summaryrefslogtreecommitdiffstats
path: root/arch/arm/crypto/Makefile
Commit message (Collapse)AuthorAgeFilesLines
* crypto: arm/blake2b - add NEON-accelerated BLAKE2bEric Biggers2021-01-031-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Add a NEON-accelerated implementation of BLAKE2b. On Cortex-A7 (which these days is the most common ARM processor that doesn't have the ARMv8 Crypto Extensions), this is over twice as fast as SHA-256, and slightly faster than SHA-1. It is also almost three times as fast as the generic implementation of BLAKE2b: Algorithm Cycles per byte (on 4096-byte messages) =================== ======================================= blake2b-256-neon 14.0 sha1-neon 16.3 blake2s-256-arm 18.8 sha1-asm 20.8 blake2s-256-generic 26.0 sha256-neon 28.9 sha256-asm 32.0 blake2b-256-generic 38.9 This implementation isn't directly based on any other implementation, but it borrows some ideas from previous NEON code I've written as well as from chacha-neon-core.S. At least on Cortex-A7, it is faster than the other NEON implementations of BLAKE2b I'm aware of (the implementation in the BLAKE2 official repository using intrinsics, and Andrew Moon's implementation which can be found in SUPERCOP). It does only one block at a time, so it performs well on short messages too. NEON-accelerated BLAKE2b is useful because there is interest in using BLAKE2b-256 for dm-verity on low-end Android devices (specifically, devices that lack the ARMv8 Crypto Extensions) to replace SHA-1. On these devices, the performance cost of upgrading to SHA-256 may be unacceptable, whereas BLAKE2b-256 would actually improve performance. Although BLAKE2b is intended for 64-bit platforms (unlike BLAKE2s which is intended for 32-bit platforms), on 32-bit ARM processors with NEON, BLAKE2b is actually faster than BLAKE2s. This is because NEON supports 64-bit operations, and because BLAKE2s's block size is too small for NEON to be helpful for it. The best I've been able to do with BLAKE2s on Cortex-A7 is 18.8 cpb with an optimized scalar implementation. (I didn't try BLAKE2sp and BLAKE3, which in theory would be faster, but they're more complex as they require running multiple hashes at once. Note that BLAKE2b already uses all the NEON bandwidth on the Cortex-A7, so I expect that any speedup from BLAKE2sp or BLAKE3 would come only from the smaller number of rounds, not from the extra parallelism.) For now this BLAKE2b implementation is only wired up to the shash API, since there is no library API for BLAKE2b yet. However, I've tried to keep things consistent with BLAKE2s, e.g. by defining blake2b_compress_arch() which is analogous to blake2s_compress_arch() and could be exported for use by the library API later if needed. Acked-by: Ard Biesheuvel <ardb@kernel.org> Signed-off-by: Eric Biggers <ebiggers@google.com> Tested-by: Ard Biesheuvel <ardb@kernel.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: arm/blake2s - add ARM scalar optimized BLAKE2sEric Biggers2021-01-031-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Add an ARM scalar optimized implementation of BLAKE2s. NEON isn't very useful for BLAKE2s because the BLAKE2s block size is too small for NEON to help. Each NEON instruction would depend on the previous one, resulting in poor performance. With scalar instructions, on the other hand, we can take advantage of ARM's "free" rotations (like I did in chacha-scalar-core.S) to get an implementation get runs much faster than the C implementation. Performance results on Cortex-A7 in cycles per byte using the shash API: 4096-byte messages: blake2s-256-arm: 18.8 blake2s-256-generic: 26.0 500-byte messages: blake2s-256-arm: 20.3 blake2s-256-generic: 27.9 100-byte messages: blake2s-256-arm: 29.7 blake2s-256-generic: 39.2 32-byte messages: blake2s-256-arm: 50.6 blake2s-256-generic: 66.2 Except on very short messages, this is still slower than the NEON implementation of BLAKE2b which I've written; that is 14.0, 16.4, 25.8, and 76.1 cpb on 4096, 500, 100, and 32-byte messages, respectively. However, optimized BLAKE2s is useful for cases where BLAKE2s is used instead of BLAKE2b, such as WireGuard. This new implementation is added in the form of a new module blake2s-arm.ko, which is analogous to blake2s-x86_64.ko in that it provides blake2s_compress_arch() for use by the library API as well as optionally register the algorithms with the shash API. Acked-by: Ard Biesheuvel <ardb@kernel.org> Signed-off-by: Eric Biggers <ebiggers@google.com> Tested-by: Ard Biesheuvel <ardb@kernel.