| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Since commit c7323a5ad078 ("mm/slub: restrict sysfs validation to debug
caches and make it safe"), caches with debugging enabled use the
free_debug_processing() function to do both freeing checks and actual
freeing to partial list under list_lock, bypassing the fast paths.
We will want to use the same path for CONFIG_SLUB_TINY, but without the
debugging checks, so refactor the code so that free_debug_processing()
does only the checks, while the freeing is handled by a new function
free_to_partial_list().
For consistency, change return parameter alloc_debug_processing() from
int to bool and correct the !SLUB_DEBUG variant to return true and not
false. This didn't matter until now, but will in the following changes.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Christoph Lameter <cl@linux.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
SLAB_RECLAIM_ACCOUNT caches allocate their slab pages with
__GFP_RECLAIMABLE and can help against fragmentation by grouping pages
by mobility, but on tiny systems mobility grouping is likely disabled
anyway and ignoring SLAB_RECLAIM_ACCOUNT might instead lead to merging
of caches that are made incompatible just by the flag.
Thus with CONFIG_SLUB_TINY, make SLAB_RECLAIM_ACCOUNT ineffective.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Christoph Lameter <cl@linux.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Distinguishing kmalloc(__GFP_RECLAIMABLE) can help against fragmentation
by grouping pages by mobility, but on tiny systems the extra memory
overhead of separate set of kmalloc-rcl caches will probably be worse,
and mobility grouping likely disabled anyway.
Thus with CONFIG_SLUB_TINY, don't create kmalloc-rcl caches and use the
regular ones.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Christoph Lameter <cl@linux.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
With CONFIG_SLUB_TINY we want to minimize memory overhead. By lowering
the default slub_max_order we can make slab allocations use smaller
pages. However depending on object sizes, order-0 might not be the best
due to increased fragmentation. When testing on a 8MB RAM k210 system by
Damien Le Moal [1], slub_max_order=1 had the best results, so use that
as the default for CONFIG_SLUB_TINY.
[1] https://lore.kernel.org/all/6a1883c4-4c3f-545a-90e8-2cd805bcf4ae@opensource.wdc.com/
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Christoph Lameter <cl@linux.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
SLUB will leave a number of slabs on the partial list even if they are
empty, to avoid some slab freeing and reallocation. The goal of
CONFIG_SLUB_TINY is to minimize memory overhead, so set the limits to 0
for immediate slab page freeing.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Christoph Lameter <cl@linux.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently SLUB enables its sysfs support depending unconditionally on
the general CONFIG_SYSFS setting. To reduce the configuration
combination space, make CONFIG_SLUB_TINY disable SLUB's sysfs support by
reusing the existing SLAB_SUPPORTS_SYSFS define. It is unlikely that
real tiny systems would combine CONFIG_SLUB_TINY with CONFIG_SYSFS, but
a randconfig might.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Christoph Lameter <cl@linux.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
For tiny systems that have used SLOB until now, SLUB might be
impractical due to its higher memory usage. To help with that, introduce
an option CONFIG_SLUB_TINY that modifies SLUB to use less memory.
This is done by sacrificing scalability, security and debugging
features, therefore not recommended for any system with more than 16MB
RAM.
This commit introduces the option and uses it to set other related
options in a way that reduces memory usage.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Christoph Lameter <cl@linux.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
With CONFIG_HARDENED_USERCOPY not enabled, there are no
__check_heap_object() checks happening that would use the struct
kmem_cache useroffset and usersize fields. Yet the fields are still
initialized, preventing merging of otherwise compatible caches.
Also the fields contribute to struct kmem_cache size unnecessarily when
unused. Thus #ifdef them out completely when CONFIG_HARDENED_USERCOPY is
disabled. In kmem_dump_obj() print object_size instead of usersize, as
that's actually the intention.
In a quick virtme boot test, this has reduced the number of caches in
/proc/slabinfo from 131 to 111.
Cc: Kees Cook <keescook@chromium.org>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Christoph Lameter <cl@linux.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Akira reports:
> "make htmldocs" reports duplicate C declaration of ksize() as follows:
> /linux/Documentation/core-api/mm-api:43: ./mm/slab_common.c:1428: WARNING: Duplicate C declaration, also defined at core-api/mm-api:212.
> Declaration is '.. c:function:: size_t ksize (const void *objp)'.
> This is due to the kernel-doc comment for ksize() declaration added in
> include/linux/slab.h by commit 05a940656e1e ("slab: Introduce
> kmalloc_size_roundup()").
There is an older kernel-doc comment for ksize() definition in
mm/slab_common.c, which is not only duplicated, but also contradicts the
new one - the additional storage discovered by ksize() should not be
used by callers anymore. Delete the old kernel-doc.
Reported-by: Akira Yokosawa <akiyks@gmail.com>
Link: https://lore.kernel.org/all/d33440f6-40cf-9747-3340-e54ffaf7afb8@gmail.com/
Fixes: 05a940656e1e ("slab: Introduce kmalloc_size_roundup()")
Cc: Kees Cook <keescook@chromium.org>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The "caller" argument was accidentally being ignored in a few places
that were recently refactored. Restore these "caller" arguments, instead
of _RET_IP_.
