-#endif /* _LGUEST_H */
diff --git a/drivers/lguest/lguest_user.c b/drivers/lguest/lguest_user.c
deleted file mode 100644
index 1a6787bc9386..000000000000
--- a/drivers/lguest/lguest_user.c
+++ /dev/null
@@ -1,446 +0,0 @@
-/*P:200 This contains all the /dev/lguest code, whereby the userspace
- * launcher controls and communicates with the Guest. For example,
- * the first write will tell us the Guest's memory layout and entry
- * point. A read will run the Guest until something happens, such as
- * a signal or the Guest accessing a device.
-:*/
-#include <linux/uaccess.h>
-#include <linux/miscdevice.h>
-#include <linux/fs.h>
-#include <linux/sched.h>
-#include <linux/sched/mm.h>
-#include <linux/file.h>
-#include <linux/slab.h>
-#include <linux/export.h>
-#include "lg.h"
-
-/*L:052
- The Launcher can get the registers, and also set some of them.
-*/
-static int getreg_setup(struct lg_cpu *cpu, const unsigned long __user *input)
-{
- unsigned long which;
-
- /* We re-use the ptrace structure to specify which register to read. */
- if (get_user(which, input) != 0)
- return -EFAULT;
-
- /*
- * We set up the cpu register pointer, and their next read will
- * actually get the value (instead of running the guest).
- *
- * The last argument 'true' says we can access any register.
- */
- cpu->reg_read = lguest_arch_regptr(cpu, which, true);
- if (!cpu->reg_read)
- return -ENOENT;
-
- /* And because this is a write() call, we return the length used. */
- return sizeof(unsigned long) * 2;
-}
-
-static int setreg(struct lg_cpu *cpu, const unsigned long __user *input)
-{
- unsigned long which, value, *reg;
-
- /* We re-use the ptrace structure to specify which register to read. */
- if (get_user(which, input) != 0)
- return -EFAULT;
- input++;
- if (get_user(value, input) != 0)
- return -EFAULT;
-
- /* The last argument 'false' means we can't access all registers. */
- reg = lguest_arch_regptr(cpu, which, false);
- if (!reg)
- return -ENOENT;
-
- *reg = value;
-
- /* And because this is a write() call, we return the length used. */
- return sizeof(unsigned long) * 3;
-}
-
-/*L:050
- * Sending an interrupt is done by writing LHREQ_IRQ and an interrupt
- * number to /dev/lguest.
- */
-static int user_send_irq(struct lg_cpu *cpu, const unsigned long __user *input)
-{
- unsigned long irq;
-
- if (get_user(irq, input) != 0)
- return -EFAULT;
- if (irq >= LGUEST_IRQS)
- return -EINVAL;
-
- /*
- * Next time the Guest runs, the core code will see if it can deliver
- * this interrupt.
- */
- set_interrupt(cpu, irq);
- return 0;
-}
-
-/*L:053
- * Deliver a trap: this is used by the Launcher if it can't emulate
- * an instruction.
- */
-static int trap(struct lg_cpu *cpu, const unsigned long __user *input)
-{
- unsigned long trapnum;
-
- if (get_user(trapnum, input) != 0)
- return -EFAULT;
-
- if (!deliver_trap(cpu, trapnum))
- return -EINVAL;
-
- return 0;
-}
-
-/*L:040
- * Once our Guest is initialized, the Launcher makes it run by reading
- * from /dev/lguest.
- */
-static ssize_t read(struct file *file, char __user *user, size_t size,loff_t*o)
-{
- struct lguest *lg = file->private_data;
- struct lg_cpu *cpu;
- unsigned int cpu_id = *o;
-
- /* You must write LHREQ_INITIALIZE first! */
- if (!lg)
- return -EINVAL;
-
- /* Watch out for arbitrary vcpu indexes! */
- if (cpu_id >= lg->nr_cpus)
- return -EINVAL;
-
- cpu = &lg->cpus[cpu_id];
-
- /* If you're not the task which owns the Guest, go away. */
- if (current != cpu->tsk)
- return -EPERM;
-
- /* If the Guest is already dead, we indicate why */
- if (lg->dead) {
- size_t len;
-
- /* lg->dead either contains an error code, or a string. */
- if (IS_ERR(lg->dead))
- return PTR_ERR(lg->dead);
-
- /* We can only return as much as the buffer they read with. */
- len = min(size, strlen(lg->dead)+1);
- if (copy_to_user(user, lg->dead, len) != 0)
- return -EFAULT;
- return len;
- }
-
- /*
- * If we returned from read() last time because the Guest sent I/O,
- * clear the flag.
- */
- if (cpu->pending.trap)
- cpu->pending.trap = 0;
-
- /* Run the Guest until something interesting happens. */
- return run_guest(cpu, (unsigned long __user *)user);
-}
-
-/*L:025
- * This actually initializes a CPU. For the moment, a Guest is only
- * uniprocessor, so "id" is always 0.
- */
-static int lg_cpu_start(struct lg_cpu *cpu, unsigned id, unsigned long start_ip)
-{
- /* We have a limited number of CPUs in the lguest struct. */
- if (id >= ARRAY_SIZE(cpu->lg->cpus))
- return -EINVAL;
-
- /* Set up this CPU's id, and pointer back to the lguest struct. */
- cpu->id = id;
- cpu->lg = container_of(cpu, struct lguest, cpus[id]);
- cpu->lg->nr_cpus++;
-
- /* Each CPU has a timer it can set. */
- init_clockdev(cpu);
-
- /*
- * We need a complete page for the Guest registers: they are accessible
- * to the Guest and we can only grant it access to whole pages.
- */
- cpu->regs_page = get_zeroed_page(GFP_KERNEL);
- if (!cpu->regs_page)
- return -ENOMEM;
-
- /* We actually put the registers at the end of the page. */
- cpu->regs = (void *)cpu->regs_page + PAGE_SIZE - sizeof(*cpu->regs);
-
- /*
- * Now we initialize the Guest's registers, handing it the start
- * address.
- */
- lguest_arch_setup_regs(cpu, start_ip);
-
- /*
- * We keep a pointer to the Launcher task (ie. current task) for when
- * other Guests want to wake this one (eg. console input).
- */
- cpu->tsk = current;
-
- /*
- * We need to keep a pointer to the Launcher's memory map, because if
- * the Launcher dies we need to clean it up. If we don't keep a
- * reference, it is destroyed before close() is called.
- */
- cpu->mm = get_task_mm(cpu->tsk);
-
- /*
- * We remember which CPU's pages this Guest used last, for optimization
- * when the same Guest runs on the same CPU twice.
- */
- cpu->last_pages = NULL;
-
- /* No error == success. */
- return 0;
-}
-
-/*L:020
- * The initialization write supplies 3 pointer sized (32 or 64 bit) values (in
- * addition to the LHREQ_INITIALIZE value). These are:
- *
- * base: The start of the Guest-physical memory inside the Launcher memory.
- *
- * pfnlimit: The highest (Guest-physical) page number the Guest should be
- * allowed to access. The Guest memory lives inside the Launcher, so it sets
- * this to ensure the Guest can only reach its own memory.
- *
- * start: The first instruction to execute ("eip" in x86-speak).
- */
-static int initialize(struct file *file, const unsigned long __user *input)
-{
- /* "struct lguest" contains all we (the Host) know about a Guest. */
- struct lguest *lg;
- int err;
- unsigned long args[4];
-
- /*
- * We grab the Big Lguest lock, which protects against multiple
- * simultaneous initializations.
- */
- mutex_lock(&lguest_lock);
- /* You can't initialize twice! Close the device and start again... */
- if (file->private_data) {
- err = -EBUSY;
- goto unlock;
- }
-
- if (copy_from_user(args, input, sizeof(args)) != 0) {
- err = -EFAULT;
- goto unlock;
- }
-
- lg = kzalloc(sizeof(*lg), GFP_KERNEL);
- if (!lg) {
- err = -ENOMEM;
- goto unlock;
- }
-
- /* Populate the easy fields of our "struct lguest" */
- lg->mem_base = (void __user *)args[0];
- lg->pfn_limit = args[1];
- lg->device_limit = args[3];
-
- /* This is the first cpu (cpu 0) and it will start booting at args[2] */
- err = lg_cpu_start(&lg->cpus[0], 0, args[2]);
- if (err)
- goto free_lg;
-
- /*
- * Initialize the Guest's shadow page tables. This allocates
- * memory, so can fail.
- */
- err = init_guest_pagetable(lg);
- if (err)
- goto free_regs;
-
- /* We keep our "struct lguest" in the file's private_data. */
- file->private_data = lg;
-
- mutex_unlock(&lguest_lock);
-
- /* And because this is a write() call, we return the length used. */
- return sizeof(args);
-
-free_regs:
- /* FIXME: This should be in free_vcpu */
- free_page(lg->cpus[0].regs_page);
-free_lg:
- kfree(lg);
-unlock:
- mutex_unlock(&lguest_lock);
- return err;
-}
-
-/*L:010
- * The first operation the Launcher does must be a write. All writes
- * start with an unsigned long number: for the first write this must be
- * LHREQ_INITIALIZE to set up the Guest. After that the Launcher can use
- * writes of other values to send interrupts or set up receipt of notifications.
- *
- * Note that we overload the "offset" in the /dev/lguest file to indicate what
- * CPU number we're dealing with. Currently this is always 0 since we only
- * support uniprocessor Guests, but you can see the beginnings of SMP support
- * here.
- */
-static ssize_t write(struct file *file, const char __user *in,
- size_t size, loff_t *off)
-{
- /*
- * Once the Guest is initialized, we hold the "struct lguest" in the
- * file private data.
- */
- struct lguest *lg = file->private_data;
- const unsigned long __user *input = (const unsigned long __user *)in;
- unsigned long req;
- struct lg_cpu *uninitialized_var(cpu);
- unsigned int cpu_id = *off;
-
- /* The first value tells us what this request is. */
- if (get_user(req, input) != 0)
- return -EFAULT;
- input++;
-
- /* If you haven't initialized, you must do that first. */
- if (req != LHREQ_INITIALIZE) {
- if (!lg || (cpu_id >= lg->nr_cpus))
- return -EINVAL;
- cpu = &lg->cpus[cpu_id];
-
- /* Once the Guest is dead, you can only read() why it died. */
- if (lg->dead)
- return -ENOENT;
- }
-
- switch (req) {
- case LHREQ_INITIALIZE:
- return initialize(file, input);
- case LHREQ_IRQ:
- return user_send_irq(cpu, input);
- case LHREQ_GETREG:
- return getreg_setup(cpu, input);
- case LHREQ_SETREG:
- return setreg(cpu, input);
- case LHREQ_TRAP:
- return trap(cpu, input);
- default:
- return -EINVAL;
- }
-}
-
-static int open(struct inode *inode, struct file *file)
-{
- file->private_data = NULL;
-
- return 0;
-}
-
-/*L:060
- * The final piece of interface code is the close() routine. It reverses
- * everything done in initialize(). This is usually called because the
- * Launcher exited.
- *
- * Note that the close routine returns 0 or a negative error number: it can't
- * really fail, but it can whine. I blame Sun for this wart, and K&R C for
- * letting them do it.
-:*/
-static int close(struct inode *inode, struct file *file)
-{
- struct lguest *lg = file->private_data;
- unsigned int i;
-
- /* If we never successfully initialized, there's nothing to clean up */
- if (!lg)
- return 0;
-
- /*
- * We need the big lock, to protect from inter-guest I/O and other
- * Launchers initializing guests.
- */
- mutex_lock(&lguest_lock);
-
- /* Free up the shadow page tables for the Guest. */
- free_guest_pagetable(lg);
-
- for (i = 0; i < lg->nr_cpus; i++) {
- /* Cancels the hrtimer set via LHCALL_SET_CLOCKEVENT. */
- hrtimer_cancel(&lg->cpus[i].hrt);
- /* We can free up the register page we allocated. */
- free_page(lg->cpus[i].regs_page);
- /*
- * Now all the memory cleanups are done, it's safe to release
- * the Launcher's memory management structure.
- */
- mmput(lg->cpus[i].mm);
- }
-
- /*
- * If lg->dead doesn't contain an error code it will be NULL or a
- * kmalloc()ed string, either of which is ok to hand to kfree().
- */
- if (!IS_ERR(lg->dead))
- kfree(lg->dead);
- /* Free the memory allocated to the lguest_struct */
- kfree(lg);
- /* Release lock and exit. */
- mutex_unlock(&lguest_lock);
-
- return 0;
-}
-
-/*L:000
- * Welcome to our journey through the Launcher!
- *
- * The Launcher is the Host userspace program which sets up, runs and services
- * the Guest. In fact, many comments in the Drivers which refer to "the Host"
- * doing things are inaccurate: the Launcher does all the device handling for
- * the Guest, but the Guest can't know that.
- *
- * Just to confuse you: to the Host kernel, the Launcher *is* the Guest and we
- * shall see more of that later.
- *
- * We begin our understanding with the Host kernel interface which the Launcher
- * uses: reading and writing a character device called /dev/lguest. All the
- * work happens in the read(), write() and close() routines:
- */
-static const struct file_operations lguest_fops = {
- .owner = THIS_MODULE,
- .open = open,
- .release = close,
- .write = write,
- .read = read,
- .llseek = default_llseek,
-};
-/*:*/
-
-/*
- * This is a textbook example of a "misc" character device. Populate a "struct
- * miscdevice" and register it with misc_register().