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: arm/curve25519 - wire up NEON implementationJason A. Donenfeld2019-11-171-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This ports the SUPERCOP implementation for usage in kernel space. In addition to the usual header, macro, and style changes required for kernel space, it makes a few small changes to the code: - The stack alignment is relaxed to 16 bytes. - Superfluous mov statements have been removed. - ldr for constants has been replaced with movw. - ldreq has been replaced with moveq. - The str epilogue has been made more idiomatic. - SIMD registers are not pushed and popped at the beginning and end. - The prologue and epilogue have been made idiomatic. - A hole has been removed from the stack, saving 32 bytes. - We write-back the base register whenever possible for vld1.8. - Some multiplications have been reordered for better A7 performance. There are more opportunities for cleanup, since this code is from qhasm, which doesn't always do the most opportune thing. But even prior to extensive hand optimizations, this code delivers significant performance improvements (given in get_cycles() per call): ----------- ------------- | generic C | this commit | ------------ ----------- ------------- | Cortex-A7 | 49136 | 22395 | ------------ ----------- ------------- | Cortex-A17 | 17326 | 4983 | ------------ ----------- ------------- Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> [ardb: - move to arch/arm/crypto - wire into lib/crypto framework - implement crypto API KPP hooks ] Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: arm/poly1305 - incorporate OpenSSL/CRYPTOGAMS NEON implementationArd Biesheuvel2019-11-171-1/+11
| | | | | | | | | | | | | | | | This is a straight import of the OpenSSL/CRYPTOGAMS Poly1305 implementation for NEON authored by Andy Polyakov, and contributed by him to the OpenSSL project. The file 'poly1305-armv4.pl' is taken straight from this upstream GitHub repository [0] at commit ec55a08dc0244ce570c4fc7cade330c60798952f, and already contains all the changes required to build it as part of a Linux kernel module. [0] https://github.com/dot-asm/cryptogams Co-developed-by: Andy Polyakov <appro@cryptogams.org> Signed-off-by: Andy Polyakov <appro@cryptogams.org> Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: arm/chacha - remove dependency on generic ChaCha driverArd Biesheuvel2019-11-171-1/+2
| | | | | | | | | | | Instead of falling back to the generic ChaCha skcipher driver for non-SIMD cases, use a fast scalar implementation for ARM authored by Eric Biggers. This removes the module dependency on chacha-generic altogether, which also simplifies things when we expose the ChaCha library interface from this module. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: arm - use Kconfig based compiler checks for crypto opcodesArd Biesheuvel2019-10-231-26/+6
| | | | | | | | | | | | | | | | Instead of allowing the Crypto Extensions algorithms to be selected when using a toolchain that does not support them, and complain about it at build time, use the information we have about the compiler to prevent them from being selected in the first place. Users that are stuck with a GCC version <4.8 are unlikely to care about these routines anyway, and it cleans up the Makefile considerably. While at it, add explicit 'armv8-a' CPU specifiers to the code that uses the 'crypto-neon-fp-armv8' FPU specifier so we don't regress Clang, which will complain about this in version 10 and later. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* Merge tag 'kbuild-v4.21' of ↵Linus Torvalds2018-12-291-1/+1