Fixes: 11e9734bcb6a ("mm/slab_common: unify NUMA and UMA version of tracepoints")
Cc: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: linux-mm@kvack.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Acked-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
For !CONFIG_TRACING kernels, the kmalloc() implementation tries (in cases where
the allocation size is build-time constant) to save a function call, by
inlining kmalloc_trace() to a kmem_cache_alloc() call.
However since commit 6edf2576a6cc ("mm/slub: enable debugging memory wasting of
kmalloc") this path now fails to pass the original request size to be
eventually recorded (for kmalloc caches with debugging enabled).
We could adjust the code to call __kmem_cache_alloc_node() as the
CONFIG_TRACING variant, but that would as a result inline a call with 5
parameters, bloating the kmalloc() call sites. The cost of extra function
call (to kmalloc_trace()) seems like a lesser evil.
It also appears that the !CONFIG_TRACING variant is incompatible with upcoming
hardening efforts [1] so it's easier if we just remove it now. Kernels with no
tracing are rare these days and the benefit is dubious anyway.
[1] https://lore.kernel.org/linux-mm/20221101222520.never.109-kees@kernel.org/T/#m20ecf14390e406247bde0ea9cce368f469c539ed
Link: https://lore.kernel.org/all/097d8fba-bd10-a312-24a3-a4068c4f424c@suse.cz/
Suggested-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Commit 445d41d7a7c1 ("Merge branch 'slab/for-6.1/kmalloc_size_roundup' into
slab/for-next") resolved a conflict of two concurrent changes to __ksize().
However, it did not adjust the kernel-doc comment of __ksize(), while the
name of the argument to __ksize() was renamed.
Hence, ./scripts/ kernel-doc -none mm/slab_common.c warns about it.
Adjust the kernel-doc comment for __ksize() for make W=1 happiness.
Signed-off-by: Lukas Bulwahn <lukas.bulwahn@gmail.com>
Acked-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
|
| |
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Pull kvm fixes from Paolo Bonzini:
"RISC-V:
- Fix compilation without RISCV_ISA_ZICBOM
- Fix kvm_riscv_vcpu_timer_pending() for Sstc
ARM:
- Fix a bug preventing restoring an ITS containing mappings for very
large and very sparse device topology
- Work around a relocation handling error when compiling the nVHE
object with profile optimisation
- Fix for stage-2 invalidation holding the VM MMU lock for too long
by limiting the walk to the largest block mapping size
- Enable stack protection and branch profiling for VHE
- Two selftest fixes
x86:
- add compat implementation for KVM_X86_SET_MSR_FILTER ioctl
selftests:
- synchronize includes between include/uapi and tools/include/uapi"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
tools: include: sync include/api/linux/kvm.h
KVM: x86: Add compat handler for KVM_X86_SET_MSR_FILTER
KVM: x86: Copy filter arg outside kvm_vm_ioctl_set_msr_filter()
kvm: Add support for arch compat vm ioctls
RISC-V: KVM: Fix kvm_riscv_vcpu_timer_pending() for Sstc
RISC-V: Fix compilation without RISCV_ISA_ZICBOM
KVM: arm64: vgic: Fix exit condition in scan_its_table()
KVM: arm64: nvhe: Fix build with profile optimization
KVM: selftests: Fix number of pages for memory slot in memslot_modification_stress_test
KVM: arm64: selftests: Fix multiple versions of GIC creation
KVM: arm64: Enable stack protection and branch profiling for VHE
KVM: arm64: Limit stage2_apply_range() batch size to largest block
KVM: arm64: Work out supported block level at compile time
|
| |
| |
| |
| |
| |
| |
| |
| | |
Provide a definition of KVM_CAP_DIRTY_LOG_RING_ACQ_REL.
Fixes: 17601bfed909 ("KVM: Add KVM_CAP_DIRTY_LOG_RING_ACQ_REL capability and config option")
Cc: Marc Zyngier <maz@kernel.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The KVM_X86_SET_MSR_FILTER ioctls contains a pointer in the passed in
struct which means it has a different struct size depending on whether
it gets called from 32bit or 64bit code.
This patch introduces compat code that converts from the 32bit struct to
its 64bit counterpart which then gets used going forward internally.
With this applied, 32bit QEMU can successfully set MSR bitmaps when
running on 64bit kernels.
Reported-by: Andrew Randrianasulu <randrianasulu@gmail.com>
Fixes: 1a155254ff937 ("KVM: x86: Introduce MSR filtering")
Signed-off-by: Alexander Graf <graf@amazon.com>
Message-Id: <20221017184541.2658-4-graf@amazon.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
In the next patch we want to introduce a second caller to
set_msr_filter() which constructs its own filter list on the stack.
Refactor the original function so it takes it as argument instead of
reading it through copy_from_user().
Signed-off-by: Alexander Graf <graf@amazon.com>
Message-Id: <20221017184541.2658-3-graf@amazon.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
We will introduce the first architecture specific compat vm ioctl in the
next patch. Add all necessary boilerplate to allow architectures to
override compat vm ioctls when necessary.