- */
-static struct miscdevice lguest_dev = {
- .minor = MISC_DYNAMIC_MINOR,
- .name = "lguest",
- .fops = &lguest_fops,
-};
-
-int __init lguest_device_init(void)
-{
- return misc_register(&lguest_dev);
-}
-
-void __exit lguest_device_remove(void)
-{
- misc_deregister(&lguest_dev);
-}
diff --git a/drivers/lguest/page_tables.c b/drivers/lguest/page_tables.c
deleted file mode 100644
index 0bc127e9f16a..000000000000
--- a/drivers/lguest/page_tables.c
+++ /dev/null
@@ -1,1239 +0,0 @@
-/*P:700
- * The pagetable code, on the other hand, still shows the scars of
- * previous encounters. It's functional, and as neat as it can be in the
- * circumstances, but be wary, for these things are subtle and break easily.
- * The Guest provides a virtual to physical mapping, but we can neither trust
- * it nor use it: we verify and convert it here then point the CPU to the
- * converted Guest pages when running the Guest.
-:*/
-
-/* Copyright (C) Rusty Russell IBM Corporation 2013.
- * GPL v2 and any later version */
-#include <linux/mm.h>
-#include <linux/gfp.h>
-#include <linux/types.h>
-#include <linux/spinlock.h>
-#include <linux/random.h>
-#include <linux/percpu.h>
-#include <asm/tlbflush.h>
-#include <linux/uaccess.h>
-#include "lg.h"
-
-/*M:008
- * We hold reference to pages, which prevents them from being swapped.
- * It'd be nice to have a callback in the "struct mm_struct" when Linux wants
- * to swap out. If we had this, and a shrinker callback to trim PTE pages, we
- * could probably consider launching Guests as non-root.
-:*/
-
-/*H:300
- * The Page Table Code
- *
- * We use two-level page tables for the Guest, or three-level with PAE. If
- * you're not entirely comfortable with virtual addresses, physical addresses
- * and page tables then I recommend you review arch/x86/lguest/boot.c's "Page
- * Table Handling" (with diagrams!).
- *
- * The Guest keeps page tables, but we maintain the actual ones here: these are
- * called "shadow" page tables. Which is a very Guest-centric name: these are
- * the real page tables the CPU uses, although we keep them up to date to
- * reflect the Guest's. (See what I mean about weird naming? Since when do
- * shadows reflect anything?)
- *
- * Anyway, this is the most complicated part of the Host code. There are seven
- * parts to this:
- * (i) Looking up a page table entry when the Guest faults,
- * (ii) Making sure the Guest stack is mapped,
- * (iii) Setting up a page table entry when the Guest tells us one has changed,
- * (iv) Switching page tables,
- * (v) Flushing (throwing away) page tables,
- * (vi) Mapping the Switcher when the Guest is about to run,
- * (vii) Setting up the page tables initially.
-:*/
-
-/*
- * The Switcher uses the complete top PTE page. That's 1024 PTE entries (4MB)
- * or 512 PTE entries with PAE (2MB).
- */
-#define SWITCHER_PGD_INDEX (PTRS_PER_PGD - 1)
-
-/*
- * For PAE we need the PMD index as well. We use the last 2MB, so we
- * will need the last pmd entry of the last pmd page.
- */
-#ifdef CONFIG_X86_PAE
-#define CHECK_GPGD_MASK _PAGE_PRESENT
-#else
-#define CHECK_GPGD_MASK _PAGE_TABLE
-#endif
-
-/*H:320
- * The page table code is curly enough to need helper functions to keep it
- * clear and clean. The kernel itself provides many of them; one advantage
- * of insisting that the Guest and Host use the same CONFIG_X86_PAE setting.
- *
- * There are two functions which return pointers to the shadow (aka "real")
- * page tables.
- *
- * spgd_addr() takes the virtual address and returns a pointer to the top-level
- * page directory entry (PGD) for that address. Since we keep track of several
- * page tables, the "i" argument tells us which one we're interested in (it's
- * usually the current one).
- */
-static pgd_t *spgd_addr(struct lg_cpu *cpu, u32 i, unsigned long vaddr)
-{
- unsigned int index = pgd_index(vaddr);
-
- /* Return a pointer index'th pgd entry for the i'th page table. */
- return &cpu->lg->pgdirs[i].pgdir[index];
-}
-
-#ifdef CONFIG_X86_PAE
-/*
- * This routine then takes the PGD entry given above, which contains the
- * address of the PMD page. It then returns a pointer to the PMD entry for the
- * given address.
- */
-static pmd_t *spmd_addr(struct lg_cpu *cpu, pgd_t spgd, unsigned long vaddr)
-{
- unsigned int index = pmd_index(vaddr);
- pmd_t *page;
-
- /* You should never call this if the PGD entry wasn't valid */
- BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT));
- page = __va(pgd_pfn(spgd) << PAGE_SHIFT);
-
- return &page[index];
-}
-#endif
-
-/*
- * This routine then takes the page directory entry returned above, which
- * contains the address of the page table entry (PTE) page. It then returns a
- * pointer to the PTE entry for the given address.
- */
-static pte_t *spte_addr(struct lg_cpu *cpu, pgd_t spgd, unsigned long vaddr)
-{
-#ifdef CONFIG_X86_PAE
- pmd_t *pmd = spmd_addr(cpu, spgd, vaddr);
- pte_t *page = __va(pmd_pfn(*pmd) << PAGE_SHIFT);
-
- /* You should never call this if the PMD entry wasn't valid */
- BUG_ON(!(pmd_flags(*pmd) & _PAGE_PRESENT));
-#else
- pte_t *page = __va(pgd_pfn(spgd) << PAGE_SHIFT);
- /* You should never call this if the PGD entry wasn't valid */
- BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT));
-#endif
-
- return &page[pte_index(vaddr)];
-}
-
-/*
- * These functions are just like the above, except they access the Guest
- * page tables. Hence they return a Guest address.
- */
-static unsigned long gpgd_addr(struct lg_cpu *cpu, unsigned long vaddr)
-{
- unsigned int index = vaddr >> (PGDIR_SHIFT);
- return cpu->lg->pgdirs[cpu->cpu_pgd].gpgdir + index * sizeof(pgd_t);
-}
-
-#ifdef CONFIG_X86_PAE
-/* Follow the PGD to the PMD. */
-static unsigned long gpmd_addr(pgd_t gpgd, unsigned long vaddr)
-{
- unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT;
- BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT));
- return gpage + pmd_index(vaddr) * sizeof(pmd_t);
-}
-
-/* Follow the PMD to the PTE. */
-static unsigned long gpte_addr(struct lg_cpu *cpu,
- pmd_t gpmd, unsigned long vaddr)
-{
- unsigned long gpage = pmd_pfn(gpmd) << PAGE_SHIFT;
-
- BUG_ON(!(pmd_flags(gpmd) & _PAGE_PRESENT));
- return gpage + pte_index(vaddr) * sizeof(pte_t);
-}
-#else
-/* Follow the PGD to the PTE (no mid-level for !PAE). */
-static unsigned long gpte_addr(struct lg_cpu *cpu,
- pgd_t gpgd, unsigned long vaddr)
-{
- unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT;
-
- BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT));
- return gpage + pte_index(vaddr) * sizeof(pte_t);
-}
-#endif
-/*:*/
-
-/*M:007
- * get_pfn is slow: we could probably try to grab batches of pages here as
- * an optimization (ie. pre-faulting).
-:*/
-
-/*H:350
- * This routine takes a page number given by the Guest and converts it to
- * an actual, physical page number. It can fail for several reasons: the
- * virtual address might not be mapped by the Launcher, the write flag is set
- * and the page is read-only, or the write flag was set and the page was
- * shared so had to be copied, but we ran out of memory.
- *
- * This holds a reference to the page, so release_pte() is careful to put that
- * back.
- */
-static unsigned long get_pfn(unsigned long virtpfn, int write)
-{
- struct page *page;
-
- /* gup me one page at this address please! */
- if (get_user_pages_fast(virtpfn << PAGE_SHIFT, 1, write, &page) == 1)
- return page_to_pfn(page);
-
- /* This value indicates failure. */
- return -1UL;
-}
-
-/*H:340
- * Converting a Guest page table entry to a shadow (ie. real) page table
- * entry can be a little tricky. The flags are (almost) the same, but the
- * Guest PTE contains a virtual page number: the CPU needs the real page
- * number.
- */
-static pte_t gpte_to_spte(struct lg_cpu *cpu, pte_t gpte, int write)
-{
- unsigned long pfn, base, flags;
-
- /*
- * The Guest sets the global flag, because it thinks that it is using
- * PGE. We only told it to use PGE so it would tell us whether it was
- * flushing a kernel mapping or a userspace mapping. We don't actually
- * use the global bit, so throw it away.
- */
- flags = (pte_flags(gpte) & ~_PAGE_GLOBAL);
-
- /* The Guest's pages are offset inside the Launcher. */
- base = (unsigned long)cpu->lg->mem_base / PAGE_SIZE;
-
- /*
- * We need a temporary "unsigned long" variable to hold the answer from
- * get_pfn(), because it returns 0xFFFFFFFF on failure, which wouldn't
- * fit in spte.pfn. get_pfn() finds the real physical number of the
- * page, given the virtual number.
- */
- pfn = get_pfn(base + pte_pfn(gpte), write);
- if (pfn == -1UL) {
- kill_guest(cpu, "failed to get page %lu", pte_pfn(gpte));
- /*
- * When we destroy the Guest, we'll go through the shadow page
- * tables and release_pte() them. Make sure we don't think
- * this one is valid!
- */
- flags = 0;
- }
- /* Now we assemble our shadow PTE from the page number and flags. */
- return pfn_pte(pfn, __pgprot(flags));
-}
-
-/*H:460 And to complete the chain, release_pte() looks like this: */
-static void release_pte(pte_t pte)
-{
- /*
- * Remember that get_user_pages_fast() took a reference to the page, in
- * get_pfn()? We have to put it back now.
- */
- if (pte_flags(pte) & _PAGE_PRESENT)
- put_page(pte_page(pte));
-}
-/*:*/
-
-static bool gpte_in_iomem(struct lg_cpu *cpu, pte_t gpte)
-{
- /* We don't handle large pages. */
- if (pte_flags(gpte) & _PAGE_PSE)
- return false;
-
- return (pte_pfn(gpte) >= cpu->lg->pfn_limit
- && pte_pfn(gpte) < cpu->lg->device_limit);
-}
-
-static bool check_gpte(struct lg_cpu *cpu, pte_t gpte)
-{
- if ((pte_flags(gpte) & _PAGE_PSE) ||
- pte_pfn(gpte) >= cpu->lg->pfn_limit) {
- kill_guest(cpu, "bad page table entry");
- return false;
- }
- return true;
-}
-
-static bool check_gpgd(struct lg_cpu *cpu, pgd_t gpgd)
-{
- if ((pgd_flags(gpgd) & ~CHECK_GPGD_MASK) ||
- (pgd_pfn(gpgd) >= cpu->lg->pfn_limit)) {
- kill_guest(cpu, "bad page directory entry");
- return false;
- }
- return true;
-}
-
-#ifdef CONFIG_X86_PAE
-static bool check_gpmd(struct lg_cpu *cpu, pmd_t gpmd)
-{
- if ((pmd_flags(gpmd) & ~_PAGE_TABLE) ||
- (pmd_pfn(gpmd) >= cpu->lg->pfn_limit)) {
- kill_guest(cpu, "bad page middle directory entry");
- return false;
- }
- return true;
-}
-#endif
-
-/*H:331
- * This is the core routine to walk the shadow page tables and find the page
- * table entry for a specific address.
- *
- * If allocate is set, then we allocate any missing levels, setting the flags
- * on the new page directory and mid-level directories using the arguments
- * (which are copied from the Guest's page table entries).
- */
-static pte_t *find_spte(struct lg_cpu *cpu, unsigned long vaddr, bool allocate,
- int pgd_flags, int pmd_flags)
-{
- pgd_t *spgd;
- /* Mid level for PAE. */
-#ifdef CONFIG_X86_PAE
- pmd_t *spmd;
-#endif
-
- /* Get top level entry. */
- spgd = spgd_addr(cpu, cpu->cpu_pgd, vaddr);
- if (!(pgd_flags(*spgd) & _PAGE_PRESENT)) {
- /* No shadow entry: allocate a new shadow PTE page. */
- unsigned long ptepage;
-
- /* If they didn't want us to allocate anything, stop. */
- if (!allocate)
- return NULL;
-
- ptepage = get_zeroed_page(GFP_KERNEL);
- /*
- * This is not really the Guest's fault, but killing it is
- * simple for this corner case.
- */
- if (!ptepage) {
- kill_guest(cpu, "out of memory allocating pte page");
- return NULL;
- }
- /*
- * And we copy the flags to the shadow PGD entry. The page
- * number in the shadow PGD is the page we just allocated.
- */
- set_pgd(spgd, __pgd(__pa(ptepage) | pgd_flags));
- }
-
- /*
- * Intel's Physical Address Extension actually uses three levels of
- * page tables, so we need to look in the mid-level.
- */
-#ifdef CONFIG_X86_PAE
- /* Now look at the mid-level shadow entry. */
- spmd = spmd_addr(cpu, *spgd, vaddr);
-
- if (!(pmd_flags(*spmd) & _PAGE_PRESENT)) {
- /* No shadow entry: allocate a new shadow PTE page. */
- unsigned long ptepage;
-
- /* If they didn't want us to allocate anything, stop. */
- if (!allocate)
- return NULL;
-
- ptepage = get_zeroed_page(GFP_KERNEL);
-
- /*
- * This is not really the Guest's fault, but killing it is
- * simple for this corner case.
- */
- if (!ptepage) {
- kill_guest(cpu, "out of memory allocating pmd page");
- return NULL;
- }
-
- /*
- * And we copy the flags to the shadow PMD entry. The page
- * number in the shadow PMD is the page we just allocated.
