| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Commit bd82d4bd2188 ("arm64: Fix incorrect irqflag restore for priority
masking") added a macro to the entry.S call paths that leave the
PSTATE.I bit set. This tells the pPNMI masking logic that interrupts
are masked by the CPU, not by the PMR. This value is read back by
local_daif_save().
Commit bd82d4bd2188 added this call to el0_svc, as el0_svc_handler
is called with interrupts masked. el0_svc_compat was missed, but should
be covered in the same way as both of these paths end up in
el0_svc_common(), which expects to unmask interrupts.
Fixes: bd82d4bd2188 ("arm64: Fix incorrect irqflag restore for priority masking")
Signed-off-by: James Morse <james.morse@arm.com>
Cc: Julien Thierry <julien.thierry.kdev@gmail.com>
Signed-off-by: Will Deacon <will@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When taking an SError or Debug exception from EL0, we run the C
handler for these exceptions before updating the context tracking
code and unmasking lower priority interrupts.
When booting with nohz_full lockdep tells us we got this wrong:
| =============================
| WARNING: suspicious RCU usage
| 5.3.0-rc2-00010-gb4b5e9dcb11b-dirty #11271 Not tainted
| -----------------------------
| include/linux/rcupdate.h:643 rcu_read_unlock() used illegally wh!
|
| other info that might help us debug this:
|
|
| RCU used illegally from idle CPU!
| rcu_scheduler_active = 2, debug_locks = 1
| RCU used illegally from extended quiescent state!
| 1 lock held by a.out/432:
| #0: 00000000c7a79515 (rcu_read_lock){....}, at: brk_handler+0x00
|
| stack backtrace:
| CPU: 1 PID: 432 Comm: a.out Not tainted 5.3.0-rc2-00010-gb4b5e9d1
| Hardware name: ARM LTD ARM Juno Development Platform/ARM Juno De8
| Call trace:
| dump_backtrace+0x0/0x140
| show_stack+0x14/0x20
| dump_stack+0xbc/0x104
| lockdep_rcu_suspicious+0xf8/0x108
| brk_handler+0x164/0x1b0
| do_debug_exception+0x11c/0x278
| el0_dbg+0x14/0x20
Moving the ct_user_exit calls to be before do_debug_exception() means
they are also before trace_hardirqs_off() has been updated. Add a new
ct_user_exit_irqoff macro to avoid the context-tracking code using
irqsave/restore before we've updated trace_hardirqs_off(). To be
consistent, do this everywhere.
The C helper is called enter_from_user_mode() to match x86 in the hope
we can merge them into kernel/context_tracking.c later.
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Fixes: 6c81fe7925cc4c42 ("arm64: enable context tracking")
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Comparing the arm-arm's pseudocode for AArch64.PCAlignmentFault() with
AArch64.SPAlignmentFault() shows that SP faults don't copy the faulty-SP
to FAR_EL1, but this is where we read from, and the address we provide
to user-space with the BUS_ADRALN signal.
For user-space this value will be UNKNOWN due to the previous ERET to
user-space. If the last value is preserved, on systems with KASLR or KPTI
this will be the user-space link-register left in FAR_EL1 by tramp_exit().
Fix this to retrieve the original sp_el0 value, and pass this to
do_sp_pc_fault().
SP alignment faults from EL1 will cause us to take the fault again when
trying to store the pt_regs. This eventually takes us to the overflow
stack. Remove the ESR_ELx_EC_SP_ALIGN check as we will never make it
this far.