Signed-off-by: Alexander Graf <graf@amazon.com>
Message-Id: <20221017184541.2658-2-graf@amazon.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
| |\
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
HEAD
KVM/riscv fixes for 6.1, take #1
- Fix compilation without RISCV_ISA_ZICBOM
- Fix kvm_riscv_vcpu_timer_pending() for Sstc
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
The kvm_riscv_vcpu_timer_pending() checks per-VCPU next_cycles
and per-VCPU software injected VS timer interrupt. This function
returns incorrect value when Sstc is available because the per-VCPU
next_cycles are only updated by kvm_riscv_vcpu_timer_save() called
from kvm_arch_vcpu_put(). As a result, when Sstc is available the
VCPU does not block properly upon WFI traps.
To fix the above issue, we introduce kvm_riscv_vcpu_timer_sync()
which will update per-VCPU next_cycles upon every VM exit instead
of kvm_riscv_vcpu_timer_save().
Fixes: 8f5cb44b1bae ("RISC-V: KVM: Support sstc extension")
Signed-off-by: Anup Patel <apatel@ventanamicro.com>
Reviewed-by: Atish Patra <atishp@rivosinc.com>
Signed-off-by: Anup Patel <anup@brainfault.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
riscv_cbom_block_size and riscv_init_cbom_blocksize() should always
be available and riscv_init_cbom_blocksize() should always be
invoked, even when compiling without RISCV_ISA_ZICBOM enabled. This
is because disabling RISCV_ISA_ZICBOM means "don't use zicbom
instructions in the kernel" not "pretend there isn't zicbom, even
when there is". When zicbom is available, whether the kernel enables
its use with RISCV_ISA_ZICBOM or not, KVM will offer it to guests.
Ensure we can build KVM and that the block size is initialized even
when compiling without RISCV_ISA_ZICBOM.
Fixes: 8f7e001e0325 ("RISC-V: Clean up the Zicbom block size probing")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Andrew Jones <ajones@ventanamicro.com>
Signed-off-by: Anup Patel <apatel@ventanamicro.com>
Reviewed-by: Conor Dooley <conor.dooley@microchip.com>
Reviewed-by: Heiko Stuebner <heiko@sntech.de>
Tested-by: Heiko Stuebner <heiko@sntech.de>
Signed-off-by: Anup Patel <anup@brainfault.org>
|
| |\ \
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 fixes for 6.1, take #2
- Fix a bug preventing restoring an ITS containing mappings
for very large and very sparse device topology
- Work around a relocation handling error when compiling
the nVHE object with profile optimisation
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
With some PCIe topologies, restoring a guest fails while
parsing the ITS device tables.
Reproducer hints:
1. Create ARM virt VM with pxb-pcie bus which adds
extra host bridges, with qemu command like:
```
-device pxb-pcie,bus_nr=8,id=pci.x,numa_node=0,bus=pcie.0 \
-device pcie-root-port,..,bus=pci.x \
...
-device pxb-pcie,bus_nr=37,id=pci.y,numa_node=1,bus=pcie.0 \
-device pcie-root-port,..,bus=pci.y \
...
```
2. Ensure the guest uses 2-level device table
3. Perform VM migration which calls save/restore device tables
In that setup, we get a big "offset" between 2 device_ids,
which makes unsigned "len" round up a big positive number,
causing the scan loop to continue with a bad GPA. For example:
1. L1 table has 2 entries;
2. and we are now scanning at L2 table entry index 2075 (pointed
to by L1 first entry)
3. if next device id is 9472, we will get a big offset: 7397;
4. with unsigned 'len', 'len -= offset * esz', len will underflow to a
positive number, mistakenly into next iteration with a bad GPA;
(It should break out of the current L2 table scanning, and jump
into the next L1 table entry)
5. that bad GPA fails the guest read.
Fix it by stopping the L2 table scan when the next device id is
outside of the current table, allowing the scan to continue from
the next L1 table entry.
Thanks to Eric Auger for the fix suggestion.
Fixes: 920a7a8fa92a ("KVM: arm64: vgic-its: Add infrastructure for tableookup")
Suggested-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Eric Ren <renzhengeek@gmail.com>
[maz: commit message tidy-up]
Signed-off-by: Marc Zyngier <maz@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/d9c3a564af9e2c5bf63f48a7dcbf08cd593c5c0b.1665802985.git.renzhengeek@gmail.com
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Kernel build with clang and KCFLAGS=-fprofile-sample-use=<profile> fails with:
error: arch/arm64/kvm/hyp/nvhe/kvm_nvhe.tmp.o: Unexpected SHT_REL
section ".rel.llvm.call-graph-profile"
Starting from 13.0.0 llvm can generate SHT_REL section, see
https://reviews.llvm.org/rGca3bdb57fa1ac98b711a735de048c12b5fdd8086.
gen-hyprel does not support SHT_REL relocation section.
Filter out profile use flags to fix the build with profile optimization.