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild Pull Kbuild updates from Masahiro Yamada: "Kbuild core: - remove unneeded $(call cc-option,...) switches - consolidate Clang compiler flags into CLANG_FLAGS - announce the deprecation of SUBDIRS - fix single target build for external module - simplify the dependencies of 'prepare' stage targets - allow fixdep to directly write to .*.cmd files - simplify dependency generation for CONFIG_TRIM_UNUSED_KSYMS - change if_changed_rule to accept multi-line recipe - move .SECONDARY special target to scripts/Kbuild.include - remove redundant 'set -e' - improve parallel execution for CONFIG_HEADERS_CHECK - misc cleanups Treewide fixes and cleanups - set Clang flags correctly for PowerPC boot images - fix UML build error with CONFIG_GCC_PLUGINS - remove unneeded patterns from .gitignore files - refactor firmware/Makefile - remove unneeded rules for *offsets.s - avoid unneeded regeneration of intermediate .s files - clean up ./Kbuild Modpost: - remove unused -M, -K options - fix false positive warnings about section mismatch - use simple devtable lookup instead of linker magic - misc cleanups Coccinelle: - relax boolinit.cocci checks for overall consistency - fix warning messages of boolinit.cocci Other tools: - improve -dirty check of scripts/setlocalversion - add a tool to generate compile_commands.json from .*.cmd files" * tag 'kbuild-v4.21' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild: (51 commits) kbuild: remove unused cmd_gentimeconst kbuild: remove $(obj)/ prefixes in ./Kbuild treewide: add intermediate .s files to targets treewide: remove explicit rules for *offsets.s firmware: refactor firmware/Makefile firmware: remove unnecessary patterns from .gitignore scripts: remove unnecessary ihex2fw and check-lc_ctypes from .gitignore um: remove unused filechk_gen_header in Makefile scripts: add a tool to produce a compile_commands.json file kbuild: add -Werror=implicit-int flag unconditionally kbuild: add -Werror=strict-prototypes flag unconditionally kbuild: add -fno-PIE flag unconditionally scripts: coccinelle: Correct warning message scripts: coccinelle: only suggest true/false in files that already use them kbuild: handle part-of-module correctly for *.ll and *.symtypes kbuild: refactor part-of-module kbuild: refactor quiet_modtag kbuild: remove redundant quiet_modtag for $(obj-m) kbuild: refactor Makefile.asm-generic user/Makefile: Fix typo and capitalization in comment section ...
| * kbuild: move .SECONDARY special target to Kbuild.includeMasahiro Yamada2018-12-021-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In commit 54a702f70589 ("kbuild: mark $(targets) as .SECONDARY and remove .PRECIOUS markers"), I missed one important feature of the .SECONDARY target: .SECONDARY with no prerequisites causes all targets to be treated as secondary. ... which agrees with the policy of Kbuild. Let's move it to scripts/Kbuild.include, with no prerequisites. Note: If an intermediate file is generated by $(call if_changed,...), you still need to add it to "targets" so its .*.cmd file is included. The arm/arm64 crypto files are generated by $(call cmd,shipped), so they do not need to be added to "targets", but need to be added to "clean-files" so "make clean" can properly clean them away. Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
* | crypto: arm/nhpoly1305 - add NEON-accelerated NHPoly1305Eric Biggers2018-11-201-0/+2
| | | | | | | | | | | | | | | | | | | | | | Add an ARM NEON implementation of NHPoly1305, an ε-almost-∆-universal hash function used in the Adiantum encryption mode. For now, only the NH portion is actually NEON-accelerated; the Poly1305 part is less performance-critical so is just implemented in C. Signed-off-by: Eric Biggers <ebiggers@google.com> Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* | crypto: arm/chacha20 - refactor to allow varying number of roundsEric Biggers2018-11-201-2/+2