Fixes: 60ffc30d5652 ("arm64: Exception handling")
Signed-off-by: James Morse <james.morse@arm.com>
[will: change label name and fleshed out comment]
Signed-off-by: Will Deacon <will@kernel.org>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
- arm64 support for syscall emulation via PTRACE_SYSEMU{,_SINGLESTEP}
- Wire up VM_FLUSH_RESET_PERMS for arm64, allowing the core code to
manage the permissions of executable vmalloc regions more strictly
- Slight performance improvement by keeping softirqs enabled while
touching the FPSIMD/SVE state (kernel_neon_begin/end)
- Expose a couple of ARMv8.5 features to user (HWCAP): CondM (new
XAFLAG and AXFLAG instructions for floating point comparison flags
manipulation) and FRINT (rounding floating point numbers to integers)
- Re-instate ARM64_PSEUDO_NMI support which was previously marked as
BROKEN due to some bugs (now fixed)
- Improve parking of stopped CPUs and implement an arm64-specific
panic_smp_self_stop() to avoid warning on not being able to stop
secondary CPUs during panic
- perf: enable the ARM Statistical Profiling Extensions (SPE) on ACPI
platforms
- perf: DDR performance monitor support for iMX8QXP
- cache_line_size() can now be set from DT or ACPI/PPTT if provided to
cope with a system cache info not exposed via the CPUID registers
- Avoid warning on hardware cache line size greater than
ARCH_DMA_MINALIGN if the system is fully coherent
- arm64 do_page_fault() and hugetlb cleanups
- Refactor set_pte_at() to avoid redundant READ_ONCE(*ptep)
- Ignore ACPI 5.1 FADTs reported as 5.0 (infer from the
'arm_boot_flags' introduced in 5.1)
- CONFIG_RANDOMIZE_BASE now enabled in defconfig
- Allow the selection of ARM64_MODULE_PLTS, currently only done via
RANDOMIZE_BASE (and an erratum workaround), allowing modules to spill
over into the vmalloc area
- Make ZONE_DMA32 configurable
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (54 commits)
perf: arm_spe: Enable ACPI/Platform automatic module loading
arm_pmu: acpi: spe: Add initial MADT/SPE probing
ACPI/PPTT: Add function to return ACPI 6.3 Identical tokens
ACPI/PPTT: Modify node flag detection to find last IDENTICAL
x86/entry: Simplify _TIF_SYSCALL_EMU handling
arm64: rename dump_instr as dump_kernel_instr
arm64/mm: Drop [PTE|PMD]_TYPE_FAULT
arm64: Implement panic_smp_self_stop()
arm64: Improve parking of stopped CPUs
arm64: Expose FRINT capabilities to userspace
arm64: Expose ARMv8.5 CondM capability to userspace
arm64: defconfig: enable CONFIG_RANDOMIZE_BASE
arm64: ARM64_MODULES_PLTS must depend on MODULES
arm64: bpf: do not allocate executable memory
arm64/kprobes: set VM_FLUSH_RESET_PERMS on kprobe instruction pages
arm64/mm: wire up CONFIG_ARCH_HAS_SET_DIRECT_MAP
arm64: module: create module allocations without exec permissions
arm64: Allow user selection of ARM64_MODULE_PLTS
acpi/arm64: ignore 5.1 FADTs that are reported as 5.0
arm64: Allow selecting Pseudo-NMI again
...
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
When using IRQ priority masking to disable interrupts, in order to deal
with the PSR.I state, local_irq_save() would convert the I bit into a
PMR value (GIC_PRIO_IRQOFF). This resulted in local_irq_restore()
potentially modifying the value of PMR in undesired location due to the
state of PSR.I upon flag saving [1].
In an attempt to solve this issue in a less hackish manner, introduce
a bit (GIC_PRIO_IGNORE_PMR) for the PMR values that can represent
whether PSR.I is being used to disable interrupts, in which case it
takes precedence of the status of interrupt masking via PMR.
GIC_PRIO_PSR_I_SET is chosen such that (<pmr_value> |
GIC_PRIO_PSR_I_SET) does not mask more interrupts than <pmr_value> as
some sections (e.g. arch_cpu_idle(), interrupt acknowledge path)
requires PMR not to mask interrupts that could be signaled to the
CPU when using only PSR.I.
[1] https://www.spinics.net/lists/arm-kernel/msg716956.html
Fixes: 4a503217ce37 ("arm64: irqflags: Use ICC_PMR_EL1 for interrupt masking")
Cc: <stable@vger.kernel.org> # 5.1.x-
Reported-by: Zenghui Yu <yuzenghui@huawei.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Wei Li <liwei391@huawei.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Christoffer Dall <christoffer.dall@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Suzuki K Pouloze <suzuki.poulose@arm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Julien Thierry <julien.thierry@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
In the presence of any form of instrumentation, nmi_enter() should be
done before calling any traceable code and any instrumentation code.
Currently, nmi_enter() is done in handle_domain_nmi(), which is much
too late as instrumentation code might get called before. Move the
nmi_enter/exit() calls to the arch IRQ vector handler.
