| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Whilst making an unrelated change to some Documentation, Linus sayeth:
| Afaik, even in Britain, "whilst" is unusual and considered more
| formal, and "while" is the common word.
|
| [...]
|
| Can we just admit that we work with computers, and we don't need to
| use þe eald Englisc spelling of words that most of the world never
| uses?
dictionary.com refers to the word as "Chiefly British", which is
probably an undesirable attribute for technical documentation.
Replace all occurrences under Documentation/ with "while".
Cc: David Howells <dhowells@redhat.com>
Cc: Liam Girdwood <lgirdwood@gmail.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Michael Halcrow <mhalcrow@google.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The current "wait_on_bit" interface requires an 'action'
function to be provided which does the actual waiting.
There are over 20 such functions, many of them identical.
Most cases can be satisfied by one of just two functions, one
which uses io_schedule() and one which just uses schedule().
So:
Rename wait_on_bit and wait_on_bit_lock to
wait_on_bit_action and wait_on_bit_lock_action
to make it explicit that they need an action function.
Introduce new wait_on_bit{,_lock} and wait_on_bit{,_lock}_io
which are *not* given an action function but implicitly use
a standard one.
The decision to error-out if a signal is pending is now made
based on the 'mode' argument rather than being encoded in the action
function.
All instances of the old wait_on_bit and wait_on_bit_lock which
can use the new version have been changed accordingly and their
action functions have been discarded.
wait_on_bit{_lock} does not return any specific error code in the
event of a signal so the caller must check for non-zero and
interpolate their own error code as appropriate.
The wait_on_bit() call in __fscache_wait_on_invalidate() was
ambiguous as it specified TASK_UNINTERRUPTIBLE but used
fscache_wait_bit_interruptible as an action function.
David Howells confirms this should be uniformly
"uninterruptible"
The main remaining user of wait_on_bit{,_lock}_action is NFS
which needs to use a freezer-aware schedule() call.
A comment in fs/gfs2/glock.c notes that having multiple 'action'
functions is useful as they display differently in the 'wchan'
field of 'ps'. (and /proc/$PID/wchan).
As the new bit_wait{,_io} functions are tagged "__sched", they
will not show up at all, but something higher in the stack. So
the distinction will still be visible, only with different
function names (gds2_glock_wait versus gfs2_glock_dq_wait in the
gfs2/glock.c case).
Since first version of this patch (against 3.15) two new action
functions appeared, on in NFS and one in CIFS. CIFS also now
uses an action function that makes the same freezer aware
schedule call as NFS.
Signed-off-by: NeilBrown <neilb@suse.de>
Acked-by: David Howells <dhowells@redhat.com> (fscache, keys)
Acked-by: Steven Whitehouse <swhiteho@redhat.com> (gfs2)
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Steve French <sfrench@samba.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: http://lkml.kernel.org/r/20140707051603.28027.72349.stgit@notabene.brown
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Fix the state management of internal fscache operations and the accounting of
what operations are in what states.
This is done by:
(1) Give struct fscache_operation a enum variable that directly represents the
state it's currently in, rather than spreading this knowledge over a bunch
of flags, who's processing the operation at the moment and whether it is
queued or not.
This makes it easier to write assertions to check the state at various
points and to prevent invalid state transitions.
(2) Add an 'operation complete' state and supply a function to indicate the
completion of an operation (fscache_op_complete()) and make things call
it. The final call to fscache_put_operation() can then check that an op
in the appropriate state (complete or cancelled).
(3) Adjust the use of object->n_ops, ->n_in_progress, ->n_exclusive to better
govern the state of an object:
(a) The ->n_ops is now the number of extant operations on the object
and is now decremented by fscache_put_operation() only.
(b) The ->n_in_progress is simply the number of objects that have been
taken off of the object's pending queue for the purposes of being
run. This is decremented by fscache_op_complete() only.
(c) The ->n_exclusive is the number of exclusive ops that have been
submitted and queued or are in progress. It is decremented by
fscache_op_complete() and by fscache_cancel_op().
fscache_put_operation() and fscache_operation_gc() now no longer try to
clean up ->n_exclusive and ->n_in_progress. That was leading to double
decrements against fscache_cancel_op().
fscache_cancel_op() now no longer decrements ->n_ops. That was leading to
double decrements against fscache_put_operation().
fscache_submit_exclusive_op() now decides whether it has to queue an op
based on ->n_in_progress being > 0 rather than ->n_ops > 0 as the latter
will persist in being true even after all preceding operations have been
cancelled or completed. Furthermore, if an object is active and there are
runnable ops against it, there must be at least one op running.
(4) Add a remaining-pages counter (n_pages) to struct fscache_retrieval and
provide a function to record completion of the pages as they complete.
When n_pages reaches 0, the operation is deemed to be complete and
fscache_op_complete() is called.
Add calls to fscache_retrieval_complete() anywhere we've finished with a
page we've been given to read or allocate for. This includes places where
we just return pages to the netfs for reading from the server and where
accessing the cache fails and we discard the proposed netfs page.