|/ | | | | | | | | In preparation for adding XChaCha12 support, rename/refactor the NEON implementation of ChaCha20 to support different numbers of rounds. Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: speck - remove SpeckJason A. Donenfeld2018-09-041-2/+0
| | | | | | | | | | | | | | | | These are unused, undesired, and have never actually been used by anybody. The original authors of this code have changed their mind about its inclusion. While originally proposed for disk encryption on low-end devices, the idea was discarded [1] in favor of something else before that could really get going. Therefore, this patch removes Speck. [1] https://marc.info/?l=linux-crypto-vger&m=153359499015659 Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> Acked-by: Eric Biggers <ebiggers@google.com> Cc: stable@vger.kernel.org Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* kbuild: mark $(targets) as .SECONDARY and remove .PRECIOUS markersMasahiro Yamada2018-04-071-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | GNU Make automatically deletes intermediate files that are updated in a chain of pattern rules. Example 1) %.dtb.o <- %.dtb.S <- %.dtb <- %.dts Example 2) %.o <- %.c <- %.c_shipped A couple of makefiles mark such targets as .PRECIOUS to prevent Make from deleting them, but the correct way is to use .SECONDARY. .SECONDARY Prerequisites of this special target are treated as intermediate files but are never automatically deleted. .PRECIOUS When make is interrupted during execution, it may delete the target file it is updating if the file was modified since make started. If you mark the file as precious, make will never delete the file if interrupted. Both can avoid deletion of intermediate files, but the difference is the behavior when Make is interrupted; .SECONDARY deletes the target, but .PRECIOUS does not. The use of .PRECIOUS is relatively rare since we do not want to keep partially constructed (possibly corrupted) targets. Another difference is that .PRECIOUS works with pattern rules whereas .SECONDARY does not. .PRECIOUS: $(obj)/%.lex.c works, but .SECONDARY: $(obj)/%.lex.c has no effect. However, for the reason above, I do not want to use .PRECIOUS which could cause obscure build breakage. The targets specified as .SECONDARY must be explicit. $(targets) contains all targets that need to include .*.cmd files. So, the intermediates you want to keep are mostly in there. Therefore, mark $(targets) as .SECONDARY. It means primary targets are also marked as .SECONDARY, but I do not see any drawback for this. I replaced some .SECONDARY / .PRECIOUS markers with 'targets'. This will make Kbuild search for non-existing .*.cmd files, but this is not a noticeable performance issue. Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com> Acked-by: Frank Rowand <frowand.list@gmail.com> Acked-by: Ingo Molnar <mingo@kernel.org>
* crypto: arm,arm64 - Fix random regeneration of S_shippedLeonard Crestez2018-03-231-0/+2
| | | | | | | | | | | | | | | | | | | | | | The decision to rebuild .S_shipped is made based on the relative timestamps of .S_shipped and .pl files but git makes this essentially random. This means that the perl script might run anyway (usually at most once per checkout), defeating the whole purpose of _shipped. Fix by skipping the rule unless explicit make variables are provided: REGENERATE_ARM_CRYPTO or REGENERATE_ARM64_CRYPTO. This can produce nasty occasional build failures downstream, for example for toolchains with broken perl. The solution is minimally intrusive to make it easier to push into stable. Another report on a similar issue here: https://lkml.org/lkml/2018/3/8/1379 Signed-off-by: Leonard Crestez <leonard.crestez@nxp.com> Cc: <stable@vger.kernel.org> Reviewed-by: Masahiro Yamada <yamada.masahiro@socionext.com> Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: arm/speck - add NEON-accelerated implementation of Speck-XTSEric Biggers2018-02-221-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Add