On arm64, it is not possible to know if the IRQ vector handler was
called because of an NMI before acknowledging the interrupt. However, It
is possible to know whether normal interrupts could be taken in the
interrupted context (i.e. if taking an NMI in that context could
introduce a potential race condition).
When interrupting a context with IRQs disabled, call nmi_enter() as soon
as possible. In contexts with IRQs enabled, defer this to the interrupt
controller, which is in a better position to know if an interrupt taken
is an NMI.
Fixes: bc3c03ccb464 ("arm64: Enable the support of pseudo-NMIs")
Cc: <stable@vger.kernel.org> # 5.1.x-
Cc: Will Deacon <will.deacon@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Jason Cooper <jason@lakedaemon.net>
Cc: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Julien Thierry <julien.thierry@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
For el0_dbg and el0_error, DAIF bits get explicitly cleared before
calling ct_user_exit.
When context tracking is disabled, DAIF gets set (almost) immediately
after. When context tracking is enabled, among the first things done
is disabling IRQs.
What is actually needed is:
- PSR.D = 0 so the system can be debugged (should be already the case)
- PSR.A = 0 so async error can be handled during context tracking
Do not clear PSR.I in those two locations.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: James Morse <james.morse@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Julien Thierry <julien.thierry@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license version 2 as
published by the free software foundation this program is
distributed in the hope that it will be useful but without any
warranty without even the implied warranty of merchantability or
fitness for a particular purpose see the gnu general public license
for more details you should have received a copy of the gnu general
public license along with this program if not see http www gnu org
licenses
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 503 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Enrico Weigelt <info@metux.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190602204653.811534538@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We already mitigate erratum 1188873 affecting Cortex-A76 and
Neoverse-N1 r0p0 to r2p0. It turns out that revisions r0p0 to
r3p1 of the same cores are affected by erratum 1418040, which
has the same workaround as 1188873.
Let's expand the range of affected revisions to match 1418040,
and repaint all occurences of 1188873 to 1418040. Whilst we're
there, do a bit of reformating in silicon-errata.txt and drop
a now unnecessary dependency on ARM_ARCH_TIMER_OOL_WORKAROUND.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We currently deal with ARM64_ERRATUM_1188873 by always trapping EL0
accesses for both instruction sets. Although nothing wrong comes out
of that, people trying to squeeze the last drop of performance from
buggy HW find this over the top. Oh well.
Let's change the mitigation by flipping the counter enable bit
on return to userspace. Non-broken HW gets an extra branch on
the fast path, which is hopefully not the end of the world.
The arch timer workaround is also removed.
Acked-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The assembly macro get_thread_info() actually returns a task_struct and is
analogous to the current/get_current macro/function.
While it could be argued that thread_info sits at the start of
task_struct and the intention could have been to return a thread_info,
instances of loads from/stores to the address obtained from
get_thread_info() use offsets that are generated with
offsetof(struct task_struct, [...]).
Rename get_thread_info() to state it returns a task_struct.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Julien Thierry <julien.thierry@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When an NMI is raised while interrupts where disabled, the IRQ tracing
already is in the correct state (i.e. hardirqs_off) and should be left
as such when returning to the interrupted context.
Check whether PMR was masking interrupts when the NMI was raised and
skip IRQ tracing if necessary.
Signed-off-by: Julien Thierry <julien.thierry@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Handling of an NMI should not set any TIF flags. For NMIs received from
EL0 the current exit path is safe to use.
However, an NMI received at EL1 could have interrupted some task context
that has set the TIF_NEED_RESCHED flag. Preempting a task should not
happen as a result of an NMI.
Skip preemption after handling an NMI from EL1.
Signed-off-by: Julien Thierry <julien.thierry@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In order to replace PSR.I interrupt disabling/enabling with ICC_PMR_EL1
interrupt masking, ICC_PMR_EL1 needs to be saved/restored when
taking/returning from an exception. This mimics the way hardware saves
and restores PSR.I bit in spsr_el1 for exceptions and ERET.
Add PMR to the registers to save in the pt_regs struct upon kernel entry,
and restore it before ERET. Also, initialize it to a sane value when
creating new tasks.
Signed-off-by: Julien Thierry <julien.thierry@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Since the enabling and disabling of IRQs within preempt_schedule_irq()
is contained in a need_resched() loop, we don't need the outer arch
code loop.