Signed-off-by: Denis Nikitin <denik@chromium.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221014184532.3153551-1-denik@chromium.org
|
| |\| |
| | |/
| |/|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 fixes for 6.1, take #1
- Fix for stage-2 invalidation holding the VM MMU lock
for too long by limiting the walk to the largest
block mapping size
- Enable stack protection and branch profiling for VHE
- Two selftest fixes
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
memslot_modification_stress_test
It's required by vm_userspace_mem_region_add() that memory size
should be aligned to host page size. However, one guest page is
provided by memslot_modification_stress_test. It triggers failure
in the scenario of 64KB-page-size-host and 4KB-page-size-guest,
as the following messages indicate.
# ./memslot_modification_stress_test
Testing guest mode: PA-bits:40, VA-bits:48, 4K pages
guest physical test memory: [0xffbfff0000, 0xffffff0000)
Finished creating vCPUs
Started all vCPUs
==== Test Assertion Failure ====
lib/kvm_util.c:824: vm_adjust_num_guest_pages(vm->mode, npages) == npages
pid=5712 tid=5712 errno=0 - Success
1 0x0000000000404eeb: vm_userspace_mem_region_add at kvm_util.c:822
2 0x0000000000401a5b: add_remove_memslot at memslot_modification_stress_test.c:82
3 (inlined by) run_test at memslot_modification_stress_test.c:110
4 0x0000000000402417: for_each_guest_mode at guest_modes.c:100
5 0x00000000004016a7: main at memslot_modification_stress_test.c:187
6 0x0000ffffb8cd4383: ?? ??:0
7 0x0000000000401827: _start at :?
Number of guest pages is not compatible with the host. Try npages=16
Fix the issue by providing 16 guest pages to the memory slot for this
particular combination of 64KB-page-size-host and 4KB-page-size-guest
on aarch64.
Fixes: ef4c9f4f65462 ("KVM: selftests: Fix 32-bit truncation of vm_get_max_gfn()")
Signed-off-by: Gavin Shan <gshan@redhat.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221013063020.201856-1-gshan@redhat.com
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Commit 98f94ce42ac6 ("KVM: selftests: Move KVM_CREATE_DEVICE_TEST code to
separate helper") wrongly converted a "real" GIC device creation to
__kvm_test_create_device() and caused the test failure on my D05 (which
supports v2 emulation). Fix it.
Fixes: 98f94ce42ac6 ("KVM: selftests: Move KVM_CREATE_DEVICE_TEST code to separate helper")
Signed-off-by: Zenghui Yu <yuzenghui@huawei.com>
Reviewed-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221009033131.365-1-yuzenghui@huawei.com
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
For historical reasons, the VHE code inherited the build configuration from
nVHE. Now those two parts have their own folder and makefile, we can
enable stack protection and branch profiling for VHE.
Signed-off-by: Vincent Donnefort <vdonnefort@google.com>
Reviewed-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221004154216.2833636-1-vdonnefort@google.com
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Presently stage2_apply_range() works on a batch of memory addressed by a
stage 2 root table entry for the VM. Depending on the IPA limit of the
VM and PAGE_SIZE of the host, this could address a massive range of
memory. Some examples:
4 level, 4K paging -> 512 GB batch size
3 level, 64K paging -> 4TB batch size
Unsurprisingly, working on such a large range of memory can lead to soft
lockups. When running dirty_log_perf_test:
./dirty_log_perf_test -m -2 -s anonymous_thp -b 4G -v 48
watchdog: BUG: soft lockup - CPU#0 stuck for 45s! [dirty_log_perf_:16703]
Modules linked in: vfat fat cdc_ether usbnet mii xhci_pci xhci_hcd sha3_generic gq(O)
CPU: 0 PID: 16703 Comm: dirty_log_perf_ Tainted: G O 6.0.0-smp-DEV #1
pstate: 80400009 (Nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : dcache_clean_inval_poc+0x24/0x38
lr : clean_dcache_guest_page+0x28/0x4c
sp : ffff800021763990
pmr_save: 000000e0
x29: ffff800021763990 x28: 0000000000000005 x27: 0000000000000de0
x26: 0000000000000001 x25: 00400830b13bc77f x24: ffffad4f91ead9c0
x23: 0000000000000000 x22: ffff8000082ad9c8 x21: 0000fffafa7bc000
x20: ffffad4f9066ce50 x19: 0000000000000003 x18: ffffad4f92402000
x17: 000000000000011b x16: 000000000000011b x15: 0000000000000124
x14: ffff07ff8301d280 x13: 0000000000000000 x12: 00000000ffffffff
x11: 0000000000010001 x10: fffffc0000000000 x9 : ffffad4f9069e580
x8 : 000000000000000c x7 : 0000000000000000 x6 : 000000000000003f
x5 : ffff07ffa2076980 x4 : 0000000000000001 x3 : 000000000000003f
x2 : 0000000000000040 x1 : ffff0830313bd000 x0 : ffff0830313bcc40
Call trace:
dcache_clean_inval_poc+0x24/0x38
stage2_unmap_walker+0x138/0x1ec
__kvm_pgtable_walk+0x130/0x1d4
__kvm_pgtable_walk+0x170/0x1d4
__kvm_pgtable_walk+0x170/0x1d4
__kvm_pgtable_walk+0x170/0x1d4
kvm_pgtable_stage2_unmap+0xc4/0xf8
kvm_arch_flush_shadow_memslot+0xa4/0x10c
kvm_set_memslot+0xb8/0x454
__kvm_set_memory_region+0x194/0x244
kvm_vm_ioctl_set_memory_region+0x58/0x7c
kvm_vm_ioctl+0x49c/0x560
__arm64_sys_ioctl+0x9c/0xd4
invoke_syscall+0x4c/0x124
el0_svc_common+0xc8/0x194
do_el0_svc+0x38/0xc0
el0_svc+0x2c/0xa4
el0t_64_sync_handler+0x84/0xf0
el0t_64_sync+0x1a0/0x1a4
Use the largest supported block mapping for the configured page size as
the batch granularity. In so doing the walker is guaranteed to visit a
leaf only once.