an ARM NEON-accelerated implementation of Speck-XTS. It operates on 128-byte chunks at a time, i.e. 8 blocks for Speck128 or 16 blocks for Speck64. Each 128-byte chunk goes through XTS preprocessing, then is encrypted/decrypted (doing one cipher round for all the blocks, then the next round, etc.), then goes through XTS postprocessing. The performance depends on the processor but can be about 3 times faster than the generic code. For example, on an ARMv7 processor we observe the following performance with Speck128/256-XTS: xts-speck128-neon: Encryption 107.9 MB/s, Decryption 108.1 MB/s xts(speck128-generic): Encryption 32.1 MB/s, Decryption 36.6 MB/s In comparison to AES-256-XTS without the Cryptography Extensions: xts-aes-neonbs: Encryption 41.2 MB/s, Decryption 36.7 MB/s xts(aes-asm): Encryption 31.7 MB/s, Decryption 30.8 MB/s xts(aes-generic): Encryption 21.2 MB/s, Decryption 20.9 MB/s Speck64/128-XTS is even faster: xts-speck64-neon: Encryption 138.6 MB/s, Decryption 139.1 MB/s Note that as with the generic code, only the Speck128 and Speck64 variants are supported. Also, for now only the XTS mode of operation is supported, to target the disk and file encryption use cases. The NEON code also only handles the portion of the data that is evenly divisible into 128-byte chunks, with any remainder handled by a C fallback. Of course, other modes of operation could be added later if needed, and/or the NEON code could be updated to handle other buffer sizes. The XTS specification is only defined for AES which has a 128-bit block size, so for the GF(2^64) math needed for Speck64-XTS we use the reducing polynomial 'x^64 + x^4 + x^3 + x + 1' given by the original XEX paper. Of course, when possible users should use Speck128-XTS, but even that may be too slow on some processors; Speck64-XTS can be faster. Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* License cleanup: add SPDX GPL-2.0 license identifier to files with no licenseGreg Kroah-Hartman2017-11-021-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* crypto: arm/crc32 - add build time test for CRC instruction supportArd Biesheuvel2017-03-011-1/+11
| | | | | | | | | | | | | | | | | | | The accelerated CRC32 module for ARM may use either the scalar CRC32 instructions, the NEON 64x64 to 128 bit polynomial multiplication (vmull.p64) instruction, or both, depending on what the current CPU supports. However, this also requires support in binutils, and as it turns out, versions of binutils exist that support the vmull.p64 instruction but not the crc32 instructions. So refactor the Makefile logic so that this module only gets built if binutils has support for both. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: Jon Hunter <jonathanh@nvidia.com> Tested-by: Jon Hunter <jonathanh@nvidia.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: arm/aes - replace bit-sliced OpenSSL NEON codeArd Biesheuvel2017-01-131-5/+2
| | | | | | | | | | | | | | | | | | | | | This replaces the unwieldy generated implementation of bit-sliced AES in CBC/CTR/XTS modes that originated in the OpenSSL project with a new version that is heavily based on the OpenSSL implementation, but has a number of advantages over the old version: - it does not rely on the scalar AES cipher that also originated in the OpenSSL project and contains redundant lookup tables and key schedule generation routines (which we already have in crypto/aes_generic.) - it uses the same expanded key schedule for encryption and decryption, reducing the size of the per-key data structure by 1696 bytes - it adds an implementation of AES in ECB mode, which can be wrapped by other generic chaining mode implementations - it moves the handling of corner cases that are non critical to performance to the glue layer written in C - it was written directly in assembler rather than generated from a Perl script Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: arm/aes - replace scalar AES cipherArd Biesheuvel2017-01-131-2/+2