- */
- set_pmd(spmd, __pmd(__pa(ptepage) | pmd_flags));
- }
-#endif
-
- /* Get the pointer to the shadow PTE entry we're going to set. */
- return spte_addr(cpu, *spgd, vaddr);
-}
-
-/*H:330
- * (i) Looking up a page table entry when the Guest faults.
- *
- * We saw this call in run_guest(): when we see a page fault in the Guest, we
- * come here. That's because we only set up the shadow page tables lazily as
- * they're needed, so we get page faults all the time and quietly fix them up
- * and return to the Guest without it knowing.
- *
- * If we fixed up the fault (ie. we mapped the address), this routine returns
- * true. Otherwise, it was a real fault and we need to tell the Guest.
- *
- * There's a corner case: they're trying to access memory between
- * pfn_limit and device_limit, which is I/O memory. In this case, we
- * return false and set @iomem to the physical address, so the the
- * Launcher can handle the instruction manually.
- */
-bool demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode,
- unsigned long *iomem)
-{
- unsigned long gpte_ptr;
- pte_t gpte;
- pte_t *spte;
- pmd_t gpmd;
- pgd_t gpgd;
-
- *iomem = 0;
-
- /* We never demand page the Switcher, so trying is a mistake. */
- if (vaddr >= switcher_addr)
- return false;
-
- /* First step: get the top-level Guest page table entry. */
- if (unlikely(cpu->linear_pages)) {
- /* Faking up a linear mapping. */
- gpgd = __pgd(CHECK_GPGD_MASK);
- } else {
- gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t);
- /* Toplevel not present? We can't map it in. */
- if (!(pgd_flags(gpgd) & _PAGE_PRESENT))
- return false;
-
- /*
- * This kills the Guest if it has weird flags or tries to
- * refer to a "physical" address outside the bounds.
- */
- if (!check_gpgd(cpu, gpgd))
- return false;
- }
-
- /* This "mid-level" entry is only used for non-linear, PAE mode. */
- gpmd = __pmd(_PAGE_TABLE);
-
-#ifdef CONFIG_X86_PAE
- if (likely(!cpu->linear_pages)) {
- gpmd = lgread(cpu, gpmd_addr(gpgd, vaddr), pmd_t);
- /* Middle level not present? We can't map it in. */
- if (!(pmd_flags(gpmd) & _PAGE_PRESENT))
- return false;
-
- /*
- * This kills the Guest if it has weird flags or tries to
- * refer to a "physical" address outside the bounds.
- */
- if (!check_gpmd(cpu, gpmd))
- return false;
- }
-
- /*
- * OK, now we look at the lower level in the Guest page table: keep its
- * address, because we might update it later.
- */
- gpte_ptr = gpte_addr(cpu, gpmd, vaddr);
-#else
- /*
- * OK, now we look at the lower level in the Guest page table: keep its
- * address, because we might update it later.
- */
- gpte_ptr = gpte_addr(cpu, gpgd, vaddr);
-#endif
-
- if (unlikely(cpu->linear_pages)) {
- /* Linear? Make up a PTE which points to same page. */
- gpte = __pte((vaddr & PAGE_MASK) | _PAGE_RW | _PAGE_PRESENT);
- } else {
- /* Read the actual PTE value. */
- gpte = lgread(cpu, gpte_ptr, pte_t);
- }
-
- /* If this page isn't in the Guest page tables, we can't page it in. */
- if (!(pte_flags(gpte) & _PAGE_PRESENT))
- return false;
-
- /*
- * Check they're not trying to write to a page the Guest wants
- * read-only (bit 2 of errcode == write).
- */
- if ((errcode & 2) && !(pte_flags(gpte) & _PAGE_RW))
- return false;
-
- /* User access to a kernel-only page? (bit 3 == user access) */
- if ((errcode & 4) && !(pte_flags(gpte) & _PAGE_USER))
- return false;
-
- /* If they're accessing io memory, we expect a fault. */
- if (gpte_in_iomem(cpu, gpte)) {
- *iomem = (pte_pfn(gpte) << PAGE_SHIFT) | (vaddr & ~PAGE_MASK);
- return false;
- }
-
- /*
- * Check that the Guest PTE flags are OK, and the page number is below
- * the pfn_limit (ie. not mapping the Launcher binary).
- */
- if (!check_gpte(cpu, gpte))
- return false;
-
- /* Add the _PAGE_ACCESSED and (for a write) _PAGE_DIRTY flag */
- gpte = pte_mkyoung(gpte);
- if (errcode & 2)
- gpte = pte_mkdirty(gpte);
-
- /* Get the pointer to the shadow PTE entry we're going to set. */
- spte = find_spte(cpu, vaddr, true, pgd_flags(gpgd), pmd_flags(gpmd));
- if (!spte)
- return false;
-
- /*
- * If there was a valid shadow PTE entry here before, we release it.
- * This can happen with a write to a previously read-only entry.
- */
- release_pte(*spte);
-
- /*
- * If this is a write, we insist that the Guest page is writable (the
- * final arg to gpte_to_spte()).
- */
- if (pte_dirty(gpte))
- *spte = gpte_to_spte(cpu, gpte, 1);
- else
- /*
- * If this is a read, don't set the "writable" bit in the page
- * table entry, even if the Guest says it's writable. That way
- * we will come back here when a write does actually occur, so
- * we can update the Guest's _PAGE_DIRTY flag.
- */
- set_pte(spte, gpte_to_spte(cpu, pte_wrprotect(gpte), 0));
-
- /*
- * Finally, we write the Guest PTE entry back: we've set the
- * _PAGE_ACCESSED and maybe the _PAGE_DIRTY flags.
- */
- if (likely(!cpu->linear_pages))
- lgwrite(cpu, gpte_ptr, pte_t, gpte);
-
- /*
- * The fault is fixed, the page table is populated, the mapping
- * manipulated, the result returned and the code complete. A small
- * delay and a trace of alliteration are the only indications the Guest
- * has that a page fault occurred at all.
- */
- return true;
-}
-
-/*H:360
- * (ii) Making sure the Guest stack is mapped.
- *
- * Remember that direct traps into the Guest need a mapped Guest kernel stack.
- * pin_stack_pages() calls us here: we could simply call demand_page(), but as
- * we've seen that logic is quite long, and usually the stack pages are already
- * mapped, so it's overkill.
- *
- * This is a quick version which answers the question: is this virtual address
- * mapped by the shadow page tables, and is it writable?
- */
-static bool page_writable(struct lg_cpu *cpu, unsigned long vaddr)
-{
- pte_t *spte;
- unsigned long flags;
-
- /* You can't put your stack in the Switcher! */
- if (vaddr >= switcher_addr)
- return false;
-
- /* If there's no shadow PTE, it's not writable. */
- spte = find_spte(cpu, vaddr, false, 0, 0);
- if (!spte)
- return false;
-
- /*
- * Check the flags on the pte entry itself: it must be present and
- * writable.
- */
- flags = pte_flags(*spte);
- return (flags & (_PAGE_PRESENT|_PAGE_RW)) == (_PAGE_PRESENT|_PAGE_RW);
-}
-
-/*
- * So, when pin_stack_pages() asks us to pin a page, we check if it's already
- * in the page tables, and if not, we call demand_page() with error code 2
- * (meaning "write").
- */
-void pin_page(struct lg_cpu *cpu, unsigned long vaddr)
-{
- unsigned long iomem;
-
- if (!page_writable(cpu, vaddr) && !demand_page(cpu, vaddr, 2, &iomem))
- kill_guest(cpu, "bad stack page %#lx", vaddr);
-}
-/*:*/
-
-#ifdef CONFIG_X86_PAE
-static void release_pmd(pmd_t *spmd)
-{
- /* If the entry's not present, there's nothing to release. */
- if (pmd_flags(*spmd) & _PAGE_PRESENT) {
- unsigned int i;
- pte_t *ptepage = __va(pmd_pfn(*spmd) << PAGE_SHIFT);
- /* For each entry in the page, we might need to release it. */
- for (i = 0; i < PTRS_PER_PTE; i++)
- release_pte(ptepage[i]);
- /* Now we can free the page of PTEs */
- free_page((long)ptepage);
- /* And zero out the PMD entry so we never release it twice. */
- set_pmd(spmd, __pmd(0));
- }
-}
-
-static void release_pgd(pgd_t *spgd)
-{
- /* If the entry's not present, there's nothing to release. */
- if (pgd_flags(*spgd) & _PAGE_PRESENT) {
- unsigned int i;
- pmd_t *pmdpage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
-
- for (i = 0; i < PTRS_PER_PMD; i++)
- release_pmd(&pmdpage[i]);
-
- /* Now we can free the page of PMDs */
- free_page((long)pmdpage);
- /* And zero out the PGD entry so we never release it twice. */
- set_pgd(spgd, __pgd(0));
- }
-}
-
-#else /* !CONFIG_X86_PAE */
-/*H:450
- * If we chase down the release_pgd() code, the non-PAE version looks like
- * this. The PAE version is almost identical, but instead of calling
- * release_pte it calls release_pmd(), which looks much like this.
- */
-static void release_pgd(pgd_t *spgd)
-{
- /* If the entry's not present, there's nothing to release. */
- if (pgd_flags(*spgd) & _PAGE_PRESENT) {
- unsigned int i;
- /*
- * Converting the pfn to find the actual PTE page is easy: turn
- * the page number into a physical address, then convert to a
- * virtual address (easy for kernel pages like this one).
- */
- pte_t *ptepage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
- /* For each entry in the page, we might need to release it. */
- for (i = 0; i < PTRS_PER_PTE; i++)
- release_pte(ptepage[i]);
- /* Now we can free the page of PTEs */
- free_page((long)ptepage);
- /* And zero out the PGD entry so we never release it twice. */
- *spgd = __pgd(0);
- }
-}
-#endif
-
-/*H:445
- * We saw flush_user_mappings() twice: once from the flush_user_mappings()
- * hypercall and once in new_pgdir() when we re-used a top-level pgdir page.
- * It simply releases every PTE page from 0 up to the Guest's kernel address.
- */
-static void flush_user_mappings(struct lguest *lg, int idx)
-{
- unsigned int i;
- /* Release every pgd entry up to the kernel's address. */
- for (i = 0; i < pgd_index(lg->kernel_address); i++)
- release_pgd(lg->pgdirs[idx].pgdir + i);
-}
-
-/*H:440
- * (v) Flushing (throwing away) page tables,
- *
- * The Guest has a hypercall to throw away the page tables: it's used when a
- * large number of mappings have been changed.
- */
-void guest_pagetable_flush_user(struct lg_cpu *cpu)
-{
- /* Drop the userspace part of the current page table. */
- flush_user_mappings(cpu->lg, cpu->cpu_pgd);
-}
-/*:*/
-
-/* We walk down the guest page tables to get a guest-physical address */
-bool __guest_pa(struct lg_cpu *cpu, unsigned long vaddr, unsigned long *paddr)
-{
- pgd_t gpgd;
- pte_t gpte;
-#ifdef CONFIG_X86_PAE
- pmd_t gpmd;
-#endif
-
- /* Still not set up? Just map 1:1. */
- if (unlikely(cpu->linear_pages)) {
- *paddr = vaddr;
- return true;
- }
-
- /* First step: get the top-level Guest page table entry. */
- gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t);
- /* Toplevel not present? We can't map it in. */
- if (!(pgd_flags(gpgd) & _PAGE_PRESENT))
- goto fail;
-
-#ifdef CONFIG_X86_PAE
- gpmd = lgread(cpu, gpmd_addr(gpgd, vaddr), pmd_t);
- if (!(pmd_flags(gpmd) & _PAGE_PRESENT))
- goto fail;
- gpte = lgread(cpu, gpte_addr(cpu, gpmd, vaddr), pte_t);
-#else
- gpte = lgread(cpu, gpte_addr(cpu, gpgd, vaddr), pte_t);
-#endif
- if (!(pte_flags(gpte) & _PAGE_PRESENT))
- goto fail;
-
- *paddr = pte_pfn(gpte) * PAGE_SIZE | (vaddr & ~PAGE_MASK);
- return true;
-
-fail:
- *paddr = -1UL;
- return false;
-}
-
-/*
- * This is the version we normally use: kills the Guest if it uses a
- * bad address
- */
-unsigned long guest_pa(struct lg_cpu *cpu, unsigned long vaddr)
-{
- unsigned long paddr;
-
- if (!__guest_pa(cpu, vaddr, &paddr))
- kill_guest(cpu, "Bad address %#lx", vaddr);
- return paddr;
-}
-
-/*
- * We keep several page tables. This is a simple routine to find the page
- * table (if any) corresponding to this top-level address the Guest has given
- * us.
- */
-static unsigned int find_pgdir(struct lguest *lg, unsigned long pgtable)
-{
- unsigned int i;
- for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
- if (lg->pgdirs[i].pgdir && lg->pgdirs[i].gpgdir == pgtable)
- break;
- return i;
-}
-
-/*H:435
- * And this is us, creating the new page directory. If we really do
- * allocate a new one (and so the kernel parts are not there), we set
- * blank_pgdir.
- */
-static unsigned int new_pgdir(struct lg_cpu *cpu,
- unsigned long gpgdir,
- int *blank_pgdir)
-{
- unsigned int next;
-
- /*
- * We pick one entry at random to throw out. Choosing the Least
- * Recently Used might be better, but this is easy.
