summaryrefslogtreecommitdiffstats
path: root/arch/powerpc/kvm
Commit message (Collapse)AuthorAgeFilesLines
* powerpc/mm: move platform specific mmu-xxx.h in platform directoriesChristophe Leroy2023-08-301-1/+1
| | | | | | | | | | | | | | | | [ Upstream commit 994da93d196866f914c9d64aafb86e95e3decbb2 ] The purpose of this patch is to move platform specific mmu-xxx.h files in platform directories like pte-xxx.h files. In the meantime this patch creates common nohash and nohash/32 + nohash/64 mmu.h files for future common parts. Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Stable-dep-of: 66b2ca086210 ("powerpc/64s/radix: Fix soft dirty tracking") Signed-off-by: Sasha Levin <sashal@kernel.org>
* KVM: PPC: Fix vmx/vsx mixup in mmio emulationFabiano Rosas2022-04-151-2/+2
| | | | | | | | | | | | | | | [ Upstream commit b99234b918c6e36b9aa0a5b2981e86b6bd11f8e2 ] The MMIO emulation code for vector instructions is duplicated between VSX and VMX. When emulating VMX we should check the VMX copy size instead of the VSX one. Fixes: acc9eb9305fe ("KVM: PPC: Reimplement LOAD_VMX/STORE_VMX instruction ...") Signed-off-by: Fabiano Rosas <farosas@linux.ibm.com> Reviewed-by: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20220125215655.1026224-3-farosas@linux.ibm.com Signed-off-by: Sasha Levin <sashal@kernel.org>
* KVM: PPC: Book3S: Fix H_RTAS rets buffer overflowNicholas Piggin2021-07-281-3/+22
| | | | | | | | | | | | | | | | | | | | | | | | | | commit f62f3c20647ebd5fb6ecb8f0b477b9281c44c10a upstream. The kvmppc_rtas_hcall() sets the host rtas_args.rets pointer based on the rtas_args.nargs that was provided by the guest. That guest nargs value is not range checked, so the guest can cause the host rets pointer to be pointed outside the args array. The individual rtas function handlers check the nargs and nrets values to ensure they are correct, but if they are not, the handlers store a -3 (0xfffffffd) failure indication in rets[0] which corrupts host memory. Fix this by testing up front whether the guest supplied nargs and nret would exceed the array size, and fail the hcall directly without storing a failure indication to rets[0]. Also expand on a comment about why we kill the guest and try not to return errors directly if we have a valid rets[0] pointer. Fixes: 8e591cb72047 ("KVM: PPC: Book3S: Add infrastructure to implement kernel-side RTAS calls") Cc: stable@vger.kernel.org # v3.10+ Reported-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* KVM: PPC: Fix kvm_arch_vcpu_ioctl vcpu_load leakNicholas Piggin2021-07-281-2/+2
| | | | | | | | | | | | | | [ Upstream commit bc4188a2f56e821ea057aca6bf444e138d06c252 ] vcpu_put is not called if the user copy fails. This can result in preempt notifier corruption and crashes, among other issues. Fixes: b3cebfe8c1ca ("KVM: PPC: Move vcpu_load/vcpu_put down to each ioctl case in kvm_arch_vcpu_ioctl") Reported-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20210716024310.164448-2-npiggin@gmail.com Signed-off-by: Sasha Levin <sashal@kernel.org>
* KVM: PPC: Make the VMX instruction emulation routines staticCédric Le Goater2021-03-041-4/+4
| | | | | | | | | | | | | | | | | | | | | | | | | [ Upstream commit 9236f57a9e51c72ce426ccd2e53e123de7196a0f ] These are only used locally. It fixes these W=1 compile errors : ../arch/powerpc/kvm/powerpc.c:1521:5: error: no previous prototype for ‘kvmppc_get_vmx_dword’ [-Werror=missing-prototypes] 1521 | int kvmppc_get_vmx_dword(struct kvm_vcpu *vcpu, int index, u64 *val) | ^~~~~~~~~~~~~~~~~~~~ ../arch/powerpc/kvm/powerpc.c:1539:5: error: no previous prototype for ‘kvmppc_get_vmx_word’ [-Werror=missing-prototypes] 1539 | int kvmppc_get_vmx_word(struct kvm_vcpu *vcpu, int index, u64 *val) | ^~~~~~~~~~~~~~~~~~~ ../arch/powerpc/kvm/powerpc.c:1557:5: error: no previous prototype for ‘kvmppc_get_vmx_hword’ [-Werror=missing-prototypes] 1557 | int kvmppc_get_vmx_hword(struct kvm_vcpu *vcpu, int index, u64 *val) | ^~~~~~~~~~~~~~~~~~~~ ../arch/powerpc/kvm/powerpc.c:1575:5: error: no previous prototype for ‘kvmppc_get_vmx_byte’ [-Werror=missing-prototypes] 1575 | int kvmppc_get_vmx_byte(struct kvm_vcpu *vcpu, int index, u64 *val) | ^~~~~~~~~~~~~~~~~~~ Fixes: acc9eb9305fe ("KVM: PPC: Reimplement LOAD_VMX/STORE_VMX instruction mmio emulation with analyse_instr() input") Signed-off-by: Cédric Le Goater <clg@kaod.