| | | | | | | | | | | | | | | | | This replaces the scalar AES cipher that originates in the OpenSSL project with a new implementation that is ~15% (*) faster (on modern cores), and reuses the lookup tables and the key schedule generation routines from the generic C implementation (which is usually compiled in anyway due to networking and other subsystems depending on it). Note that the bit sliced NEON code for AES still depends on the scalar cipher that this patch replaces, so it is not removed entirely yet. * On Cortex-A57, the performance increases from 17.0 to 14.9 cycles per byte for 128-bit keys. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: arm/chacha20 - implement NEON version based on SSE3 codeArd Biesheuvel2017-01-131-0/+2
| | | | | | | | | This is a straight port to ARM/NEON of the x86 SSE3 implementation of the ChaCha20 stream cipher. It uses the new skcipher walksize attribute to process the input in strides of 4x the block size. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* Revert "crypto: arm64/ARM: NEON accelerated ChaCha20"Herbert Xu2016-12-281-2/+0
| | | | | | | | | | | | | | This patch reverts the following commits: 8621caa0d45e731f2e9f5889ff5bb384fcd6e059 8096667273477e735b0072b11a6d617ccee45e5f I should not have applied them because they had already been obsoleted by a subsequent patch series. They also cause a build failure because of the subsequent commit 9ae433bc79f9. Fixes: 9ae433bc79f ("crypto: chacha20 - convert generic and...") Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: arm/chacha20 - implement NEON version based on SSE3 codeArd Biesheuvel2016-12-271-0/+2
| | | | | | | | This is a straight port to ARM/NEON of the x86 SSE3 implementation of the ChaCha20 stream cipher. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: arm/crc32 - accelerated support based on x86 SSE implementationArd Biesheuvel2016-12-071-0/+2
| | | | | | | | | | | | | | | | This is a combination of the the Intel algorithm implemented using SSE and PCLMULQDQ instructions from arch/x86/crypto/crc32-pclmul_asm.S, and the new CRC32 extensions introduced for both 32-bit and 64-bit ARM in version 8 of the architecture. Two versions of the above combo are provided, one for CRC32 and one for CRC32C. The PMULL/NEON algorithm is faster, but operates on blocks of at least 64 bytes, and on multiples of 16 bytes only. For the remaining input, or for all input on systems that lack the PMULL 64x64->128 instructions, the CRC32 instructions will be used. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: arm/crct10dif - port x86 SSE implementation to ARMArd Biesheuvel2016-12-071-0/+2
| | | | | | | | | | This is a transliteration of the Intel algorithm implemented using SSE and PCLMULQDQ instructions that resides in the file arch/x86/crypto/crct10dif-pcl-asm_64.S, but simplified to only operate on buffers that are 16 byte aligned (but of any size) Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: arm/sha512 - accelerated SHA-512 using ARM generic ASM and NEONArd Biesheuvel2015-05-111-3/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This replaces the SHA-512 NEON module with the faster and more versatile implementation from the OpenSSL project. It consists of both a NEON and a generic ASM version of the core SHA-512 transform, where the NEON version reverts to the ASM version when invoked in non-process context. This patch is based on the OpenSSL upstream version b1a5d1c65208 of sha512-armv4.pl, which can be found here: https://git.openssl.org/gitweb/?p=openssl.git;h=b1a5d1c65208 Performance relative to the generic implementation (measured using tcrypt.ko mode=306 sec=1 running on a Cortex-A57 under KVM): input size block size asm neon old neon 16 16 1.39 2.54 2.21 64 16 1.32 2.33 2.09 64 64 1.38 2.53 2.19 256 16 1.31 2.28 2.06 256 64 1.38 2.54 2.25 256 256 1.40 2.77 2.39 1024 16 1.29 2.22 2.01 1024 256 1.40 2.82 2.45 1024 1024 1.41 2.93 2.53 2048 16 1.33 2.21 2.00 2048 256 1.40 2.84 2.46 2048 1024 1.41 2.96 2.55 2048 2048 1.41 2.98 2.56 4096 16 1.34 2.20 1.99 4096 256 1.40 2.84 2.46 4096 1024 1.41 2.97 2.56 4096 4096 1.41 3.01 2.58 8192 16 1.34 2.19 1.99 8192 256 1.40 2.85 2.47 8192 1024 1.41 2.98 2.56 8192 4096 1.41 2.71 2.59 8192 8192 1.51 3.51 2.69 Acked-by: Jussi Kivilinna <jussi.kivilinna@iki.fi> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: arm - workaround for building with old binutilsArd Biesheuvel2015-04-131-4/+15