Reported-by: Julien Thierry <julien.thierry@arm.com>
Reported-by: Will Deacon <will.deacon@arm.com>
Reviewed-by: Julien Thierry <julien.thierry@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Julien Grall <julien.grall@arm.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-arm-kernel@lists.infradead.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In commit:
3b7142752e4bee15 ("arm64: convert native/compat syscall entry to C")
... we moved the syscall invocation code from assembly to C, but left
behind a number of register aliases which are now unused.
Let's remove them before they confuse someone.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Commit 396244692232 ("arm64: preempt: Provide our own implementation of
asm/preempt.h") extended the preempt count field in struct thread_info
to 64 bits, so that it consists of a 32-bit count plus a 32-bit flag
indicating whether or not the current task needs rescheduling.
Whilst the asm-offsets definition of TSK_TI_PREEMPT was updated to point
to this new field, the assembly usage was left untouched meaning that a
32-bit load from TSK_TI_PREEMPT on a big-endian machine actually returns
the reschedule flag instead of the count.
Whilst we could fix this by pointing TSK_TI_PREEMPT at the count field,
we're actually better off reworking the two assembly users so that they
operate on the whole 64-bit value in favour of inspecting the thread
flags separately in order to determine whether a reschedule is needed.
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reported-by: "kernelci.org bot" <bot@kernelci.org>
Tested-by: Kevin Hilman <khilman@baylibre.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
|
|
|
|
|
|
|
| |
The comment about SYS_MEMBARRIER_SYNC_CORE relying on ERET being
context-synchronizing is confusing and misplaced with kpti. Given that
this is already documented under Documentation/ (see arch-support.txt
for membarrier), remove the comment altogether.
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Some CPUs can speculate past an ERET instruction and potentially perform
speculative accesses to memory before processing the exception return.
Since the register state is often controlled by a lower privilege level
at the point of an ERET, this could potentially be used as part of a
side-channel attack.
This patch emits an SB sequence after each ERET so that speculation is
held up on exception return.
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
It recently came to light that userspace can execute WFI, and that
the arm64 kernel doesn't trap this event. This sounds rather benign,
but the kernel should decide when it wants to wait for an interrupt,
and not userspace.
Let's trap WFI and immediately return after having skipped the
instruction. This effectively makes WFI a rather expensive NOP.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
|
|
|
|
|
|
|
|
| |
Instead of directly generating an UNDEF when trapping a CP15 access,
let's add a new entry point to that effect (which only generates an
UNDEF for now).
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
|
|
|
|
|
|
|
| |
Rather than panic() when taking an undefined instruction exception from
EL1, allow a hook to be registered in case we want to emulate the
instruction, like we will for the SSBS PSTATE manipulation instructions.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds support for the STACKLEAK gcc plugin to arm64 by implementing
stackleak_check_alloca(), based heavily on the x86 version, and adding the
two helpers used by the stackleak common code: current_top_of_stack() and
on_thread_stack(). The stack erasure calls are made at syscall returns.
Additionally, this disables the plugin in hypervisor and EFI stub code,
which are out of scope for the protection.
Acked-by: Alexander Popov <alex.popov@linux.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Laura Abbott <labbott@redhat.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We can zero GPRs x0 - x29 upon entry from EL0 to make it harder for
userspace to control values consumed by speculative gadgets.
We don't blat x30, since this is stashed much later, and we'll blat it
before invoking C code.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Now that all of the syscall logic works on the saved pt_regs, apply_ssbd
can safely corrupt x0-x3 in the entry paths, and we no longer need to
restore them. So let's remove the logic doing so.
With that logic gone, we can fold the branch target into the macro, so
that callers need not deal with this. GAS provides \@, which provides a
unique value per macro invocation, which we can use to create a unique
label.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
Now that syscalls are invoked with pt_regs, we no longer need to ensure
that the argument regsiters are live in the entry assembly, and it's
fine to not restore them after context_tracking_user_exit() has
corrupted them.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Now that the syscall invocation logic is in C, we can migrate the rest
of the syscall entry logic over, so that the entry assembly needn't look
at the register values at all.
The SVE reset across syscall logic now unconditionally clears TIF_SVE,
but sve_user_disable() will only write back to CPACR_EL1 when SVE is
actually enabled.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Dave Martin <dave.martin@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently syscall tracing is a tricky assembly state machine, which can
be rather difficult to follow, and even harder to modify. Before we
start fiddling with it for pt_regs syscalls, let's convert it to C.