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221007234151.461779-3-oliver.upton@linux.dev
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Work out the minimum page table level where KVM supports block mappings
at compile time. While at it, rewrite the comment around supported block
mappings to directly describe what KVM supports instead of phrasing in
terms of what it does not.
Signed-off-by: Oliver Upton <oliver.upton@linux.dev>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20221007234151.461779-2-oliver.upton@linux.dev
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
This reverts commit 72a95859728a7866522e6633818bebc1c2519b17.
It broke reboots on big-endian MIPS and MIPS64 malta QEMU instances,
which use the syscon driver. Little-endian is not effected, which means
likely it's important to handle regmap_get_val_endian() in this function
after all.
Fixes: 72a95859728a ("mfd: syscon: Remove repetition of the regmap_get_val_endian()")
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Lee Jones <lee@kernel.org>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Commit bfca3dd3d068 ("kernel/utsname_sysctl.c: print kernel arch") added
a new entry to the uts_kern_table[] array, but didn't update the
UTS_PROC_xyz enumerators of older entries, breaking anything that used
them.
Which is admittedly not many cases: it's really just the two uses of
uts_proc_notify() in kernel/sys.c. But apparently journald-systemd
actually uses this to detect hostname changes.
Reported-by: Torsten Hilbrich <torsten.hilbrich@secunet.com>
Fixes: bfca3dd3d068 ("kernel/utsname_sysctl.c: print kernel arch")
Link: https://lore.kernel.org/lkml/0c2b92a6-0f25-9538-178f-eee3b06da23f@secunet.com/
Link: https://linux-regtracking.leemhuis.info/regzbot/regression/0c2b92a6-0f25-9538-178f-eee3b06da23f@secunet.com/
Cc: Petr Vorel <pvorel@suse.cz>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|\ \ \
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf fixes from Borislav Petkov:
- Fix raw data handling when perf events are used in bpf
- Rework how SIGTRAPs get delivered to events to address a bunch of
problems with it. Add a selftest for that too
* tag 'perf_urgent_for_v6.1_rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
bpf: Fix sample_flags for bpf_perf_event_output
selftests/perf_events: Add a SIGTRAP stress test with disables
perf: Fix missing SIGTRAPs
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
* Raw data is also filled by bpf_perf_event_output.
* Add sample_flags to indicate raw data.
* This eliminates the segfaults as shown below:
Run ./samples/bpf/trace_output
BUG pid 9 cookie 1001000000004 sized 4
BUG pid 9 cookie 1001000000004 sized 4
BUG pid 9 cookie 1001000000004 sized 4
Segmentation fault (core dumped)
Fixes: 838d9bb62d13 ("perf: Use sample_flags for raw_data")
Signed-off-by: Sumanth Korikkar <sumanthk@linux.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Namhyung Kim <namhyung@kernel.org>
Link: https://lkml.kernel.org/r/20221007081327.1047552-1-sumanthk@linux.ibm.com
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Add a SIGTRAP stress test that exercises repeatedly enabling/disabling
an event while it concurrently keeps firing.
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/all/Y0E3uG7jOywn7vy3@elver.google.com/
|
| |/ /
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Marco reported:
Due to the implementation of how SIGTRAP are delivered if
perf_event_attr::sigtrap is set, we've noticed 3 issues:
1. Missing SIGTRAP due to a race with event_sched_out() (more
details below).
2. Hardware PMU events being disabled due to returning 1 from
perf_event_overflow(). The only way to re-enable the event is
for user space to first "properly" disable the event and then
re-enable it.
3. The inability to automatically disable an event after a
specified number of overflows via PERF_EVENT_IOC_REFRESH.
The worst of the 3 issues is problem (1), which occurs when a
pending_disable is "consumed" by a racing event_sched_out(), observed
as follows:
CPU0 | CPU1
--------------------------------+---------------------------
__perf_event_overflow() |
perf_event_disable_inatomic() |
pending_disable = CPU0 | ...
| _perf_event_enable()
| event_function_call()
| task_function_call()
| /* sends IPI to CPU0 */
<IPI> | ...
__perf_event_enable() +---------------------------
ctx_resched()
task_ctx_sched_out()
ctx_sched_out()
group_sched_out()
event_sched_out()
pending_disable = -1
</IPI>
<IRQ-work>
perf_pending_event()
perf_pending_event_disable()
/* Fails to send SIGTRAP because no pending_disable! */
</IRQ-work>
In the above case, not only is that particular SIGTRAP missed, but also
all future SIGTRAPs because 'event_limit' is not reset back to 1.