- */
- next = prandom_u32() % ARRAY_SIZE(cpu->lg->pgdirs);
- /* If it's never been allocated at all before, try now. */
- if (!cpu->lg->pgdirs[next].pgdir) {
- cpu->lg->pgdirs[next].pgdir =
- (pgd_t *)get_zeroed_page(GFP_KERNEL);
- /* If the allocation fails, just keep using the one we have */
- if (!cpu->lg->pgdirs[next].pgdir)
- next = cpu->cpu_pgd;
- else {
- /*
- * This is a blank page, so there are no kernel
- * mappings: caller must map the stack!
- */
- *blank_pgdir = 1;
- }
- }
- /* Record which Guest toplevel this shadows. */
- cpu->lg->pgdirs[next].gpgdir = gpgdir;
- /* Release all the non-kernel mappings. */
- flush_user_mappings(cpu->lg, next);
-
- /* This hasn't run on any CPU at all. */
- cpu->lg->pgdirs[next].last_host_cpu = -1;
-
- return next;
-}
-
-/*H:501
- * We do need the Switcher code mapped at all times, so we allocate that
- * part of the Guest page table here. We map the Switcher code immediately,
- * but defer mapping of the guest register page and IDT/LDT etc page until
- * just before we run the guest in map_switcher_in_guest().
- *
- * We *could* do this setup in map_switcher_in_guest(), but at that point
- * we've interrupts disabled, and allocating pages like that is fraught: we
- * can't sleep if we need to free up some memory.
- */
-static bool allocate_switcher_mapping(struct lg_cpu *cpu)
-{
- int i;
-
- for (i = 0; i < TOTAL_SWITCHER_PAGES; i++) {
- pte_t *pte = find_spte(cpu, switcher_addr + i * PAGE_SIZE, true,
- CHECK_GPGD_MASK, _PAGE_TABLE);
- if (!pte)
- return false;
-
- /*
- * Map the switcher page if not already there. It might
- * already be there because we call allocate_switcher_mapping()
- * in guest_set_pgd() just in case it did discard our Switcher
- * mapping, but it probably didn't.
- */
- if (i == 0 && !(pte_flags(*pte) & _PAGE_PRESENT)) {
- /* Get a reference to the Switcher page. */
- get_page(lg_switcher_pages[0]);
- /* Create a read-only, exectuable, kernel-style PTE */
- set_pte(pte,
- mk_pte(lg_switcher_pages[0], PAGE_KERNEL_RX));
- }
- }
- cpu->lg->pgdirs[cpu->cpu_pgd].switcher_mapped = true;
- return true;
-}
-
-/*H:470
- * Finally, a routine which throws away everything: all PGD entries in all
- * the shadow page tables, including the Guest's kernel mappings. This is used
- * when we destroy the Guest.
- */
-static void release_all_pagetables(struct lguest *lg)
-{
- unsigned int i, j;
-
- /* Every shadow pagetable this Guest has */
- for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++) {
- if (!lg->pgdirs[i].pgdir)
- continue;
-
- /* Every PGD entry. */
- for (j = 0; j < PTRS_PER_PGD; j++)
- release_pgd(lg->pgdirs[i].pgdir + j);
- lg->pgdirs[i].switcher_mapped = false;
- lg->pgdirs[i].last_host_cpu = -1;
- }
-}
-
-/*
- * We also throw away everything when a Guest tells us it's changed a kernel
- * mapping. Since kernel mappings are in every page table, it's easiest to
- * throw them all away. This traps the Guest in amber for a while as
- * everything faults back in, but it's rare.
- */
-void guest_pagetable_clear_all(struct lg_cpu *cpu)
-{
- release_all_pagetables(cpu->lg);
- /* We need the Guest kernel stack mapped again. */
- pin_stack_pages(cpu);
- /* And we need Switcher allocated. */
- if (!allocate_switcher_mapping(cpu))
- kill_guest(cpu, "Cannot populate switcher mapping");
-}
-
-/*H:430
- * (iv) Switching page tables
- *
- * Now we've seen all the page table setting and manipulation, let's see
- * what happens when the Guest changes page tables (ie. changes the top-level
- * pgdir). This occurs on almost every context switch.
- */
-void guest_new_pagetable(struct lg_cpu *cpu, unsigned long pgtable)
-{
- int newpgdir, repin = 0;
-
- /*
- * The very first time they call this, we're actually running without
- * any page tables; we've been making it up. Throw them away now.
- */
- if (unlikely(cpu->linear_pages)) {
- release_all_pagetables(cpu->lg);
- cpu->linear_pages = false;
- /* Force allocation of a new pgdir. */
- newpgdir = ARRAY_SIZE(cpu->lg->pgdirs);
- } else {
- /* Look to see if we have this one already. */
- newpgdir = find_pgdir(cpu->lg, pgtable);
- }
-
- /*
- * If not, we allocate or mug an existing one: if it's a fresh one,
- * repin gets set to 1.
- */
- if (newpgdir == ARRAY_SIZE(cpu->lg->pgdirs))
- newpgdir = new_pgdir(cpu, pgtable, &repin);
- /* Change the current pgd index to the new one. */
- cpu->cpu_pgd = newpgdir;
- /*
- * If it was completely blank, we map in the Guest kernel stack and
- * the Switcher.
- */
- if (repin)
- pin_stack_pages(cpu);
-
- if (!cpu->lg->pgdirs[cpu->cpu_pgd].switcher_mapped) {
- if (!allocate_switcher_mapping(cpu))
- kill_guest(cpu, "Cannot populate switcher mapping");
- }
-}
-/*:*/
-
-/*M:009
- * Since we throw away all mappings when a kernel mapping changes, our
- * performance sucks for guests using highmem. In fact, a guest with
- * PAGE_OFFSET 0xc0000000 (the default) and more than about 700MB of RAM is
- * usually slower than a Guest with less memory.
- *
- * This, of course, cannot be fixed. It would take some kind of... well, I
- * don't know, but the term "puissant code-fu" comes to mind.
-:*/
-
-/*H:420
- * This is the routine which actually sets the page table entry for then
- * "idx"'th shadow page table.
- *
- * Normally, we can just throw out the old entry and replace it with 0: if they
- * use it demand_page() will put the new entry in. We need to do this anyway:
- * The Guest expects _PAGE_ACCESSED to be set on its PTE the first time a page
- * is read from, and _PAGE_DIRTY when it's written to.
- *
- * But Avi Kivity pointed out that most Operating Systems (Linux included) set
- * these bits on PTEs immediately anyway. This is done to save the CPU from
- * having to update them, but it helps us the same way: if they set
- * _PAGE_ACCESSED then we can put a read-only PTE entry in immediately, and if
- * they set _PAGE_DIRTY then we can put a writable PTE entry in immediately.
- */
-static void __guest_set_pte(struct lg_cpu *cpu, int idx,
- unsigned long vaddr, pte_t gpte)
-{
- /* Look up the matching shadow page directory entry. */
- pgd_t *spgd = spgd_addr(cpu, idx, vaddr);
-#ifdef CONFIG_X86_PAE
- pmd_t *spmd;
-#endif
-
- /* If the top level isn't present, there's no entry to update. */
- if (pgd_flags(*spgd) & _PAGE_PRESENT) {
-#ifdef CONFIG_X86_PAE
- spmd = spmd_addr(cpu, *spgd, vaddr);
- if (pmd_flags(*spmd) & _PAGE_PRESENT) {
-#endif
- /* Otherwise, start by releasing the existing entry. */
- pte_t *spte = spte_addr(cpu, *spgd, vaddr);
- release_pte(*spte);
-
- /*
- * If they're setting this entry as dirty or accessed,
- * we might as well put that entry they've given us in
- * now. This shaves 10% off a copy-on-write
- * micro-benchmark.
- */
- if ((pte_flags(gpte) & (_PAGE_DIRTY | _PAGE_ACCESSED))
- && !gpte_in_iomem(cpu, gpte)) {
- if (!check_gpte(cpu, gpte))
- return;
- set_pte(spte,
- gpte_to_spte(cpu, gpte,
- pte_flags(gpte) & _PAGE_DIRTY));
- } else {
- /*
- * Otherwise kill it and we can demand_page()
- * it in later.
- */
- set_pte(spte, __pte(0));
- }
-#ifdef CONFIG_X86_PAE
- }
-#endif
- }
-}
-
-/*H:410
- * Updating a PTE entry is a little trickier.
- *
- * We keep track of several different page tables (the Guest uses one for each
- * process, so it makes sense to cache at least a few). Each of these have
- * identical kernel parts: ie. every mapping above PAGE_OFFSET is the same for
- * all processes. So when the page table above that address changes, we update
- * all the page tables, not just the current one. This is rare.
- *
- * The benefit is that when we have to track a new page table, we can keep all
- * the kernel mappings. This speeds up context switch immensely.
- */
-void guest_set_pte(struct lg_cpu *cpu,
- unsigned long gpgdir, unsigned long vaddr, pte_t gpte)
-{
- /* We don't let you remap the Switcher; we need it to get back! */
- if (vaddr >= switcher_addr) {
- kill_guest(cpu, "attempt to set pte into Switcher pages");
- return;
- }
-
- /*
- * Kernel mappings must be changed on all top levels. Slow, but doesn't
- * happen often.
- */
- if (vaddr >= cpu->lg->kernel_address) {
- unsigned int i;
- for (i = 0; i < ARRAY_SIZE(cpu->lg->pgdirs); i++)
- if (cpu->lg->pgdirs[i].pgdir)
- __guest_set_pte(cpu, i, vaddr, gpte);
- } else {
- /* Is this page table one we have a shadow for? */
- int pgdir = find_pgdir(cpu->lg, gpgdir);
- if (pgdir != ARRAY_SIZE(cpu->lg->pgdirs))
- /* If so, do the update. */
- __guest_set_pte(cpu, pgdir, vaddr, gpte);
- }
-}
-
-/*H:400
- * (iii) Setting up a page table entry when the Guest tells us one has changed.
- *
- * Just like we did in interrupts_and_traps.c, it makes sense for us to deal
- * with the other side of page tables while we're here: what happens when the
- * Guest asks for a page table to be updated?
- *
- * We already saw that demand_page() will fill in the shadow page tables when
- * needed, so we can simply remove shadow page table entries whenever the Guest
- * tells us they've changed. When the Guest tries to use the new entry it will
- * fault and demand_page() will fix it up.
- *
- * So with that in mind here's our code to update a (top-level) PGD entry:
- */
-void guest_set_pgd(struct lguest *lg, unsigned long gpgdir, u32 idx)
-{
- int pgdir;
-
- if (idx > PTRS_PER_PGD) {
- kill_guest(&lg->cpus[0], "Attempt to set pgd %u/%u",
- idx, PTRS_PER_PGD);
- return;
- }
-
- /* If they're talking about a page table we have a shadow for... */
- pgdir = find_pgdir(lg, gpgdir);
- if (pgdir < ARRAY_SIZE(lg->pgdirs)) {
- /* ... throw it away. */
- release_pgd(lg->pgdirs[pgdir].pgdir + idx);
- /* That might have been the Switcher mapping, remap it. */
- if (!allocate_switcher_mapping(&lg->cpus[0])) {
- kill_guest(&lg->cpus[0],
- "Cannot populate switcher mapping");
- }
- lg->pgdirs[pgdir].last_host_cpu = -1;
- }
-}
-
-#ifdef CONFIG_X86_PAE
-/* For setting a mid-level, we just throw everything away. It's easy. */
-void guest_set_pmd(struct lguest *lg, unsigned long pmdp, u32 idx)
-{
- guest_pagetable_clear_all(&lg->cpus[0]);
-}
-#endif
-
-/*H:500
- * (vii) Setting up the page tables initially.
- *
- * When a Guest is first created, set initialize a shadow page table which
- * we will populate on future faults. The Guest doesn't have any actual
- * pagetables yet, so we set linear_pages to tell demand_page() to fake it
- * for the moment.
- *
- * We do need the Switcher to be mapped at all times, so we allocate that
- * part of the Guest page table here.
- */
-int init_guest_pagetable(struct lguest *lg)
-{
- struct lg_cpu *cpu = &lg->cpus[0];
- int allocated = 0;
-
- /* lg (and lg->cpus[]) starts zeroed: this allocates a new pgdir */
- cpu->cpu_pgd = new_pgdir(cpu, 0, &allocated);
- if (!allocated)
- return -ENOMEM;
-
- /* We start with a linear mapping until the initialize. */
- cpu->linear_pages = true;
-
- /* Allocate the page tables for the Switcher. */
- if (!allocate_switcher_mapping(cpu)) {
- release_all_pagetables(lg);
- return -ENOMEM;
- }
-
- return 0;
-}
-
-/*H:508 When the Guest calls LHCALL_LGUEST_INIT we do more setup. */
-void page_table_guest_data_init(struct lg_cpu *cpu)
-{
- /*
- * We tell the Guest that it can't use the virtual addresses
- * used by the Switcher. This trick is equivalent to 4GB -
- * switcher_addr.
- */
- u32 top = ~switcher_addr + 1;
-
- /* We get the kernel address: above this is all kernel memory. */
- if (get_user(cpu->lg->kernel_address,
- &cpu->lg->lguest_data->kernel_address)
- /*
- * We tell the Guest that it can't use the top virtual
- * addresses (used by the Switcher).
- */
- || put_user(top, &cpu->lg->lguest_data->reserve_mem)) {
- kill_guest(cpu, "bad guest page %p", cpu->lg->lguest_data);
- return;
- }
-
- /*
- * In flush_user_mappings() we loop from 0 to
- * "pgd_index(lg->kernel_address)". This assumes it won't hit the
- * Switcher mappings, so check that now.