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Old versions of binutils (before 2.23) do not yet understand the crypto-neon-fp-armv8 fpu instructions, and an attempt to build these files results in a build failure: arch/arm/crypto/aes-ce-core.S:133: Error: selected processor does not support ARM mode `vld1.8 {q10-q11},[ip]!' arch/arm/crypto/aes-ce-core.S:133: Error: bad instruction `aese.8 q0,q8' arch/arm/crypto/aes-ce-core.S:133: Error: bad instruction `aesmc.8 q0,q0' arch/arm/crypto/aes-ce-core.S:133: Error: bad instruction `aese.8 q0,q9' arch/arm/crypto/aes-ce-core.S:133: Error: bad instruction `aesmc.8 q0,q0' Since the affected versions are still in widespread use, and this breaks 'allmodconfig' builds, we should try to at least get a successful kernel build. Unfortunately, I could not come up with a way to make the Kconfig symbol depend on the binutils version, which would be the nicest solution. Instead, this patch uses the 'as-instr' Kbuild macro to find out whether the support is present in the assembler, and otherwise emits a non-fatal warning indicating which selected modules could not be built. Signed-off-by: Arnd Bergmann <arnd@arndb.de> Link: http://storage.kernelci.org/next/next-20150410/arm-allmodconfig/build.log Fixes: 864cbeed4ab22d ("crypto: arm - add support for SHA1 using ARMv8 Crypto Instructions") [ard.biesheuvel: - omit modules entirely instead of building empty ones if binutils is too old - update commit log accordingly] Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: arm/sha256 - Add optimized SHA-256/224Sami Tolvanen2015-04-031-1/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Add Andy Polyakov's optimized assembly and NEON implementations for SHA-256/224. The sha256-armv4.pl script for generating the assembly code is from OpenSSL commit 51f8d095562f36cdaa6893597b5c609e943b0565. Compared to sha256-generic these implementations have the following tcrypt speed improvements on Motorola Nexus 6 (Snapdragon 805): bs b/u sha256-neon sha256-asm 16 16 x1.32 x1.19 64 16 x1.27 x1.15 64 64 x1.36 x1.20 256 16 x1.22 x1.11 256 64 x1.36 x1.19 256 256 x1.59 x1.23 1024 16 x1.21 x1.10 1024 256 x1.65 x1.23 1024 1024 x1.76 x1.25 2048 16 x1.21 x1.10 2048 256 x1.66 x1.23 2048 1024 x1.78 x1.25 2048 2048 x1.79 x1.25 4096 16 x1.20 x1.09 4096 256 x1.66 x1.23 4096 1024 x1.79 x1.26 4096 4096 x1.82 x1.26 8192 16 x1.20 x1.09 8192 256 x1.67 x1.23 8192 1024 x1.80 x1.26 8192 4096 x1.85 x1.28 8192 8192 x1.85 x1.27 Where bs refers to block size and b/u to bytes per update. Signed-off-by: Sami Tolvanen <samitolvanen@google.com> Cc: Andy Polyakov <appro@openssl.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: arm - add support for GHASH using ARMv8 Crypto ExtensionsArd Biesheuvel2015-03-121-0/+2
| | | | | | | | | | This implements the GHASH hash algorithm (as used by the GCM AEAD chaining mode) using the AArch32 version of the 64x64 to 128 bit polynomial multiplication instruction (vmull.p64) that is part of the ARMv8 Crypto Extensions. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: arm - AES in ECB/CBC/CTR/XTS modes using ARMv8 Crypto ExtensionsArd Biesheuvel2015-03-121-0/+2
| | | | | | | | This implements the ECB, CBC, CTR and XTS asynchronous block ciphers using the AArch32 versions of the ARMv8 Crypto Extensions for AES. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: arm - add support for SHA-224/256 using ARMv8 Crypto ExtensionsArd Biesheuvel2015-03-121-0/+2
| | | | | | | | This implements the SHA-224/256 secure hash algorithm using the AArch32 versions of the ARMv8 Crypto Extensions for SHA2. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* crypto: arm - add support for SHA1 using ARMv8 Crypto InstructionsArd Biesheuvel2015-03-121-0/+2