To fix, rework pending delivery of SIGTRAP via IRQ-work by introduction
of a separate 'pending_sigtrap', no longer using 'event_limit' and
'pending_disable' for its delivery.
Additionally; and different to Marco's proposed patch:
- recognise that pending_disable effectively duplicates oncpu for
the case where it is set. As such, change the irq_work handler to
use ->oncpu to target the event and use pending_* as boolean toggles.
- observe that SIGTRAP targets the ctx->task, so the context switch
optimization that carries contexts between tasks is invalid. If
the irq_work were delayed enough to hit after a context switch the
SIGTRAP would be delivered to the wrong task.
- observe that if the event gets scheduled out
(rotation/migration/context-switch/...) the irq-work would be
insufficient to deliver the SIGTRAP when the event gets scheduled
back in (the irq-work might still be pending on the old CPU).
Therefore have event_sched_out() convert the pending sigtrap into a
task_work which will deliver the signal at return_to_user.
Fixes: 97ba62b27867 ("perf: Add support for SIGTRAP on perf events")
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Debugged-by: Dmitry Vyukov <dvyukov@google.com>
Reported-by: Marco Elver <elver@google.com>
Debugged-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Marco Elver <elver@google.com>
Tested-by: Marco Elver <elver@google.com>
|
|\ \ \
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler fixes from Borislav Petkov:
- Adjust code to not trip up CFI
- Fix sched group cookie matching
* tag 'sched_urgent_for_v6.1_rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched: Introduce struct balance_callback to avoid CFI mismatches
sched/core: Fix comparison in sched_group_cookie_match()
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Introduce distinct struct balance_callback instead of performing function
pointer casting which will trip CFI. Avoids warnings as found by Clang's
future -Wcast-function-type-strict option:
In file included from kernel/sched/core.c:84:
kernel/sched/sched.h:1755:15: warning: cast from 'void (*)(struct rq *)' to 'void (*)(struct callback_head *)' converts to incompatible function type [-Wcast-function-type-strict]
head->func = (void (*)(struct callback_head *))func;
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
No binary differences result from this change.
This patch is a cleanup based on Brad Spengler/PaX Team's modifications
to sched code in their last public patch of grsecurity/PaX based on my
understanding of the code. Changes or omissions from the original code
are mine and don't reflect the original grsecurity/PaX code.
Reported-by: Sami Tolvanen <samitolvanen@google.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Nathan Chancellor <nathan@kernel.org>
Link: https://github.com/ClangBuiltLinux/linux/issues/1724
Link: https://lkml.kernel.org/r/20221008000758.2957718-1-keescook@chromium.org
|
| |/ /
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
In commit 97886d9dcd86 ("sched: Migration changes for core scheduling"),
sched_group_cookie_match() was added to help determine if a cookie
matches the core state.
However, while it iterates the SMT group, it fails to actually use the
RQ for each of the CPUs iterated, use cpu_rq(cpu) instead of rq to fix
things.
Fixes: 97886d9dcd86 ("sched: Migration changes for core scheduling")
Signed-off-by: Lin Shengwang <linshengwang1@huawei.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20221008022709.642-1-linshengwang1@huawei.com
|
|\ \ \
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull objtool fix from Borislav Petkov:
- Fix ORC stack unwinding when GCOV is enabled
* tag 'objtool_urgent_for_v6.1_rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/unwind/orc: Fix unreliable stack dump with gcov
|
| |/ /
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
When a console stack dump is initiated with CONFIG_GCOV_PROFILE_ALL
enabled, show_trace_log_lvl() gets out of sync with the ORC unwinder,
causing the stack trace to show all text addresses as unreliable:
# echo l > /proc/sysrq-trigger
[ 477.521031] sysrq: Show backtrace of all active CPUs
[ 477.523813] NMI backtrace for cpu 0
[ 477.524492] CPU: 0 PID: 1021 Comm: bash Not tainted 6.0.0 #65
[ 477.525295] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.0-1.fc36 04/01/2014
[ 477.526439] Call Trace:
[ 477.526854] <TASK>
[ 477.527216] ? dump_stack_lvl+0xc7/0x114
[ 477.527801] ? dump_stack+0x13/0x1f
[ 477.528331] ? nmi_cpu_backtrace.cold+0xb5/0x10d
[ 477.528998] ? lapic_can_unplug_cpu+0xa0/0xa0
[ 477.529641] ? nmi_trigger_cpumask_backtrace+0x16a/0x1f0
[ 477.530393] ? arch_trigger_cpumask_backtrace+0x1d/0x30
[ 477.531136] ? sysrq_handle_showallcpus+0x1b/0x30
[ 477.531818] ? __handle_sysrq.cold+0x4e/0x1ae
[ 477.532451] ? write_sysrq_trigger+0x63/0x80
[ 477.533080] ? proc_reg_write+0x92/0x110
[ 477.533663] ? vfs_write+0x174/0x530
[ 477.534265] ? handle_mm_fault+0x16f/0x500
[ 477.534940] ? ksys_write+0x7b/0x170
[ 477.535543] ? __x64_sys_write+0x1d/0x30
[ 477.536191] ? do_syscall_64+0x6b/0x100
[ 477.536809] ? entry_SYSCALL_64_after_hwframe+0x63/0xcd
[ 477.537609] </TASK>
This happens when the compiled code for show_stack() has a single word
on the stack, and doesn't use a tail call to show_stack_log_lvl().