This is not intended to have any functional change.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
As a first step towards invoking syscalls with a pt_regs argument,
convert the raw syscall invocation logic to C. We end up with a bit more
register shuffling, but the unified invocation logic means we can unify
the tracing paths, too.
Previously, assembly had to open-code calls to ni_sys() when the system
call number was out-of-bounds for the relevant syscall table. This case
is now handled by invoke_syscall(), and the assembly no longer need to
handle this case explicitly. This allows the tracing paths to be
simplified and unified, as we no longer need the __ni_sys_trace path and
the __sys_trace_return label.
This only converts the invocation of the syscall. The rest of the
syscall triage and tracing is left in assembly for now, and will be
converted in subsequent patches.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The arm64 sigreturn* syscall handlers are non-standard. Rather than
taking a number of user parameters in registers as per the AAPCS,
they expect the pt_regs as their sole argument.
To make this work, we override the syscall definitions to invoke
wrappers written in assembly, which mov the SP into x0, and branch to
their respective C functions.
On other architectures (such as x86), the sigreturn* functions take no
argument and instead use current_pt_regs() to acquire the user
registers. This requires less boilerplate code, and allows for other
features such as interposing C code in this path.
This patch takes the same approach for arm64.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Tentatively-reviewed-by: Dave Martin <dave.martin@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
|
|
|
|
|
|
|
| |
Implement calls to rseq_signal_deliver, rseq_handle_notify_resume
and rseq_syscall so that we can select HAVE_RSEQ on arm64.
Acked-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In order to allow userspace to be mitigated on demand, let's
introduce a new thread flag that prevents the mitigation from
being turned off when exiting to userspace, and doesn't turn
it on on entry into the kernel (with the assumption that the
mitigation is always enabled in the kernel itself).
This will be used by a prctl interface introduced in a later
patch.
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In order to avoid checking arm64_ssbd_callback_required on each
kernel entry/exit even if no mitigation is required, let's
add yet another alternative that by default jumps over the mitigation,
and that gets nop'ed out if we're doing dynamic mitigation.
Think of it as a poor man's static key...
Reviewed-by: Julien Grall <julien.grall@arm.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
In a heterogeneous system, we can end up with both affected and
unaffected CPUs. Let's check their status before calling into the
firmware.
Reviewed-by: Julien Grall <julien.grall@arm.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In order for the kernel to protect itself, let's call the SSBD mitigation
implemented by the higher exception level (either hypervisor or firmware)
on each transition between userspace and kernel.
We must take the PSCI conduit into account in order to target the
right exception level, hence the introduction of a runtime patching
callback.
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Julien Grall <julien.grall@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull more arm64 updates from Catalin Marinas:
"As I mentioned in the last pull request, there's a second batch of
security updates for arm64 with mitigations for Spectre/v1 and an
improved one for Spectre/v2 (via a newly defined firmware interface
API).
Spectre v1 mitigation:
- back-end version of array_index_mask_nospec()
- masking of the syscall number to restrict speculation through the
syscall table
- masking of __user pointers prior to deference in uaccess routines
Spectre v2 mitigation update:
- using the new firmware SMC calling convention specification update
- removing the current PSCI GET_VERSION firmware call mitigation as
vendors are deploying new SMCCC-capable firmware
- additional branch predictor hardening for synchronous exceptions
and interrupts while in user mode
Meltdown v3 mitigation update:
- Cavium Thunder X is unaffected but a hardware erratum gets in the
way. The kernel now starts with the page tables mapped as global
and switches to non-global if kpti needs to be enabled.