- */
- if (cpu->lg->kernel_address >= switcher_addr)
- kill_guest(cpu, "bad kernel address %#lx",
- cpu->lg->kernel_address);
-}
-
-/* When a Guest dies, our cleanup is fairly simple. */
-void free_guest_pagetable(struct lguest *lg)
-{
- unsigned int i;
-
- /* Throw away all page table pages. */
- release_all_pagetables(lg);
- /* Now free the top levels: free_page() can handle 0 just fine. */
- for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
- free_page((long)lg->pgdirs[i].pgdir);
-}
-
-/*H:481
- * This clears the Switcher mappings for cpu #i.
- */
-static void remove_switcher_percpu_map(struct lg_cpu *cpu, unsigned int i)
-{
- unsigned long base = switcher_addr + PAGE_SIZE + i * PAGE_SIZE*2;
- pte_t *pte;
-
- /* Clear the mappings for both pages. */
- pte = find_spte(cpu, base, false, 0, 0);
- release_pte(*pte);
- set_pte(pte, __pte(0));
-
- pte = find_spte(cpu, base + PAGE_SIZE, false, 0, 0);
- release_pte(*pte);
- set_pte(pte, __pte(0));
-}
-
-/*H:480
- * (vi) Mapping the Switcher when the Guest is about to run.
- *
- * The Switcher and the two pages for this CPU need to be visible in the Guest
- * (and not the pages for other CPUs).
- *
- * The pages for the pagetables have all been allocated before: we just need
- * to make sure the actual PTEs are up-to-date for the CPU we're about to run
- * on.
- */
-void map_switcher_in_guest(struct lg_cpu *cpu, struct lguest_pages *pages)
-{
- unsigned long base;
- struct page *percpu_switcher_page, *regs_page;
- pte_t *pte;
- struct pgdir *pgdir = &cpu->lg->pgdirs[cpu->cpu_pgd];
-
- /* Switcher page should always be mapped by now! */
- BUG_ON(!pgdir->switcher_mapped);
-
- /*
- * Remember that we have two pages for each Host CPU, so we can run a
- * Guest on each CPU without them interfering. We need to make sure
- * those pages are mapped correctly in the Guest, but since we usually
- * run on the same CPU, we cache that, and only update the mappings
- * when we move.
- */
- if (pgdir->last_host_cpu == raw_smp_processor_id())
- return;
-
- /* -1 means unknown so we remove everything. */
- if (pgdir->last_host_cpu == -1) {
- unsigned int i;
- for_each_possible_cpu(i)
- remove_switcher_percpu_map(cpu, i);
- } else {
- /* We know exactly what CPU mapping to remove. */
- remove_switcher_percpu_map(cpu, pgdir->last_host_cpu);
- }
-
- /*
- * When we're running the Guest, we want the Guest's "regs" page to
- * appear where the first Switcher page for this CPU is. This is an
- * optimization: when the Switcher saves the Guest registers, it saves
- * them into the first page of this CPU's "struct lguest_pages": if we
- * make sure the Guest's register page is already mapped there, we
- * don't have to copy them out again.
- */
- /* Find the shadow PTE for this regs page. */
- base = switcher_addr + PAGE_SIZE
- + raw_smp_processor_id() * sizeof(struct lguest_pages);
- pte = find_spte(cpu, base, false, 0, 0);
- regs_page = pfn_to_page(__pa(cpu->regs_page) >> PAGE_SHIFT);
- get_page(regs_page);
- set_pte(pte, mk_pte(regs_page, __pgprot(__PAGE_KERNEL & ~_PAGE_GLOBAL)));
-
- /*
- * We map the second page of the struct lguest_pages read-only in
- * the Guest: the IDT, GDT and other things it's not supposed to
- * change.
- */
- pte = find_spte(cpu, base + PAGE_SIZE, false, 0, 0);
- percpu_switcher_page
- = lg_switcher_pages[1 + raw_smp_processor_id()*2 + 1];
- get_page(percpu_switcher_page);
- set_pte(pte, mk_pte(percpu_switcher_page,
- __pgprot(__PAGE_KERNEL_RO & ~_PAGE_GLOBAL)));
-
- pgdir->last_host_cpu = raw_smp_processor_id();
-}
-
-/*H:490
- * We've made it through the page table code. Perhaps our tired brains are
- * still processing the details, or perhaps we're simply glad it's over.
- *
- * If nothing else, note that all this complexity in juggling shadow page tables
- * in sync with the Guest's page tables is for one reason: for most Guests this
- * page table dance determines how bad performance will be. This is why Xen
- * uses exotic direct Guest pagetable manipulation, and why both Intel and AMD
- * have implemented shadow page table support directly into hardware.
- *
- * There is just one file remaining in the Host.
- */
diff --git a/drivers/lguest/segments.c b/drivers/lguest/segments.c
deleted file mode 100644
index c4fb424dfddb..000000000000
--- a/drivers/lguest/segments.c
+++ /dev/null
@@ -1,228 +0,0 @@
-/*P:600
- * The x86 architecture has segments, which involve a table of descriptors
- * which can be used to do funky things with virtual address interpretation.
- * We originally used to use segments so the Guest couldn't alter the
- * Guest<->Host Switcher, and then we had to trim Guest segments, and restore
- * for userspace per-thread segments, but trim again for on userspace->kernel
- * transitions... This nightmarish creation was contained within this file,
- * where we knew not to tread without heavy armament and a change of underwear.
- *
- * In these modern times, the segment handling code consists of simple sanity
- * checks, and the worst you'll experience reading this code is butterfly-rash
- * from frolicking through its parklike serenity.
-:*/
-#include "lg.h"
-
-/*H:600
- * Segments & The Global Descriptor Table
- *
- * (That title sounds like a bad Nerdcore group. Not to suggest that there are
- * any good Nerdcore groups, but in high school a friend of mine had a band
- * called Joe Fish and the Chips, so there are definitely worse band names).
- *
- * To refresh: the GDT is a table of 8-byte values describing segments. Once
- * set up, these segments can be loaded into one of the 6 "segment registers".
- *
- * GDT entries are passed around as "struct desc_struct"s, which like IDT
- * entries are split into two 32-bit members, "a" and "b". One day, someone
- * will clean that up, and be declared a Hero. (No pressure, I'm just saying).
- *
- * Anyway, the GDT entry contains a base (the start address of the segment), a
- * limit (the size of the segment - 1), and some flags. Sounds simple, and it
- * would be, except those zany Intel engineers decided that it was too boring
- * to put the base at one end, the limit at the other, and the flags in
- * between. They decided to shotgun the bits at random throughout the 8 bytes,
- * like so:
- *
- * 0 16 40 48 52 56 63
- * [ limit part 1 ][ base part 1 ][ flags ][li][fl][base ]
- * mit ags part 2
- * part 2
- *
- * As a result, this file contains a certain amount of magic numeracy. Let's
- * begin.
- */
-
-/*
- * There are several entries we don't let the Guest set. The TSS entry is the
- * "Task State Segment" which controls all kinds of delicate things. The
- * LGUEST_CS and LGUEST_DS entries are reserved for the Switcher, and the
- * the Guest can't be trusted to deal with double faults.
- */
-static bool ignored_gdt(unsigned int num)
-{
- return (num == GDT_ENTRY_TSS
- || num == GDT_ENTRY_LGUEST_CS
- || num == GDT_ENTRY_LGUEST_DS
- || num == GDT_ENTRY_DOUBLEFAULT_TSS);
-}
-
-/*H:630
- * Once the Guest gave us new GDT entries, we fix them up a little. We
- * don't care if they're invalid: the worst that can happen is a General
- * Protection Fault in the Switcher when it restores a Guest segment register
- * which tries to use that entry. Then we kill the Guest for causing such a
- * mess: the message will be "unhandled trap 256".
- */
-static void fixup_gdt_table(struct lg_cpu *cpu, unsigned start, unsigned end)
-{
- unsigned int i;
-
- for (i = start; i < end; i++) {
- /*
- * We never copy these ones to real GDT, so we don't care what
- * they say
- */
- if (ignored_gdt(i))
- continue;
-
- /*
- * Segment descriptors contain a privilege level: the Guest is
- * sometimes careless and leaves this as 0, even though it's
- * running at privilege level 1. If so, we fix it here.
- */
- if (cpu->arch.gdt[i].dpl == 0)
- cpu->arch.gdt[i].dpl |= GUEST_PL;
-
- /*
- * Each descriptor has an "accessed" bit. If we don't set it
- * now, the CPU will try to set it when the Guest first loads
- * that entry into a segment register. But the GDT isn't
- * writable by the Guest, so bad things can happen.
- */
- cpu->arch.gdt[i].type |= 0x1;
- }
-}
-
-/*H:610
- * Like the IDT, we never simply use the GDT the Guest gives us. We keep
- * a GDT for each CPU, and copy across the Guest's entries each time we want to
- * run the Guest on that CPU.
- *
- * This routine is called at boot or modprobe time for each CPU to set up the
- * constant GDT entries: the ones which are the same no matter what Guest we're
- * running.
- */
-void setup_default_gdt_entries(struct lguest_ro_state *state)
-{
- struct desc_struct *gdt = state->guest_gdt;
- unsigned long tss = (unsigned long)&state->guest_tss;
-
- /* The Switcher segments are full 0-4G segments, privilege level 0 */
- gdt[GDT_ENTRY_LGUEST_CS] = FULL_EXEC_SEGMENT;
- gdt[GDT_ENTRY_LGUEST_DS] = FULL_SEGMENT;
-
- /*
- * The TSS segment refers to the TSS entry for this particular CPU.
- */
- gdt[GDT_ENTRY_TSS].a = 0;
- gdt[GDT_ENTRY_TSS].b = 0;
-
- gdt[GDT_ENTRY_TSS].limit0 = 0x67;
- gdt[GDT_ENTRY_TSS].base0 = tss & 0xFFFF;
- gdt[GDT_ENTRY_TSS].base1 = (tss >> 16) & 0xFF;
- gdt[GDT_ENTRY_TSS].base2 = tss >> 24;
- gdt[GDT_ENTRY_TSS].type = 0x9; /* 32-bit TSS (available) */
- gdt[GDT_ENTRY_TSS].p = 0x1; /* Entry is present */
- gdt[GDT_ENTRY_TSS].dpl = 0x0; /* Privilege level 0 */
- gdt[GDT_ENTRY_TSS].s = 0x0; /* system segment */
-
-}
-
-/*
- * This routine sets up the initial Guest GDT for booting. All entries start
- * as 0 (unusable).
- */
-void setup_guest_gdt(struct lg_cpu *cpu)
-{
- /*
- * Start with full 0-4G segments...except the Guest is allowed to use
- * them, so set the privilege level appropriately in the flags.
- */
- cpu->arch.gdt[GDT_ENTRY_KERNEL_CS] = FULL_EXEC_SEGMENT;
- cpu->arch.gdt[GDT_ENTRY_KERNEL_DS] = FULL_SEGMENT;
- cpu->arch.gdt[GDT_ENTRY_KERNEL_CS].dpl |= GUEST_PL;
- cpu->arch.gdt[GDT_ENTRY_KERNEL_DS].dpl |= GUEST_PL;
-}
-
-/*H:650
- * An optimization of copy_gdt(), for just the three "thead-local storage"
- * entries.
- */
-void copy_gdt_tls(const struct lg_cpu *cpu, struct desc_struct *gdt)
-{
- unsigned int i;
-
- for (i = GDT_ENTRY_TLS_MIN; i <= GDT_ENTRY_TLS_MAX; i++)
- gdt[i] = cpu->arch.gdt[i];
-}
-
-/*H:640
- * When the Guest is run on a different CPU, or the GDT entries have changed,
- * copy_gdt() is called to copy the Guest's GDT entries across to this CPU's
- * GDT.
- */
-void copy_gdt(const struct lg_cpu *cpu, struct desc_struct *gdt)
-{
- unsigned int i;
-
- /*
- * The default entries from setup_default_gdt_entries() are not
- * replaced. See ignored_gdt() above.
- */
- for (i = 0; i < GDT_ENTRIES; i++)
- if (!ignored_gdt(i))
- gdt[i] = cpu->arch.gdt[i];
-}
-
-/*H:620
- * This is where the Guest asks us to load a new GDT entry
- * (LHCALL_LOAD_GDT_ENTRY). We tweak the entry and copy it in.
- */
-void load_guest_gdt_entry(struct lg_cpu *cpu, u32 num, u32 lo, u32 hi)
-{
- /*
- * We assume the Guest has the same number of GDT entries as the
- * Host, otherwise we'd have to dynamically allocate the Guest GDT.
- */
- if (num >= ARRAY_SIZE(cpu->arch.gdt)) {
- kill_guest(cpu, "too many gdt entries %i", num);
- return;
- }
-
- /* Set it up, then fix it. */
- cpu->arch.gdt[num].a = lo;
- cpu->arch.gdt[num].b = hi;
- fixup_gdt_table(cpu, num, num+1);
- /*
- * Mark that the GDT changed so the core knows it has to copy it again,
- * even if the Guest is run on the same CPU.
- */
- cpu->changed |= CHANGED_GDT;
-}
-
-/*
- * This is the fast-track version for just changing the three TLS entries.
- * Remember that this happens on every context switch, so it's worth
- * optimizing. But wouldn't it be neater to have a single hypercall to cover
- * both cases?
- */
-void guest_load_tls(struct lg_cpu *cpu, unsigned long gtls)
-{
- struct desc_struct *tls = &cpu->arch.gdt[GDT_ENTRY_TLS_MIN];
-
- __lgread(cpu, tls, gtls, sizeof(*tls)*GDT_ENTRY_TLS_ENTRIES);
- fixup_gdt_table(cpu, GDT_ENTRY_TLS_MIN, GDT_ENTRY_TLS_MAX+1);
- /* Note that just the TLS entries have changed. */
- cpu->changed |= CHANGED_GDT_TLS;
-}
-
-/*H:660
- * With this, we have finished the Host.