(CONFIG_GCOV_PROFILE_ALL=y is the only known case of this.) Then the
__unwind_start() skip logic hits an off-by-one bug and fails to unwind
all the way to the intended starting frame.
Fix it by reverting the following commit:
f1d9a2abff66 ("x86/unwind/orc: Don't skip the first frame for inactive tasks")
The original justification for that commit no longer exists. That
original issue was later fixed in a different way, with the following
commit:
f2ac57a4c49d ("x86/unwind/orc: Fix inactive tasks with stack pointer in %sp on GCC 10 compiled kernels")
Fixes: f1d9a2abff66 ("x86/unwind/orc: Don't skip the first frame for inactive tasks")
Signed-off-by: Chen Zhongjin <chenzhongjin@huawei.com>
[jpoimboe: rewrite commit log]
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
|
|\ \ \
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Borislav Petkov:
"As usually the case, right after a major release, the tip urgent
branches accumulate a couple more fixes than normal. And here is the
x86, a bit bigger, urgent pile.
- Use the correct CPU capability clearing function on the error path
in Intel perf LBR
- A CFI fix to ftrace along with a simplification
- Adjust handling of zero capacity bit mask for resctrl cache
allocation on AMD
- A fix to the AMD microcode loader to attempt patch application on
every logical thread
- A couple of topology fixes to handle CPUID leaf 0x1f enumeration
info properly
- Drop a -mabi=ms compiler option check as both compilers support it
now anyway
- A couple of fixes to how the initial, statically allocated FPU
buffer state is setup and its interaction with dynamic states at
runtime"
* tag 'x86_urgent_for_v6.0_rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/fpu: Fix copy_xstate_to_uabi() to copy init states correctly
perf/x86/intel/lbr: Use setup_clear_cpu_cap() instead of clear_cpu_cap()
ftrace,kcfi: Separate ftrace_stub() and ftrace_stub_graph()
x86/ftrace: Remove ftrace_epilogue()
x86/resctrl: Fix min_cbm_bits for AMD
x86/microcode/AMD: Apply the patch early on every logical thread
x86/topology: Fix duplicated core ID within a package
x86/topology: Fix multiple packages shown on a single-package system
hwmon/coretemp: Handle large core ID value
x86/Kconfig: Drop check for -mabi=ms for CONFIG_EFI_STUB
x86/fpu: Exclude dynamic states from init_fpstate
x86/fpu: Fix the init_fpstate size check with the actual size
x86/fpu: Configure init_fpstate attributes orderly
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
When an extended state component is not present in fpstate, but in init
state, the function copies from init_fpstate via copy_feature().
But, dynamic states are not present in init_fpstate because of all-zeros
init states. Then retrieving them from init_fpstate will explode like this:
BUG: kernel NULL pointer dereference, address: 0000000000000000
...
RIP: 0010:memcpy_erms+0x6/0x10
? __copy_xstate_to_uabi_buf+0x381/0x870
fpu_copy_guest_fpstate_to_uabi+0x28/0x80
kvm_arch_vcpu_ioctl+0x14c/0x1460 [kvm]
? __this_cpu_preempt_check+0x13/0x20
? vmx_vcpu_put+0x2e/0x260 [kvm_intel]
kvm_vcpu_ioctl+0xea/0x6b0 [kvm]
? kvm_vcpu_ioctl+0xea/0x6b0 [kvm]
? __fget_light+0xd4/0x130
__x64_sys_ioctl+0xe3/0x910
? debug_smp_processor_id+0x17/0x20
? fpregs_assert_state_consistent+0x27/0x50
do_syscall_64+0x3f/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Adjust the 'mask' to zero out the userspace buffer for the features that
are not available both from fpstate and from init_fpstate.
The dynamic features depend on the compacted XSAVE format. Ensure it is
enabled before reading XCOMP_BV in init_fpstate.
Fixes: 2308ee57d93d ("x86/fpu/amx: Enable the AMX feature in 64-bit mode")
Reported-by: Yuan Yao <yuan.yao@intel.com>
Suggested-by: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Tested-by: Yuan Yao <yuan.yao@intel.com>
Link: https://lore.kernel.org/lkml/BYAPR11MB3717EDEF2351C958F2C86EED95259@BYAPR11MB3717.namprd11.prod.outlook.com/
Link: https://lkml.kernel.org/r/20221021185844.13472-1-chang.seok.bae@intel.com
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
clear_cpu_cap(&boot_cpu_data) is very similar to setup_clear_cpu_cap()
except that the latter also sets a bit in 'cpu_caps_cleared' which
later clears the same cap in secondary cpus, which is likely what is
meant here.
Fixes: 47125db27e47 ("perf/x86/intel/lbr: Support Architectural LBR")
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Kan Liang <kan.liang@linux.intel.com>
Link: https://lkml.kernel.org/r/20220718141123.136106-2-mlevitsk@redhat.com
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Different function signatures means they needs to be different
functions; otherwise CFI gets upset.