The bugs in the unfixed state management manifest themselves as oopses like the
following where the operation completion gets out of sync with return of the
cookie by the netfs. This is possible because the cache unlocks and returns
all the netfs pages before recording its completion - which means that there's
nothing to stop the netfs discarding them and returning the cookie.
FS-Cache: Cookie 'NFS.fh' still has outstanding reads
------------[ cut here ]------------
kernel BUG at fs/fscache/cookie.c:519!
invalid opcode: 0000 [#1] SMP
CPU 1
Modules linked in: cachefiles nfs fscache auth_rpcgss nfs_acl lockd sunrpc
Pid: 400, comm: kswapd0 Not tainted 3.1.0-rc7-fsdevel+ #1090 /DG965RY
RIP: 0010:[<ffffffffa007050a>] [<ffffffffa007050a>] __fscache_relinquish_cookie+0x170/0x343 [fscache]
RSP: 0018:ffff8800368cfb00 EFLAGS: 00010282
RAX: 000000000000003c RBX: ffff880023cc8790 RCX: 0000000000000000
RDX: 0000000000002f2e RSI: 0000000000000001 RDI: ffffffff813ab86c
RBP: ffff8800368cfb50 R08: 0000000000000002 R09: 0000000000000000
R10: ffff88003a1b7890 R11: ffff88001df6e488 R12: ffff880023d8ed98
R13: ffff880023cc8798 R14: 0000000000000004 R15: ffff88003b8bf370
FS: 0000000000000000(0000) GS:ffff88003bd00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b
CR2: 00000000008ba008 CR3: 0000000023d93000 CR4: 00000000000006e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400
Process kswapd0 (pid: 400, threadinfo ffff8800368ce000, task ffff88003b8bf040)
Stack:
ffff88003b8bf040 ffff88001df6e528 ffff88001df6e528 ffffffffa00b46b0
ffff88003b8bf040 ffff88001df6e488 ffff88001df6e620 ffffffffa00b46b0
ffff88001ebd04c8 0000000000000004 ffff8800368cfb70 ffffffffa00b2c91
Call Trace:
[<ffffffffa00b2c91>] nfs_fscache_release_inode_cookie+0x3b/0x47 [nfs]
[<ffffffffa008f25f>] nfs_clear_inode+0x3c/0x41 [nfs]
[<ffffffffa0090df1>] nfs4_evict_inode+0x2f/0x33 [nfs]
[<ffffffff810d8d47>] evict+0xa1/0x15c
[<ffffffff810d8e2e>] dispose_list+0x2c/0x38
[<ffffffff810d9ebd>] prune_icache_sb+0x28c/0x29b
[<ffffffff810c56b7>] prune_super+0xd5/0x140
[<ffffffff8109b615>] shrink_slab+0x102/0x1ab
[<ffffffff8109d690>] balance_pgdat+0x2f2/0x595
[<ffffffff8103e009>] ? process_timeout+0xb/0xb
[<ffffffff8109dba3>] kswapd+0x270/0x289
[<ffffffff8104c5ea>] ? __init_waitqueue_head+0x46/0x46
[<ffffffff8109d933>] ? balance_pgdat+0x595/0x595
[<ffffffff8104bf7a>] kthread+0x7f/0x87
[<ffffffff813ad6b4>] kernel_thread_helper+0x4/0x10
[<ffffffff81026b98>] ? finish_task_switch+0x45/0xc0
[<ffffffff813abcdd>] ? retint_restore_args+0xe/0xe
[<ffffffff8104befb>] ? __init_kthread_worker+0x53/0x53
[<ffffffff813ad6b0>] ? gs_change+0xb/0xb
Signed-off-by: David Howells <dhowells@redhat.com>
|
|
Add and document asynchronous operation handling for use by FS-Cache's data
storage and retrieval routines.
The following documentation is added to:
Documentation/filesystems/caching/operations.txt
================================
ASYNCHRONOUS OPERATIONS HANDLING
================================
========
OVERVIEW
========
FS-Cache has an asynchronous operations handling facility that it uses for its
data storage and retrieval routines. Its operations are represented by
fscache_operation structs, though these are usually embedded into some other
structure.
This facility is available to and expected to be be used by the cache backends,
and FS-Cache will create operations and pass them off to the appropriate cache
backend for completion.
To make use of this facility, <linux/fscache-cache.h> should be #included.
===============================
OPERATION RECORD INITIALISATION
===============================
An operation is recorded in an fscache_operation struct:
struct fscache_operation {
union {
struct work_struct fast_work;
struct slow_work slow_work;
};
unsigned long flags;
fscache_operation_processor_t processor;
...
};
Someone wanting to issue an operation should allocate something with this
struct embedded in it. They should initialise it by calling:
void fscache_operation_init(struct fscache_operation *op,
fscache_operation_release_t release);
with the operation to be initialised and the release function to use.