- *
- * Five of the seven parts of our task are complete. You have made it through
- * the Bit of Despair (I think that's somewhere in the page table code,
- * myself).
- *
- * Next, we examine "make Switcher". It's short, but intense.
- */
diff --git a/drivers/lguest/x86/core.c b/drivers/lguest/x86/core.c
deleted file mode 100644
index b4f79b923aea..000000000000
--- a/drivers/lguest/x86/core.c
+++ /dev/null
@@ -1,724 +0,0 @@
-/*
- * Copyright (C) 2006, Rusty Russell <rusty@rustcorp.com.au> IBM Corporation.
- * Copyright (C) 2007, Jes Sorensen <jes@sgi.com> SGI.
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
- * NON INFRINGEMENT. See the GNU General Public License for more
- * details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
- */
-/*P:450
- * This file contains the x86-specific lguest code. It used to be all
- * mixed in with drivers/lguest/core.c but several foolhardy code slashers
- * wrestled most of the dependencies out to here in preparation for porting
- * lguest to other architectures (see what I mean by foolhardy?).
- *
- * This also contains a couple of non-obvious setup and teardown pieces which
- * were implemented after days of debugging pain.
-:*/
-#include <linux/kernel.h>
-#include <linux/start_kernel.h>
-#include <linux/string.h>
-#include <linux/console.h>
-#include <linux/screen_info.h>
-#include <linux/irq.h>
-#include <linux/interrupt.h>
-#include <linux/clocksource.h>
-#include <linux/clockchips.h>
-#include <linux/cpu.h>
-#include <linux/lguest.h>
-#include <linux/lguest_launcher.h>
-#include <asm/paravirt.h>
-#include <asm/param.h>
-#include <asm/page.h>
-#include <asm/pgtable.h>
-#include <asm/desc.h>
-#include <asm/setup.h>
-#include <asm/lguest.h>
-#include <linux/uaccess.h>
-#include <asm/fpu/internal.h>
-#include <asm/tlbflush.h>
-#include "../lg.h"
-
-static int cpu_had_pge;
-
-static struct {
- unsigned long offset;
- unsigned short segment;
-} lguest_entry;
-
-/* Offset from where switcher.S was compiled to where we've copied it */
-static unsigned long switcher_offset(void)
-{
- return switcher_addr - (unsigned long)start_switcher_text;
-}
-
-/* This cpu's struct lguest_pages (after the Switcher text page) */
-static struct lguest_pages *lguest_pages(unsigned int cpu)
-{
- return &(((struct lguest_pages *)(switcher_addr + PAGE_SIZE))[cpu]);
-}
-
-static DEFINE_PER_CPU(struct lg_cpu *, lg_last_cpu);
-
-/*S:010
- * We approach the Switcher.
- *
- * Remember that each CPU has two pages which are visible to the Guest when it
- * runs on that CPU. This has to contain the state for that Guest: we copy the
- * state in just before we run the Guest.
- *
- * Each Guest has "changed" flags which indicate what has changed in the Guest
- * since it last ran. We saw this set in interrupts_and_traps.c and
- * segments.c.
- */
-static void copy_in_guest_info(struct lg_cpu *cpu, struct lguest_pages *pages)
-{
- /*
- * Copying all this data can be quite expensive. We usually run the
- * same Guest we ran last time (and that Guest hasn't run anywhere else
- * meanwhile). If that's not the case, we pretend everything in the
- * Guest has changed.
- */
- if (__this_cpu_read(lg_last_cpu) != cpu || cpu->last_pages != pages) {
- __this_cpu_write(lg_last_cpu, cpu);
- cpu->last_pages = pages;
- cpu->changed = CHANGED_ALL;
- }
-
- /*
- * These copies are pretty cheap, so we do them unconditionally: */
- /* Save the current Host top-level page directory.
- */
- pages->state.host_cr3 = __pa(current->mm->pgd);
- /*
- * Set up the Guest's page tables to see this CPU's pages (and no
- * other CPU's pages).
- */
- map_switcher_in_guest(cpu, pages);
- /*
- * Set up the two "TSS" members which tell the CPU what stack to use
- * for traps which do directly into the Guest (ie. traps at privilege
- * level 1).
- */
- pages->state.guest_tss.sp1 = cpu->esp1;
- pages->state.guest_tss.ss1 = cpu->ss1;
-
- /* Copy direct-to-Guest trap entries. */
- if (cpu->changed & CHANGED_IDT)
- copy_traps(cpu, pages->state.guest_idt, default_idt_entries);
-
- /* Copy all GDT entries which the Guest can change. */
- if (cpu->changed & CHANGED_GDT)
- copy_gdt(cpu, pages->state.guest_gdt);
- /* If only the TLS entries have changed, copy them. */
- else if (cpu->changed & CHANGED_GDT_TLS)
- copy_gdt_tls(cpu, pages->state.guest_gdt);
-
- /* Mark the Guest as unchanged for next time. */
- cpu->changed = 0;
-}
-
-/* Finally: the code to actually call into the Switcher to run the Guest. */
-static void run_guest_once(struct lg_cpu *cpu, struct lguest_pages *pages)
-{
- /* This is a dummy value we need for GCC's sake. */
- unsigned int clobber;
-
- /*
- * Copy the guest-specific information into this CPU's "struct
- * lguest_pages".
- */
- copy_in_guest_info(cpu, pages);
-
- /*
- * Set the trap number to 256 (impossible value). If we fault while
- * switching to the Guest (bad segment registers or bug), this will
- * cause us to abort the Guest.
- */
- cpu->regs->trapnum = 256;
-
- /*
- * Now: we push the "eflags" register on the stack, then do an "lcall".
- * This is how we change from using the kernel code segment to using
- * the dedicated lguest code segment, as well as jumping into the
- * Switcher.
- *
- * The lcall also pushes the old code segment (KERNEL_CS) onto the
- * stack, then the address of this call. This stack layout happens to
- * exactly match the stack layout created by an interrupt...
- */
- asm volatile("pushf; lcall *%4"
- /*
- * This is how we tell GCC that %eax ("a") and %ebx ("b")
- * are changed by this routine. The "=" means output.
- */
- : "=a"(clobber), "=b"(clobber)
- /*
- * %eax contains the pages pointer. ("0" refers to the
- * 0-th argument above, ie "a"). %ebx contains the
- * physical address of the Guest's top-level page
- * directory.
- */
- : "0"(pages),
- "1"(__pa(cpu->lg->pgdirs[cpu->cpu_pgd].pgdir)),
- "m"(lguest_entry)
- /*
- * We tell gcc that all these registers could change,
- * which means we don't have to save and restore them in
- * the Switcher.
- */
- : "memory", "%edx", "%ecx", "%edi", "%esi");
-}
-/*:*/
-
-unsigned long *lguest_arch_regptr(struct lg_cpu *cpu, size_t reg_off, bool any)
-{
- switch (reg_off) {
- case offsetof(struct pt_regs, bx):
- return &cpu->regs->ebx;
- case offsetof(struct pt_regs, cx):
- return &cpu->regs->ecx;
- case offsetof(struct pt_regs, dx):
- return &cpu->regs->edx;
- case offsetof(struct pt_regs, si):
- return &cpu->regs->esi;
- case offsetof(struct pt_regs, di):
- return &cpu->regs->edi;
- case offsetof(struct pt_regs, bp):
- return &cpu->regs->ebp;
- case offsetof(struct pt_regs, ax):
- return &cpu->regs->eax;
- case offsetof(struct pt_regs, ip):
- return &cpu->regs->eip;
- case offsetof(struct pt_regs, sp):
- return &cpu->regs->esp;
- }
-
- /* Launcher can read these, but we don't allow any setting. */
- if (any) {
- switch (reg_off) {
- case offsetof(struct pt_regs, ds):
- return &cpu->regs->ds;
- case offsetof(struct pt_regs, es):
- return &cpu->regs->es;
- case offsetof(struct pt_regs, fs):
- return &cpu->regs->fs;
- case offsetof(struct pt_regs, gs):
- return &cpu->regs->gs;
- case offsetof(struct pt_regs, cs):
- return &cpu->regs->cs;
- case offsetof(struct pt_regs, flags):
- return &cpu->regs->eflags;
- case offsetof(struct pt_regs, ss):
- return &cpu->regs->ss;
- }
- }
-
- return NULL;
-}
-
-/*M:002
- * There are hooks in the scheduler which we can register to tell when we
- * get kicked off the CPU (preempt_notifier_register()). This would allow us
- * to lazily disable SYSENTER which would regain some performance, and should
- * also simplify copy_in_guest_info(). Note that we'd still need to restore
- * things when we exit to Launcher userspace, but that's fairly easy.
- *
- * We could also try using these hooks for PGE, but that might be too expensive.
- *
- * The hooks were designed for KVM, but we can also put them to good use.
-:*/
-
-/*H:040
- * This is the i386-specific code to setup and run the Guest. Interrupts
- * are disabled: we own the CPU.
- */
-void lguest_arch_run_guest(struct lg_cpu *cpu)
-{
- /*
- * SYSENTER is an optimized way of doing system calls. We can't allow
- * it because it always jumps to privilege level 0. A normal Guest
- * won't try it because we don't advertise it in CPUID, but a malicious
- * Guest (or malicious Guest userspace program) could, so we tell the
- * CPU to disable it before running the Guest.
- */
- if (boot_cpu_has(X86_FEATURE_SEP))
- wrmsr(MSR_IA32_SYSENTER_CS, 0, 0);
-
- /*
- * Now we actually run the Guest. It will return when something
- * interesting happens, and we can examine its registers to see what it
- * was doing.
- */
- run_guest_once(cpu, lguest_pages(raw_smp_processor_id()));
-
- /*
- * Note that the "regs" structure contains two extra entries which are
- * not really registers: a trap number which says what interrupt or
- * trap made the switcher code come back, and an error code which some
- * traps set.
- */
-
- /* Restore SYSENTER if it's supposed to be on. */
- if (boot_cpu_has(X86_FEATURE_SEP))
- wrmsr(MSR_IA32_SYSENTER_CS, __KERNEL_CS, 0);
-
- /*
- * If the Guest page faulted, then the cr2 register will tell us the
- * bad virtual address. We have to grab this now, because once we
- * re-enable interrupts an interrupt could fault and thus overwrite
- * cr2, or we could even move off to a different CPU.
- */
- if (cpu->regs->trapnum == 14)
- cpu->arch.last_pagefault = read_cr2();
- /*
- * Similarly, if we took a trap because the Guest used the FPU,
- * we have to restore the FPU it expects to see.
- * fpu__restore() may sleep and we may even move off to
- * a different CPU. So all the critical stuff should be done
- * before this.
- */
- else if (cpu->regs->trapnum == 7 && !fpregs_active())
- fpu__restore(&current->thread.fpu);
-}
-
-/*H:130
- * Now we've examined the hypercall code; our Guest can make requests.
- * Our Guest is usually so well behaved; it never tries to do things it isn't
- * allowed to, and uses hypercalls instead. Unfortunately, Linux's paravirtual
- * infrastructure isn't quite complete, because it doesn't contain replacements
- * for the Intel I/O instructions. As a result, the Guest sometimes fumbles
- * across one during the boot process as it probes for various things which are
- * usually attached to a PC.
- *
- * When the Guest uses one of these instructions, we get a trap (General
- * Protection Fault) and come here. We queue this to be sent out to the
- * Launcher to handle.
- */
-
-/*
- * The eip contains the *virtual* address of the Guest's instruction:
- * we copy the instruction here so the Launcher doesn't have to walk
- * the page tables to decode it. We handle the case (eg. in a kernel
- * module) where the instruction is over two pages, and the pages are
- * virtually but not physically contiguous.
- *
- * The longest possible x86 instruction is 15 bytes, but we don't handle
- * anything that strange.
- */
-static void copy_from_guest(struct lg_cpu *cpu,
- void *dst, unsigned long vaddr, size_t len)
-{
- size_t to_page_end = PAGE_SIZE - (vaddr % PAGE_SIZE);
- unsigned long paddr;
-
- BUG_ON(len > PAGE_SIZE);
-
- /* If it goes over a page, copy in two parts. */
- if (len > to_page_end) {
- /* But make sure the next page is mapped! */
- if (__guest_pa(cpu, vaddr + to_page_end, &paddr))
- copy_from_guest(cpu, dst + to_page_end,
- vaddr + to_page_end,
- len - to_page_end);
- else
- /* Otherwise fill with zeroes. */
- memset(dst + to_page_end, 0, len - to_page_end);
- len = to_page_end;
- }
-
- /* This will kill the guest if it isn't mapped, but that
- * shouldn't happen. */
- __lgread(cpu, dst, guest_pa(cpu, vaddr), len);
-}
-
-
-static void setup_emulate_insn(struct lg_cpu *cpu)
-{
- cpu->pending.trap = 13;
- copy_from_guest(cpu, cpu->pending.insn, cpu->regs->eip,
- sizeof(cpu->pending.insn));
-}
-
-static void setup_iomem_insn(struct lg_cpu *cpu, unsigned long iomem_addr)
-{
- cpu->pending.trap = 14;
- cpu->pending.addr = iomem_addr;
- copy_from_guest(cpu, cpu->pending.insn, cpu->regs->eip,
- sizeof(cpu->pending.insn));
-}
-
-/*H:050 Once we've re-enabled interrupts, we look at why the Guest exited. */
-void lguest_arch_handle_trap(struct lg_cpu *cpu)
-{
- unsigned long iomem_addr;
-
- switch (cpu->regs->trapnum) {
- case 13: /* We've intercepted a General Protection Fault. */
- /* Hand to Launcher to emulate those pesky IN and OUT insns */
- if (cpu->regs->errcode == 0) {
- setup_emulate_insn(cpu);
- return;
- }
- break;
- case 14: /* We've intercepted a Page Fault. */
- /*
- * The Guest accessed a virtual address that wasn't mapped.