Other:
- Theoretical trylock bug fixed"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (38 commits)
arm64: Kill PSCI_GET_VERSION as a variant-2 workaround
arm64: Add ARM_SMCCC_ARCH_WORKAROUND_1 BP hardening support
arm/arm64: smccc: Implement SMCCC v1.1 inline primitive
arm/arm64: smccc: Make function identifiers an unsigned quantity
firmware/psci: Expose SMCCC version through psci_ops
firmware/psci: Expose PSCI conduit
arm64: KVM: Add SMCCC_ARCH_WORKAROUND_1 fast handling
arm64: KVM: Report SMCCC_ARCH_WORKAROUND_1 BP hardening support
arm/arm64: KVM: Turn kvm_psci_version into a static inline
arm/arm64: KVM: Advertise SMCCC v1.1
arm/arm64: KVM: Implement PSCI 1.0 support
arm/arm64: KVM: Add smccc accessors to PSCI code
arm/arm64: KVM: Add PSCI_VERSION helper
arm/arm64: KVM: Consolidate the PSCI include files
arm64: KVM: Increment PC after handling an SMC trap
arm: KVM: Fix SMCCC handling of unimplemented SMC/HVC calls
arm64: KVM: Fix SMCCC handling of unimplemented SMC/HVC calls
arm64: entry: Apply BP hardening for suspicious interrupts from EL0
arm64: entry: Apply BP hardening for high-priority synchronous exceptions
arm64: futex: Mask __user pointers prior to dereference
...
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
It is possible to take an IRQ from EL0 following a branch to a kernel
address in such a way that the IRQ is prioritised over the instruction
abort. Whilst an attacker would need to get the stars to align here,
it might be sufficient with enough calibration so perform BP hardening
in the rare case that we see a kernel address in the ELR when handling
an IRQ from EL0.
Reported-by: Dan Hettena <dhettena@nvidia.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Software-step and PC alignment fault exceptions have higher priority than
instruction abort exceptions, so apply the BP hardening hooks there too
if the user PC appears to reside in kernel space.
Reported-by: Dan Hettena <dhettena@nvidia.com>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
In a similar manner to array_index_mask_nospec, this patch introduces an
assembly macro (mask_nospec64) which can be used to bound a value under
speculation. This macro is then used to ensure that the indirect branch
through the syscall table is bounded under speculation, with out-of-range
addresses speculating as calls to sys_io_setup (0).
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Currently, USER_DS represents an exclusive limit while KERNEL_DS is
inclusive. In order to do some clever trickery for speculation-safe
masking, we need them both to behave equivalently - there aren't enough
bits to make KERNEL_DS exclusive, so we have precisely one option. This
also happens to correct a longstanding false negative for a range
ending on the very top byte of kernel memory.
Mark Rutland points out that we've actually got the semantics of
addresses vs. segments muddled up in most of the places we need to
amend, so shuffle the {USER,KERNEL}_DS definitions around such that we
can correct those properly instead of just pasting "-1"s everywhere.
Signed-off-by: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
We don't fully understand the Cavium ThunderX erratum, but it appears
that mapping the kernel as nG can lead to horrible consequences such as
attempting to execute userspace from kernel context. Since kpti isn't
enabled for these CPUs anyway, simplify the comment justifying the lack
of post_ttbr_update_workaround in the exception trampoline.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|\|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Conflicts:
arch/arm64/kernel/entry.S
arch/x86/Kconfig
include/linux/sched/mm.h
kernel/fork.c
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
With ARM64_SW_TTBR0_PAN enabled, the exception entry code checks the
active ASID to decide whether user access was enabled (non-zero ASID)
when the exception was taken. On return from exception, if user access
was previously disabled, it re-instates TTBR0_EL1 from the per-thread
saved value (updated in switch_mm() or efi_set_pgd()).
Commit 7655abb95386 ("arm64: mm: Move ASID from TTBR0 to TTBR1") makes a
TTBR0_EL1 + ASID switching non-atomic. Subsequently, commit 27a921e75711
("arm64: mm: Fix and re-enable ARM64_SW_TTBR0_PAN") changes the
__uaccess_ttbr0_disable() function and asm macro to first write the
reserved TTBR0_EL1 followed by the ASID=0 update in TTBR1_EL1. If an
exception occurs between these two, the exception return code will
re-instate a valid TTBR0_EL1. Similar scenario can happen in
cpu_switch_mm() between setting the reserved TTBR0_EL1 and the ASID
update in cpu_do_switch_mm().
This patch reverts the entry.S check for ASID == 0 to TTBR0_EL1 and
disables the interrupts around the TTBR0_EL1 and ASID switching code in
__uaccess_ttbr0_disable(). It also ensures that, when returning from the
EFI runtime services, efi_set_pgd() doesn't leave a non-zero ASID in
TTBR1_EL1 by using uaccess_ttbr0_{enable,disable}.
The accesses to current_thread_info()->ttbr0 are updated to use
READ_ONCE/WRITE_ONCE.