The op->flags parameter should be set to indicate the CPU time provision and
the exclusivity (see the Parameters section).
The op->fast_work, op->slow_work and op->processor flags should be set as
appropriate for the CPU time provision (see the Parameters section).
FSCACHE_OP_WAITING may be set in op->flags prior to each submission of the
operation and waited for afterwards.
==========
PARAMETERS
==========
There are a number of parameters that can be set in the operation record's flag
parameter. There are three options for the provision of CPU time in these
operations:
(1) The operation may be done synchronously (FSCACHE_OP_MYTHREAD). A thread
may decide it wants to handle an operation itself without deferring it to
another thread.
This is, for example, used in read operations for calling readpages() on
the backing filesystem in CacheFiles. Although readpages() does an
asynchronous data fetch, the determination of whether pages exist is done
synchronously - and the netfs does not proceed until this has been
determined.
If this option is to be used, FSCACHE_OP_WAITING must be set in op->flags
before submitting the operation, and the operating thread must wait for it
to be cleared before proceeding:
wait_on_bit(&op->flags, FSCACHE_OP_WAITING,
fscache_wait_bit, TASK_UNINTERRUPTIBLE);
(2) The operation may be fast asynchronous (FSCACHE_OP_FAST), in which case it
will be given to keventd to process. Such an operation is not permitted
to sleep on I/O.
This is, for example, used by CacheFiles to copy data from a backing fs
page to a netfs page after the backing fs has read the page in.
If this option is used, op->fast_work and op->processor must be
initialised before submitting the operation:
INIT_WORK(&op->fast_work, do_some_work);
(3) The operation may be slow asynchronous (FSCACHE_OP_SLOW), in which case it
will be given to the slow work facility to process. Such an operation is
permitted to sleep on I/O.
This is, for example, used by FS-Cache to handle background writes of
pages that have just been fetched from a remote server.
If this option is used, op->slow_work and op->processor must be
initialised before submitting the operation:
fscache_operation_init_slow(op, processor)
Furthermore, operations may be one of two types:
(1) Exclusive (FSCACHE_OP_EXCLUSIVE). Operations of this type may not run in
conjunction with any other operation on the object being operated upon.
An example of this is the attribute change operation, in which the file
being written to may need truncation.
(2) Shareable. Operations of this type may be running simultaneously. It's
up to the operation implementation to prevent interference between other
operations running at the same time.
=========
PROCEDURE
=========
Operations are used through the following procedure:
(1) The submitting thread must allocate the operation and initialise it
itself. Normally this would be part of a more specific structure with the
generic op embedded within.
(2) The submitting thread must then submit the operation for processing using
one of the following two functions:
int fscache_submit_op(struct fscache_object *object,
struct fscache_operation *op);
int fscache_submit_exclusive_op(struct fscache_object *object,
struct fscache_operation *op);
The first function should be used to submit non-exclusive ops and the
second to submit exclusive ones. The caller must still set the
FSCACHE_OP_EXCLUSIVE flag.
If successful, both functions will assign the operation to the specified
object and return 0. -ENOBUFS will be returned if the object specified is
permanently unavailable.
The operation manager will defer operations on an object that is still
undergoing lookup or creation. The operation will also be deferred if an
operation of conflicting exclusivity is in progress on the object.
If the operation is asynchronous, the manager will retain a reference to
it, so the caller should put their reference to it by passing it to:
void fscache_put_operation(struct fscache_operation *op);
(3) If the submitting thread wants to do the work itself, and has marked the
operation with FSCACHE_OP_MYTHREAD, then it should monitor
FSCACHE_OP_WAITING as described above and check the state of the object if
necessary (the object might have died whilst the thread was waiting).
When it has finished doing its processing, it should call
fscache_put_operation() on it.
(4) The operation holds an effective lock upon the object, preventing other
exclusive ops conflicting until it is released. The operation can be
enqueued for further immediate asynchronous processing by adjusting the
CPU time provisioning option if necessary, eg:
op->flags &= ~FSCACHE_OP_TYPE;
op->flags |= ~FSCACHE_OP_FAST;
and calling:
void fscache_enqueue_operation(struct fscache_operation *op)
This can be used to allow other things to have use of the worker thread
pools.
=====================
ASYNCHRONOUS CALLBACK
=====================
When used in asynchronous mode, the worker thread pool will invoke the
processor method with a pointer to the operation. This should then get at the
container struct by using container_of():
static void fscache_write_op(struct fscache_operation *_op)
{
struct fscache_storage *op =
container_of(_op, struct fscache_storage, op);
...
}
The caller holds a reference on the operation, and will invoke
fscache_put_operation() when the processor function returns. The processor
function is at liberty to call fscache_enqueue_operation() or to take extra
references.
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Steve Dickson <steved@redhat.com>
Acked-by: Trond Myklebust <Trond.Myklebust@netapp.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Tested-by: Daire Byrne <Daire.Byrne@framestore.com>
|