| | | | | | | | This implements the SHA1 secure hash algorithm using the AArch32 versions of the ARMv8 Crypto Extensions for SHA1. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* ARM: 8120/1: crypto: sha512: add ARM NEON implementationJussi Kivilinna2014-08-021-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch adds ARM NEON assembly implementation of SHA-512 and SHA-384 algorithms. tcrypt benchmark results on Cortex-A8, sha512-generic vs sha512-neon-asm: block-size bytes/update old-vs-new 16 16 2.99x 64 16 2.67x 64 64 3.00x 256 16 2.64x 256 64 3.06x 256 256 3.33x 1024 16 2.53x 1024 256 3.39x 1024 1024 3.52x 2048 16 2.50x 2048 256 3.41x 2048 1024 3.54x 2048 2048 3.57x 4096 16 2.49x 4096 256 3.42x 4096 1024 3.56x 4096 4096 3.59x 8192 16 2.48x 8192 256 3.42x 8192 1024 3.56x 8192 4096 3.60x 8192 8192 3.60x Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Jussi Kivilinna <jussi.kivilinna@iki.fi> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
* ARM: 8119/1: crypto: sha1: add ARM NEON implementationJussi Kivilinna2014-08-021-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch adds ARM NEON assembly implementation of SHA-1 algorithm. tcrypt benchmark results on Cortex-A8, sha1-arm-asm vs sha1-neon-asm: block-size bytes/update old-vs-new 16 16 1.04x 64 16 1.02x 64 64 1.05x 256 16 1.03x 256 64 1.04x 256 256 1.30x 1024 16 1.03x 1024 256 1.36x 1024 1024 1.52x 2048 16 1.03x 2048 256 1.39x 2048 1024 1.55x 2048 2048 1.59x 4096 16 1.03x 4096 256 1.40x 4096 1024 1.57x 4096 4096 1.62x 8192 16 1.03x 8192 256 1.40x 8192 1024 1.58x 8192 4096 1.63x 8192 8192 1.63x Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Jussi Kivilinna <jussi.kivilinna@iki.fi> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
* ARM: add support for bit sliced AES using NEON instructionsArd Biesheuvel2013-10-041-2/+12
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Bit sliced AES gives around 45% speedup on Cortex-A15 for encryption and around 25% for decryption. This implementation of the AES algorithm does not rely on any lookup tables so it is believed to be invulnerable to cache timing attacks. This algorithm processes up to 8 blocks in parallel in constant time. This means that it is not usable by chaining modes that are strictly sequential in nature, such as CBC encryption. CBC decryption, however, can benefit from this implementation and runs about 25% faster. The other chaining modes implemented in this module, XTS and CTR, can execute fully in parallel in both directions. The core code has been adopted from the OpenSSL project (in collaboration with the original author, on cc). For ease of maintenance, this version is identical to the upstream OpenSSL code, i.e., all modifications that were required to make it suitable for inclusion into the kernel have been made upstream. The original can be found here: http://git.openssl.org/gitweb/?p=openssl.git;a=commit;h=6f6a6130 Note to integrators: While this implementation is significantly faster than the existing table based ones (generic or ARM asm), especially in CTR mode, the effects on power efficiency are unclear as of yet. This code does fundamentally more work, by calculating values that the table based code obtains by a simple lookup; only by doing all of that work in a SIMD fashion, it manages to perform better. Cc: Andy Polyakov <appro@openssl.org> Acked-by: Nicolas Pitre <nico@linaro.org> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
* arm/crypto: Add optimized AES and SHA1 routinesDavid McCullough2012-09-071-0/+9
Add assembler versions of AES and SHA1 for ARM platforms. This has provided up to a 50% improvement in IPsec/TCP throughout for tunnels using AES128/SHA1. Platform CPU SPeed Endian Before (bps) After (bps) Improvement IXP425 533 MHz big 11217042 15566294 ~38% KS8695 166 MHz little 3828549 5795373 ~51% Signed-off-by: David McCullough <ucdevel@gmail.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>