As a safety measure, __uaccess_ttbr0_enable() always masks out any
existing non-zero ASID TTBR1_EL1 before writing in the new ASID.
Fixes: 27a921e75711 ("arm64: mm: Fix and re-enable ARM64_SW_TTBR0_PAN")
Acked-by: Will Deacon <will.deacon@arm.com>
Reported-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: James Morse <james.morse@arm.com>
Tested-by: James Morse <james.morse@arm.com>
Co-developed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The trampoline page tables are positioned after the early page tables in
the kernel linker script.
As we are about to change the early page table logic to resolve the
swapper size at link time as opposed to compile time, the
SWAPPER_DIR_SIZE variable (currently used to locate the trampline)
will be rendered unsuitable for low level assembler.
This patch solves this issue by moving the trampoline before the PAN
page tables. The offset to the trampoline from ttbr1 can then be
expressed by: PAGE_SIZE + RESERVED_TTBR0_SIZE, which is available to the
entry assembler.
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Steve Capper <steve.capper@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
When CONFIG_UNMAP_KERNEL_AT_EL0 is set the SDEI entry point and the rest
of the kernel may be unmapped when we take an event. If this may be the
case, use an entry trampoline that can switch to the kernel page tables.
We can't use the provided PSTATE to determine whether to switch page
tables as we may have interrupted the kernel's entry trampoline, (or a
normal-priority event that interrupted the kernel's entry trampoline).
Instead test for a user ASID in ttbr1_el1.
Save a value in regs->addr_limit to indicate whether we need to restore
the original ASID when returning from this event. This value is only used
by do_page_fault(), which we don't call with the SDEI regs.
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The Software Delegated Exception Interface (SDEI) is an ARM standard
for registering callbacks from the platform firmware into the OS.
This is typically used to implement RAS notifications.
Such notifications enter the kernel at the registered entry-point
with the register values of the interrupted CPU context. Because this
is not a CPU exception, it cannot reuse the existing entry code.
(crucially we don't implicitly know which exception level we interrupted),
Add the entry point to entry.S to set us up for calling into C code. If
the event interrupted code that had interrupts masked, we always return
to that location. Otherwise we pretend this was an IRQ, and use SDEI's
complete_and_resume call to return to vbar_el1 + offset.
This allows the kernel to deliver signals to user space processes. For
KVM this triggers the world switch, a quick spin round vcpu_run, then
back into the guest, unless there are pending signals.
Add sdei_mask_local_cpu() calls to the smp_send_stop() code, this covers
the panic() code-path, which doesn't invoke cpuhotplug notifiers.
Because we can interrupt entry-from/exit-to another EL, we can't trust the
value in sp_el0 or x29, even if we interrupted the kernel, in this case
the code in entry.S will save/restore sp_el0 and use the value in
__entry_task.
When we have VMAP stacks we can interrupt the stack-overflow test, which
stirs x0 into sp, meaning we have to have our own VMAP stacks. For now
these are allocated when we probe the interface. Future patches will add
refcounting hooks to allow the arch code to allocate them lazily.
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Aliasing attacks against CPU branch predictors can allow an attacker to
redirect speculative control flow on some CPUs and potentially divulge
information from one context to another.
This patch adds initial skeleton code behind a new Kconfig option to
enable implementation-specific mitigations against these attacks for
CPUs that are affected.
Co-developed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
We will soon need to invoke a CPU-specific function pointer after changing
page tables, so move post_ttbr_update_workaround out into C code to make
this possible.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Speculation attacks against the entry trampoline can potentially resteer
the speculative instruction stream through the indirect branch and into
arbitrary gadgets within the kernel.
This patch defends against these attacks by forcing a misprediction
through the return stack: a dummy BL instruction loads an entry into
the stack, so that the predicted program flow of the subsequent RET
instruction is to a branch-to-self instruction which is finally resolved
as a branch to the kernel vectors with speculation suppressed.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The literal pool entry for identifying the vectors base is the only piece
of information in the trampoline page that identifies the true location
of the kernel.
This patch moves it into a page-aligned region of the .rodata section
and maps this adjacent to the trampoline text via an additional fixmap
entry, which protects against any accidental leakage of the trampoline
contents.
Suggested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Tested-by: Laura Abbott <labbott@redhat.com>
Tested-by: Shanker Donthineni <shankerd@codeaurora.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|