As triggered by the ftrace boot tests:
[] CFI failure at ftrace_return_to_handler+0xac/0x16c (target: ftrace_stub+0x0/0x14; expected type: 0x0a5d5347)
Fixes: 3c516f89e17e ("x86: Add support for CONFIG_CFI_CLANG")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lkml.kernel.org/r/Y06dg4e1xF6JTdQq@hirez.programming.kicks-ass.net
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Remove the weird jumps to RET and simply use RET.
This then promotes ftrace_stub() to a real function; which becomes
important for kcfi.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111148.719080593@infradead.org
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
AMD systems support zero CBM (capacity bit mask) for cache allocation.
That is reflected in rdt_init_res_defs_amd() by:
r->cache.arch_has_empty_bitmaps = true;
However given the unified code in cbm_validate(), checking for:
val == 0 && !arch_has_empty_bitmaps
is not enough because of another check in cbm_validate():
if ((zero_bit - first_bit) < r->cache.min_cbm_bits)
The default value of r->cache.min_cbm_bits = 1.
Leading to:
$ cd /sys/fs/resctrl
$ mkdir foo
$ cd foo
$ echo L3:0=0 > schemata
-bash: echo: write error: Invalid argument
$ cat /sys/fs/resctrl/info/last_cmd_status
Need at least 1 bits in the mask
Initialize the min_cbm_bits to 0 for AMD. Also, remove the default
setting of min_cbm_bits and initialize it separately.
After the fix:
$ cd /sys/fs/resctrl
$ mkdir foo
$ cd foo
$ echo L3:0=0 > schemata
$ cat /sys/fs/resctrl/info/last_cmd_status
ok
Fixes: 316e7f901f5a ("x86/resctrl: Add struct rdt_cache::arch_has_{sparse, empty}_bitmaps")
Co-developed-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Babu Moger <babu.moger@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: James Morse <james.morse@arm.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Fenghua Yu <fenghua.yu@intel.com>
Cc: <stable@vger.kernel.org>
Link: https://lore.kernel.org/lkml/20220517001234.3137157-1-eranian@google.com
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Currently, the patch application logic checks whether the revision
needs to be applied on each logical CPU (SMT thread). Therefore, on SMT
designs where the microcode engine is shared between the two threads,
the application happens only on one of them as that is enough to update
the shared microcode engine.
However, there are microcode patches which do per-thread modification,
see Link tag below.
Therefore, drop the revision check and try applying on each thread. This
is what the BIOS does too so this method is very much tested.
Btw, change only the early paths. On the late loading paths, there's no
point in doing per-thread modification because if is it some case like
in the bugzilla below - removing a CPUID flag - the kernel cannot go and
un-use features it has detected are there early. For that, one should
use early loading anyway.
[ bp: Fixes does not contain the oldest commit which did check for
equality but that is good enough. ]
Fixes: 8801b3fcb574 ("x86/microcode/AMD: Rework container parsing")
Reported-by: Ștefan Talpalaru <stefantalpalaru@yahoo.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Tested-by: Ștefan Talpalaru <stefantalpalaru@yahoo.com>
Cc: <stable@vger.kernel.org>
Link: https://bugzilla.kernel.org/show_bug.cgi?id=216211
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Today, core ID is assumed to be unique within each package.
But an AlderLake-N platform adds a Module level between core and package,
Linux excludes the unknown modules bits from the core ID, resulting in
duplicate core ID's.
To keep core ID unique within a package, Linux must include all APIC-ID
bits for known or unknown levels above the core and below the package
in the core ID.
It is important to understand that core ID's have always come directly
from the APIC-ID encoding, which comes from the BIOS. Thus there is no
guarantee that they start at 0, or that they are contiguous.
As such, naively using them for array indexes can be problematic.
[ dhansen: un-known -> unknown ]
Fixes: 7745f03eb395 ("x86/topology: Add CPUID.1F multi-die/package support")
Suggested-by: Len Brown <len.brown@intel.com>
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Len Brown <len.brown@intel.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20221014090147.1836-5-rui.zhang@intel.com
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
CPUID.1F/B does not enumerate Package level explicitly, instead, all the
APIC-ID bits above the enumerated levels are assumed to be package ID
bits.
Current code gets package ID by shifting out all the APIC-ID bits that
Linux supports, rather than shifting out all the APIC-ID bits that
CPUID.1F enumerates. This introduces problems when CPUID.1F enumerates a
level that Linux does not support.
For example, on a single package AlderLake-N, there are 2 Ecore Modules
with 4 atom cores in each module. Linux does not support the Module
level and interprets the Module ID bits as package ID and erroneously
reports a multi module system as a multi-package system.
Fix this by using APIC-ID bits above all the CPUID.1F enumerated levels
as package ID.
[ dhansen: spelling fix ]
Fixes: 7745f03eb395 ("x86/topology: Add CPUID.1F multi-die/package support")
Suggested-by: Len Brown <len.brown@intel.com>
Signed-off-by: Zhang Rui <rui.zhang@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Len Brown <len.brown@intel.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20221014090147.1836-4-rui.zhang@intel.com
|