- * This happens a lot: we don't actually set up most of the page
- * tables for the Guest at all when we start: as it runs it asks
- * for more and more, and we set them up as required. In this
- * case, we don't even tell the Guest that the fault happened.
- *
- * The errcode tells whether this was a read or a write, and
- * whether kernel or userspace code.
- */
- if (demand_page(cpu, cpu->arch.last_pagefault,
- cpu->regs->errcode, &iomem_addr))
- return;
-
- /* Was this an access to memory mapped IO? */
- if (iomem_addr) {
- /* Tell Launcher, let it handle it. */
- setup_iomem_insn(cpu, iomem_addr);
- return;
- }
-
- /*
- * OK, it's really not there (or not OK): the Guest needs to
- * know. We write out the cr2 value so it knows where the
- * fault occurred.
- *
- * Note that if the Guest were really messed up, this could
- * happen before it's done the LHCALL_LGUEST_INIT hypercall, so
- * lg->lguest_data could be NULL
- */
- if (cpu->lg->lguest_data &&
- put_user(cpu->arch.last_pagefault,
- &cpu->lg->lguest_data->cr2))
- kill_guest(cpu, "Writing cr2");
- break;
- case 7: /* We've intercepted a Device Not Available fault. */
- /* No special handling is needed here. */
- break;
- case 32 ... 255:
- /* This might be a syscall. */
- if (could_be_syscall(cpu->regs->trapnum))
- break;
-
- /*
- * Other values mean a real interrupt occurred, in which case
- * the Host handler has already been run. We just do a
- * friendly check if another process should now be run, then
- * return to run the Guest again.
- */
- cond_resched();
- return;
- case LGUEST_TRAP_ENTRY:
- /*
- * Our 'struct hcall_args' maps directly over our regs: we set
- * up the pointer now to indicate a hypercall is pending.
- */
- cpu->hcall = (struct hcall_args *)cpu->regs;
- return;
- }
-
- /* We didn't handle the trap, so it needs to go to the Guest. */
- if (!deliver_trap(cpu, cpu->regs->trapnum))
- /*
- * If the Guest doesn't have a handler (either it hasn't
- * registered any yet, or it's one of the faults we don't let
- * it handle), it dies with this cryptic error message.
- */
- kill_guest(cpu, "unhandled trap %li at %#lx (%#lx)",
- cpu->regs->trapnum, cpu->regs->eip,
- cpu->regs->trapnum == 14 ? cpu->arch.last_pagefault
- : cpu->regs->errcode);
-}
-
-/*
- * Now we can look at each of the routines this calls, in increasing order of
- * complexity: do_hypercalls(), emulate_insn(), maybe_do_interrupt(),
- * deliver_trap() and demand_page(). After all those, we'll be ready to
- * examine the Switcher, and our philosophical understanding of the Host/Guest
- * duality will be complete.
-:*/
-static void adjust_pge(void *on)
-{
- if (on)
- cr4_set_bits(X86_CR4_PGE);
- else
- cr4_clear_bits(X86_CR4_PGE);
-}
-
-/*H:020
- * Now the Switcher is mapped and every thing else is ready, we need to do
- * some more i386-specific initialization.
- */
-void __init lguest_arch_host_init(void)
-{
- int i;
-
- /*
- * Most of the x86/switcher_32.S doesn't care that it's been moved; on
- * Intel, jumps are relative, and it doesn't access any references to
- * external code or data.
- *
- * The only exception is the interrupt handlers in switcher.S: their
- * addresses are placed in a table (default_idt_entries), so we need to
- * update the table with the new addresses. switcher_offset() is a
- * convenience function which returns the distance between the
- * compiled-in switcher code and the high-mapped copy we just made.
- */
- for (i = 0; i < IDT_ENTRIES; i++)
- default_idt_entries[i] += switcher_offset();
-
- /*
- * Set up the Switcher's per-cpu areas.
- *
- * Each CPU gets two pages of its own within the high-mapped region
- * (aka. "struct lguest_pages"). Much of this can be initialized now,
- * but some depends on what Guest we are running (which is set up in
- * copy_in_guest_info()).
- */
- for_each_possible_cpu(i) {
- /* lguest_pages() returns this CPU's two pages. */
- struct lguest_pages *pages = lguest_pages(i);
- /* This is a convenience pointer to make the code neater. */
- struct lguest_ro_state *state = &pages->state;
-
- /*
- * The Global Descriptor Table: the Host has a different one
- * for each CPU. We keep a descriptor for the GDT which says
- * where it is and how big it is (the size is actually the last
- * byte, not the size, hence the "-1").
- */
- state->host_gdt_desc.size = GDT_SIZE-1;
- state->host_gdt_desc.address = (long)get_cpu_gdt_rw(i);
-
- /*
- * All CPUs on the Host use the same Interrupt Descriptor
- * Table, so we just use store_idt(), which gets this CPU's IDT
- * descriptor.
- */
- store_idt(&state->host_idt_desc);
-
- /*
- * The descriptors for the Guest's GDT and IDT can be filled
- * out now, too. We copy the GDT & IDT into ->guest_gdt and
- * ->guest_idt before actually running the Guest.
- */
- state->guest_idt_desc.size = sizeof(state->guest_idt)-1;
- state->guest_idt_desc.address = (long)&state->guest_idt;
- state->guest_gdt_desc.size = sizeof(state->guest_gdt)-1;
- state->guest_gdt_desc.address = (long)&state->guest_gdt;
-
- /*
- * We know where we want the stack to be when the Guest enters
- * the Switcher: in pages->regs. The stack grows upwards, so
- * we start it at the end of that structure.
- */
- state->guest_tss.sp0 = (long)(&pages->regs + 1);
- /*
- * And this is the GDT entry to use for the stack: we keep a
- * couple of special LGUEST entries.
- */
- state->guest_tss.ss0 = LGUEST_DS;
-
- /*
- * x86 can have a finegrained bitmap which indicates what I/O
- * ports the process can use. We set it to the end of our
- * structure, meaning "none".
- */
- state->guest_tss.io_bitmap_base = sizeof(state->guest_tss);
-
- /*
- * Some GDT entries are the same across all Guests, so we can
- * set them up now.
- */
- setup_default_gdt_entries(state);
- /* Most IDT entries are the same for all Guests, too.*/
- setup_default_idt_entries(state, default_idt_entries);
-
- /*
- * The Host needs to be able to use the LGUEST segments on this
- * CPU, too, so put them in the Host GDT.
- */
- get_cpu_gdt_rw(i)[GDT_ENTRY_LGUEST_CS] = FULL_EXEC_SEGMENT;
- get_cpu_gdt_rw(i)[GDT_ENTRY_LGUEST_DS] = FULL_SEGMENT;
- }
-
- /*
- * In the Switcher, we want the %cs segment register to use the
- * LGUEST_CS GDT entry: we've put that in the Host and Guest GDTs, so
- * it will be undisturbed when we switch. To change %cs and jump we
- * need this structure to feed to Intel's "lcall" instruction.
- */
- lguest_entry.offset = (long)switch_to_guest + switcher_offset();
- lguest_entry.segment = LGUEST_CS;
-
- /*
- * Finally, we need to turn off "Page Global Enable". PGE is an
- * optimization where page table entries are specially marked to show
- * they never change. The Host kernel marks all the kernel pages this
- * way because it's always present, even when userspace is running.
- *
- * Lguest breaks this: unbeknownst to the rest of the Host kernel, we
- * switch to the Guest kernel. If you don't disable this on all CPUs,
- * you'll get really weird bugs that you'll chase for two days.
- *
- * I used to turn PGE off every time we switched to the Guest and back
- * on when we return, but that slowed the Switcher down noticibly.
- */
-
- /*
- * We don't need the complexity of CPUs coming and going while we're
- * doing this.
- */
- get_online_cpus();
- if (boot_cpu_has(X86_FEATURE_PGE)) { /* We have a broader idea of "global". */
- /* Remember that this was originally set (for cleanup). */
- cpu_had_pge = 1;
- /*
- * adjust_pge is a helper function which sets or unsets the PGE
- * bit on its CPU, depending on the argument (0 == unset).
- */
- on_each_cpu(adjust_pge, (void *)0, 1);
- /* Turn off the feature in the global feature set. */
- clear_cpu_cap(&boot_cpu_data, X86_FEATURE_PGE);
- }
- put_online_cpus();
-}
-/*:*/
-
-void __exit lguest_arch_host_fini(void)
-{
- /* If we had PGE before we started, turn it back on now. */
- get_online_cpus();
- if (cpu_had_pge) {
- set_cpu_cap(&boot_cpu_data, X86_FEATURE_PGE);
- /* adjust_pge's argument "1" means set PGE. */
- on_each_cpu(adjust_pge, (void *)1, 1);
- }
- put_online_cpus();
-}
-
-
-/*H:122 The i386-specific hypercalls simply farm out to the right functions. */
-int lguest_arch_do_hcall(struct lg_cpu *cpu, struct hcall_args *args)
-{
- switch (args->arg0) {
- case LHCALL_LOAD_GDT_ENTRY:
- load_guest_gdt_entry(cpu, args->arg1, args->arg2, args->arg3);
- break;
- case LHCALL_LOAD_IDT_ENTRY:
- load_guest_idt_entry(cpu, args->arg1, args->arg2, args->arg3);
- break;
- case LHCALL_LOAD_TLS:
- guest_load_tls(cpu, args->arg1);
- break;
- default:
- /* Bad Guest. Bad! */
- return -EIO;
- }
- return 0;
-}
-
-/*H:126 i386-specific hypercall initialization: */
-int lguest_arch_init_hypercalls(struct lg_cpu *cpu)
-{
- u32 tsc_speed;
-
- /*
- * The pointer to the Guest's "struct lguest_data" is the only argument.
- * We check that address now.
- */
- if (!lguest_address_ok(cpu->lg, cpu->hcall->arg1,
- sizeof(*cpu->lg->lguest_data)))
- return -EFAULT;
-
- /*
- * Having checked it, we simply set lg->lguest_data to point straight
- * into the Launcher's memory at the right place and then use
- * copy_to_user/from_user from now on, instead of lgread/write. I put
- * this in to show that I'm not immune to writing stupid
- * optimizations.
- */
- cpu->lg->lguest_data = cpu->lg->mem_base + cpu->hcall->arg1;
-
- /*
- * We insist that the Time Stamp Counter exist and doesn't change with
- * cpu frequency. Some devious chip manufacturers decided that TSC
- * changes could be handled in software. I decided that time going
- * backwards might be good for benchmarks, but it's bad for users.
- *
- * We also insist that the TSC be stable: the kernel detects unreliable
- * TSCs for its own purposes, and we use that here.
- */
- if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC) && !check_tsc_unstable())
- tsc_speed = tsc_khz;
- else
- tsc_speed = 0;
- if (put_user(tsc_speed, &cpu->lg->lguest_data->tsc_khz))
- return -EFAULT;
-
- /* The interrupt code might not like the system call vector. */
- if (!check_syscall_vector(cpu->lg))
- kill_guest(cpu, "bad syscall vector");
-
- return 0;
-}
-/*:*/
-
-/*L:030
- * Most of the Guest's registers are left alone: we used get_zeroed_page() to
- * allocate the structure, so they will be 0.
- */
-void lguest_arch_setup_regs(struct lg_cpu *cpu, unsigned long start)
-{
- struct lguest_regs *regs = cpu->regs;
-
- /*
- * There are four "segment" registers which the Guest needs to boot:
- * The "code segment" register (cs) refers to the kernel code segment
- * __KERNEL_CS, and the "data", "extra" and "stack" segment registers
- * refer to the kernel data segment __KERNEL_DS.
- *
- * The privilege level is packed into the lower bits. The Guest runs
- * at privilege level 1 (GUEST_PL).
- */
- regs->ds = regs->es = regs->ss = __KERNEL_DS|GUEST_PL;
- regs->cs = __KERNEL_CS|GUEST_PL;
-
- /*
- * The "eflags" register contains miscellaneous flags. Bit 1 (0x002)
- * is supposed to always be "1". Bit 9 (0x200) controls whether
- * interrupts are enabled. We always leave interrupts enabled while
- * running the Guest.
- */
- regs->eflags = X86_EFLAGS_IF | X86_EFLAGS_FIXED;
-
- /*
- * The "Extended Instruction Pointer" register says where the Guest is
- * running.
- */
- regs->eip = start;
-
- /*
- * %esi points to our boot information, at physical address 0, so don't
- * touch it.
- */
-
- /* There are a couple of GDT entries the Guest expects at boot. */
- setup_guest_gdt(cpu);
-}
diff --git a/drivers/lguest/x86/switcher_32.S b/drivers/lguest/x86/switcher_32.S
deleted file mode 100644
index 40634b0db9f7..000000000000
--- a/drivers/lguest/x86/switcher_32.S
+++ /dev/null
@@ -1,388 +0,0 @@
-/*P:900
- * This is the Switcher: code which sits at 0xFFC00000 (or 0xFFE00000) astride
- * both the Host and Guest to do the low-level Guest<->Host switch. It is as
- * simple as it can be made, but it's naturally very specific to x86.
- *
- * You have now completed Preparation. If this has whet your appetite; if you
- * are feeling invigorated and refreshed then the next, more challenging stage
- * can be found in "make Guest".
- :*/
-
-/*M:012
- * Lguest is meant to be simple: my rule of thumb is that 1% more LOC must
- * gain at least 1% more performance. Since neither LOC nor performance can be
- * measured beforehand, it generally means implementing a feature then deciding
- * if it's worth it. And once it's implemented, who can say no?
- *
- * This is why I haven't implemented this idea myself. I want to, but I
- * haven't. You could, though.
- *
- * The main place where lguest performance sucks is Guest page faulting. When
- * a Guest userspace process hits an unmapped page we switch back to the Host,
- * walk the page tables, find it's not mapped, switch back to the Guest page
- * fault handler, which calls a hypercall to set the page table entry, then
- * finally returns to userspace. That's two round-trips.
- *
- * If we had a small walker in the Switcher, we could quickly check the Guest
- * page table and if the page isn't mapped, immediately reflect the fault back
- * into the Guest. This means the Switcher would have to know the top of the
- * Guest page table and the page fault handler address.
- *
- * For simplicity, the Guest should only handle the case where the privilege
- * level of the fault is 3 and probably only not present or write faults. It
- * should also detect recursive faults, and hand the original fault to the
- * Host (which is actually really easy).
- *
- * Two questions remain. Would the performance gain outweigh the complexity?
- * And who would write the verse documenting it?
-:*/
-
-/*M:011
- * Lguest64 handles NMI. This gave me NMI envy (until I looked at their
- * code). It's worth doing though, since it would let us use oprofile in the
- * Host when a Guest is running.
-:*/
-
-/*S:100
- * Welcome to the Switcher itself!
- *
- * This file contains the low-level code which changes the CPU to run the Guest
- * code, and returns to the Host when something happens. Understand this, and
- * you understand the heart of our journey.
- *
- * Because this is in assembler rather than C, our tale switches from prose to
- * verse. First I tried limericks:
- *
- * There once was an eax reg,
- * To which our pointer was fed,
- * It needed an add,
- * Which asm-offsets.h had
- * But this limerick is hurting my head.
- *
- * Next I tried haikus, but fitting the required reference to the seasons in
- * every stanza was quickly becoming tiresome:
- *
- * The %eax reg
- * Holds "struct lguest_pages" now:
- * Cherry blossoms fall.
- *
- * Then I started with Heroic Verse, but the rhyming requirement leeched away
- * the content density and led to some uniquely awful oblique rhymes:
- *
- * These constants are coming from struct offsets
- * For use within the asm switcher text.
- *
- * Finally, I settled for something between heroic hexameter, and normal prose
- * with inappropriate linebreaks. Anyway, it aint no Shakespeare.
- */
-
-// Not all kernel headers work from assembler
-// But these ones are needed: the ENTRY() define
-// And constants extracted from struct offsets
-// To avoid magic numbers and breakage:
-// Should they change the compiler can't save us
-// Down here in the depths of assembler code.
-#include <linux/linkage.h>
-#include <asm/asm-offsets.h>
-#include <asm/page.h>
-#include <asm/segment.h>
-#include <asm/lguest.h>
-
-// We mark the start of the code to copy
-// It's placed in .text tho it's never run here
-// You'll see the trick macro at the end
-// Which interleaves data and text to effect.
-.text
-ENTRY(start_switcher_text)
-
-// When we reach switch_to_guest we have just left
-// The safe and comforting shores of C code
-// %eax has the "struct lguest_pages" to use
-// Where we save state and still see it from the Guest
-// And %ebx holds the Guest shadow pagetable:
-// Once set we have truly left Host behind.
-ENTRY(switch_to_guest)
- // We told gcc all its regs could fade,
- // Clobbered by our journey into the Guest
- // We could have saved them, if we tried
- // But time is our master and cycles count.
-
- // Segment registers must be saved for the Host
- // We push them on the Host stack for later
- pushl %es
- pushl %ds
- pushl %gs
- pushl %fs
- // But the compiler is fickle, and heeds
- // No warning of %ebp clobbers
- // When frame pointers are used. That register
- // Must be saved and restored or chaos strikes.
- pushl %ebp
- // The Host's stack is done, now save it away
- // In our "struct lguest_pages" at offset
- // Distilled into asm-offsets.h
- movl %esp, LGUEST_PAGES_host_sp(%eax)
-
- // All saved and there's now five steps before us:
- // Stack, GDT, IDT, TSS
- // Then last of all the page tables are flipped.
-
- // Yet beware that our stack pointer must be
- // Always valid lest an NMI hits
- // %edx does the duty here as we juggle
- // %eax is lguest_pages: our stack lies within.
- movl %eax, %edx
- addl $LGUEST_PAGES_regs, %edx
- movl %edx, %esp
-
- // The Guest's GDT we so carefully
- // Placed in the "struct lguest_pages" before
- lgdt LGUEST_PAGES_guest_gdt_desc(%eax)
-
- // The Guest's IDT we did partially
- // Copy to "struct lguest_pages" as well.
- lidt LGUEST_PAGES_guest_idt_desc(%eax)
-
- // The TSS entry which controls traps
- // Must be loaded up with "ltr" now:
- // The GDT entry that TSS uses
- // Changes type when we load it: damn Intel!
- // For after we switch over our page tables
- // That entry will be read-only: we'd crash.
- movl $(GDT_ENTRY_TSS*8), %edx
- ltr %dx
-
- // Look back now, before we take this last step!
- // The Host's TSS entry was also marked used;
- // Let's clear it again for our return.
- // The GDT descriptor of the Host
- // Points to the table after two "size" bytes
- movl (LGUEST_PAGES_host_gdt_desc+2)(%eax), %edx
- // Clear "used" from type field (byte 5, bit 2)
- andb $0xFD, (GDT_ENTRY_TSS*8 + 5)(%edx)
-
- // Once our page table's switched, the Guest is live!
- // The Host fades as we run this final step.
- // Our "struct lguest_pages" is now read-only.
- movl %ebx, %cr3
-
- // The page table change did one tricky thing:
- // The Guest's register page has been mapped
- // Writable under our %esp (stack) --
- // We can simply pop off all Guest regs.
- popl %eax
- popl %ebx
- popl %ecx
- popl %edx
- popl %esi
- popl %edi
- popl %ebp
- popl %gs
- popl %fs
- popl %ds
- popl %es
-
- // Near the base of the stack lurk two strange fields
- // Which we fill as we exit the Guest
- // These are the trap number and its error
- // We can simply step past them on our way.
- addl $8, %esp
-
- // The last five stack slots hold return address
- // And everything needed to switch privilege
- // From Switcher's level 0 to Guest's 1,
- // And the stack where the Guest had last left it.
- // Interrupts are turned back on: we are Guest.
- iret
-
-// We tread two paths to switch back to the Host
-// Yet both must save Guest state and restore Host
-// So we put the routine in a macro.
-#define SWITCH_TO_HOST \
- /* We save the Guest state: all registers first \
- * Laid out just as "struct lguest_regs" defines */ \
- pushl %es; \
- pushl %ds; \
- pushl %fs; \
- pushl %gs; \
- pushl %ebp; \
- pushl %edi; \
- pushl %esi; \
- pushl %edx; \
- pushl %ecx; \
- pushl %ebx; \
- pushl %eax; \
- /* Our stack and our code are using segments \
- * Set in the TSS and IDT \
- * Yet if we were to touch data we'd use \
- * Whatever data segment the Guest had. \
- * Load the lguest ds segment for now. */ \
- movl $(LGUEST_DS), %eax; \
- movl %eax, %ds; \
- /* So where are we? Which CPU, which struct? \
- * The stack is our clue: our TSS starts \
- * It at the end of "struct lguest_pages". \
- * Or we may have stumbled while restoring \
- * Our Guest segment regs while in switch_to_guest, \
- * The fault pushed atop that part-unwound stack. \
- * If we round the stack down to the page start \
- * We're at the start of "struct lguest_pages". */ \
- movl %esp, %eax; \
- andl $(~(1 << PAGE_SHIFT - 1)), %eax; \
- /* Save our trap number: the switch will obscure it \
- * (In the Host the Guest regs are not mapped here) \
- * %ebx holds it safe for deliver_to_host */ \
- movl LGUEST_PAGES_regs_trapnum(%eax), %ebx; \
- /* The Host GDT, IDT and stack! \
- * All these lie safely hidden from the Guest: \
- * We must return to the Host page tables \
- * (Hence that was saved in struct lguest_pages) */ \
- movl LGUEST_PAGES_host_cr3(%eax), %edx; \
- movl %edx, %cr3; \
- /* As before, when we looked back at the Host \
- * As we left and marked TSS unused \
- * So must we now for the Guest left behind. */ \
- andb $0xFD, (LGUEST_PAGES_guest_gdt+GDT_ENTRY_TSS*8+5)(%eax); \
- /* Switch to Host's GDT, IDT. */ \
- lgdt LGUEST_PAGES_host_gdt_desc(%eax); \
- lidt LGUEST_PAGES_host_idt_desc(%eax); \
- /* Restore the Host's stack where its saved regs lie */ \
- movl LGUEST_PAGES_host_sp(%eax), %esp; \
- /* Last the TSS: our Host is returned */ \
- movl $(GDT_ENTRY_TSS*8), %edx; \
- ltr %dx; \
- /* Restore now the regs saved right at the first. */ \
- popl %ebp; \
- popl %fs; \
- popl %gs; \
- popl %ds; \
- popl %es
-
-// The first path is trod when the Guest has trapped:
-// (Which trap it was has been pushed on the stack).
-// We need only switch back, and the Host will decode
-// Why we came home, and what needs to be done.
-return_to_host:
- SWITCH_TO_HOST
- iret
-
-// We are lead to the second path like so:
-// An interrupt, with some cause external
-// Has ajerked us rudely from the Guest's code
-// Again we must return home to the Host
-deliver_to_host:
- SWITCH_TO_HOST
- // But now we must go home via that place
- // Where that interrupt was supposed to go
- // Had we not been ensconced, running the Guest.
- // Here we see the trickness of run_guest_once():
- // The Host stack is formed like an interrupt
- // With EIP, CS and EFLAGS layered.
- // Interrupt handlers end with "iret"
- // And that will take us home at long long last.
-
- // But first we must find the handler to call!
- // The IDT descriptor for the Host
- // Has two bytes for size, and four for address:
- // %edx will hold it for us for now.
- movl (LGUEST_PAGES_host_idt_desc+2)(%eax), %edx
- // We now know the table address we need,
- // And saved the trap's number inside %ebx.
- // Yet the pointer to the handler is smeared
- // Across the bits of the table entry.
- // What oracle can tell us how to extract
- // From such a convoluted encoding?
- // I consulted gcc, and it gave
- // These instructions, which I gladly credit:
- leal (%edx,%ebx,8), %eax
- movzwl (%eax),%edx
- movl 4(%eax), %eax
- xorw %ax, %ax
- orl %eax, %edx
- // Now the address of the handler's in %edx
- // We call it now: its "iret" drops us home.
- jmp *%edx
-
-// Every interrupt can come to us here
-// But we must truly tell each apart.
-// They number two hundred and fifty six
-// And each must land in a different spot,
-// Push its number on stack, and join the stream.
-
-// And worse, a mere six of the traps stand apart
-// And push on their stack an addition:
-// An error number, thirty two bits long
-// So we punish the other two fifty
-// And make them push a zero so they match.
-
-// Yet two fifty six entries is long
-// And all will look most the same as the last
-// So we create a macro which can make
-// As many entries as we need to fill.
-
-// Note the change to .data then .text:
-// We plant the address of each entry
-// Into a (data) table for the Host
-// To know where each Guest interrupt should go.
-.macro IRQ_STUB N TARGET
- .data; .long 1f; .text; 1:
- // Trap eight, ten through fourteen and seventeen
- // Supply an error number. Else zero.
- .if (\N <> 8) && (\N < 10 || \N > 14) && (\N <> 17)
- pushl $0
- .endif
- pushl $\N
- jmp \TARGET
- ALIGN
-.endm
-
-// This macro creates numerous entries
-// Using GAS macros which out-power C's.
-.macro IRQ_STUBS FIRST LAST TARGET
- irq=\FIRST
- .rept \LAST-\FIRST+1
- IRQ_STUB irq \TARGET
- irq=irq+1
- .endr
-.endm
-
-// Here's the marker for our pointer table
-// Laid in the data section just before
-// Each macro places the address of code
-// Forming an array: each one points to text
-// Which handles interrupt in its turn.
-.data
-.global default_idt_entries
-default_idt_entries:
-.text
- // The first two traps go straight back to the Host
- IRQ_STUBS 0 1 return_to_host
- // We'll say nothing, yet, about NMI
- IRQ_STUB 2 handle_nmi
- // Other traps also return to the Host
- IRQ_STUBS 3 31 return_to_host
- // All interrupts go via their handlers
- IRQ_STUBS 32 127 deliver_to_host
- // 'Cept system calls coming from userspace
- // Are to go to the Guest, never the Host.
- IRQ_STUB 128 return_to_host
- IRQ_STUBS 129 255 deliver_to_host
-
-// The NMI, what a fabulous beast
-// Which swoops in and stops us no matter that
-// We're suspended between heaven and hell,
-// (Or more likely between the Host and Guest)
-// When in it comes! We are dazed and confused
-// So we do the simplest thing which one can.
-// Though we've pushed the trap number and zero
-// We discard them, return, and hope we live.
-handle_nmi:
- addl $8, %esp
- iret
-
-// We are done; all that's left is Mastery
-// And "make Mastery" is a journey long
-// Designed to make your fingers itch to code.
-
-// Here ends the text, the file and poem.
-ENTRY(end_switcher_text)