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20210104143206.695198-19-clg@kaod.org Signed-off-by: Sasha Levin <sashal@kernel.org>
* KVM: PPC: Book3S HV: Treat TM-related invalid form instructions on P9 like ↵Gustavo Romero2020-10-012-7/+37
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | the valid ones [ Upstream commit 1dff3064c764b5a51c367b949b341d2e38972bec ] On P9 DD2.2 due to a CPU defect some TM instructions need to be emulated by KVM. This is handled at first by the hardware raising a softpatch interrupt when certain TM instructions that need KVM assistance are executed in the guest. Althought some TM instructions per Power ISA are invalid forms they can raise a softpatch interrupt too. For instance, 'tresume.' instruction as defined in the ISA must have bit 31 set (1), but an instruction that matches 'tresume.' PO and XO opcode fields but has bit 31 not set (0), like 0x7cfe9ddc, also raises a softpatch interrupt. Similarly for 'treclaim.' and 'trechkpt.' instructions with bit 31 = 0, i.e. 0x7c00075c and 0x7c0007dc, respectively. Hence, if a code like the following is executed in the guest it will raise a softpatch interrupt just like a 'tresume.' when the TM facility is enabled ('tabort. 0' in the example is used only to enable the TM facility): int main() { asm("tabort. 0; .long 0x7cfe9ddc;"); } Currently in such a case KVM throws a complete trace like: [345523.705984] WARNING: CPU: 24 PID: 64413 at arch/powerpc/kvm/book3s_hv_tm.c:211 kvmhv_p9_tm_emulation+0x68/0x620 [kvm_hv] [345523.705985] Modules linked in: kvm_hv(E) xt_conntrack ipt_REJECT nf_reject_ipv4 xt_tcpudp ip6table_mangle ip6table_nat iptable_mangle iptable_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 ebtable_filter ebtables ip6table_filter ip6_tables iptable_filter bridge stp llc sch_fq_codel ipmi_powernv at24 vmx_crypto ipmi_devintf ipmi_msghandler ibmpowernv uio_pdrv_genirq kvm opal_prd uio leds_powernv ib_iser rdma_cm iw_cm ib_cm ib_core iscsi_tcp libiscsi_tcp libiscsi scsi_transport_iscsi ip_tables x_tables autofs4 btrfs blake2b_generic zstd_compress raid10 raid456 async_raid6_recov async_memcpy async_pq async_xor async_tx libcrc32c xor raid6_pq raid1 raid0 multipath linear tg3 crct10dif_vpmsum crc32c_vpmsum ipr [last unloaded: kvm_hv] [345523.706030] CPU: 24 PID: 64413 Comm: CPU 0/KVM Tainted: G W E 5.5.0+ #1 [345523.706031] NIP: c0080000072cb9c0 LR: c0080000072b5e80 CTR: c0080000085c7850 [345523.706034] REGS: c000000399467680 TRAP: 0700 Tainted: G W E (5.5.0+) [345523.706034] MSR: 900000010282b033 <SF,HV,VEC,VSX,EE,FP,ME,IR,DR,RI,LE,TM[E]> CR: 24022428 XER: 00000000 [345523.706042] CFAR: c0080000072b5e7c IRQMASK: 0 GPR00: c0080000072b5e80 c000000399467910 c0080000072db500 c000000375ccc720 GPR04: c000000375ccc720 00000003fbec0000 0000a10395dda5a6 0000000000000000 GPR08: 000000007cfe9ddc 7cfe9ddc000005dc 7cfe9ddc7c0005dc c0080000072cd530 GPR12: c0080000085c7850 c0000003fffeb800 0000000000000001 00007dfb737f0000 GPR16: c0002001edcca558 0000000000000000 0000000000000000 0000000000000001 GPR20: c000000001b21258 c0002001edcca558 0000000000000018 0000000000000000 GPR24: 0000000001000000 ffffffffffffffff 0000000000000001 0000000000001500 GPR28: c0002001edcc4278 c00000037dd80000 800000050280f033 c000000375ccc720 [345523.706062] NIP [c0080000072cb9c0] kvmhv_p9_tm_emulation+0x68/0x620 [kvm_hv] [345523.706065] LR [c0080000072b5e80] kvmppc_handle_exit_hv.isra.53+0x3e8/0x798 [kvm_hv] [345523.706066] Call Trace: [345523.706069] [c000000399467910] [c000000399467940] 0xc000000399467940 (unreliable) [345523.706071] [c000000399467950] [c000000399467980] 0xc000000399467980 [345523.706075] [c0000003994679f0] [c0080000072bd1c4] kvmhv_run_single_vcpu+0xa1c/0xb80 [kvm_hv] [345523.706079] [c000000399467ac0] [c0080000072bd8e0] kvmppc_vcpu_run_hv+0x5b8/0xb00 [kvm_hv] [345523.706087] [c000000399467b90] [c0080000085c93cc] kvmppc_vcpu_run+0x34/0x48 [kvm] [345523.706095] [c000000399467bb0] [c0080000085c582c] kvm_arch_vcpu_ioctl_run+0x244/0x420 [kvm] [345523.706101] [c000000399467c40] [c0080000085b7498] kvm_vcpu_ioctl+0x3d0/0x7b0 [kvm] [345523.706105] [c000000399467db0] [c0000000004adf9c] ksys_ioctl+0x13c/0x170 [345523.706107] [c000000399467e00] [c0000000004adff8] sys_ioctl+0x28/0x80 [345523.706111] [c000000399467e20] [c00000000000b278] system_call+0x5c/0x68 [345523.706112] Instruction dump: [345523.706114] 419e0390 7f8a4840 409d0048 6d497c00 2f89075d 419e021c 6d497c00 2f8907dd [345523.706119] 419e01c0 6d497c00 2f8905dd 419e00a4 <0fe00000> 38210040 38600000 ebc1fff0 and then treats the executed instruction as a 'nop'. However the POWER9 User's Manual, in section "4.6.10 Book II Invalid Forms", informs that for TM instructions bit 31 is in fact ignored, thus for the TM-related invalid forms ignoring bit 31 and handling them like the valid forms is an acceptable way to handle them. POWER8 behaves the same way too. This commit changes the handling of the cases here described by treating the TM-related invalid forms that can generate a softpatch interrupt just like their valid forms (w/ bit 31 = 1) instead of as a 'nop' and by gently reporting any other unrecognized case to the host and treating it as illegal instruction instead of throwing a trace and treating it as a 'nop'. Signed-off-by: Gustavo Romero <gromero@linux.ibm.com> Reviewed-by: Segher Boessenkool <segher@kernel.crashing.org> Acked-By: Michael Neuling <mikey@neuling.org> Reviewed-by: Leonardo Bras <leonardo@linux.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
* KVM: Pass MMU notifier range flags to kvm_unmap_hva_range()Will Deacon2020-08-262-2/+4
| | | | | | | | | | | | | | | | | | | | | | | | | commit fdfe7cbd58806522e799e2a50a15aee7f2cbb7b6 upstream. The 'flags' field of 'struct mmu_notifier_range' is used to indicate whether invalidate_range_{start,end}() are permitted to block. In the case of kvm_mmu_notifier_invalidate_range_start(), this field is not forwarded on to the architecture-specific implementation of kvm_unmap_hva_range() and therefore the backend cannot sensibly decide whether or not to block. Add an extra 'flags' parameter to kvm_unmap_hva_range() so that architectures are aware as to whether or not they are permitted to block. Cc: <stable@vger.kernel.org> Cc: Marc Zyngier <maz@kernel.org> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: James Morse <james.morse@arm.com> Signed-off-by: Will Deacon <will@kernel.org> Message-Id: <20200811102725.7121-2-will@kernel.org> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> [will: Backport to 4.19; use 'blockable' instead of non-existent range flags] Signed-off-by: Will Deacon <will@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* KVM: PPC: Book3S HV: Ignore kmemleak false positivesQian Cai2020-06-251-2/+14
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | [ Upstream commit 0aca8a5575544bd21b3363058afb8f1e81505150 ] kvmppc_pmd_alloc() and kvmppc_pte_alloc() allocate some memory but then pud_populate() and pmd_populate() will use __pa() to reference the newly allocated memory. Since kmemleak is unable to track the physical memory resulting in false positives, silence those by using kmemleak_ignore(). unreferenced object 0xc000201c382a1000 (size 4096): comm "qemu-kvm", pid 124828, jiffies 4295733767 (age 341.250s) hex dump (first 32 bytes): c0 00 20 09 f4 60 03 87 c0 00 20 10 72 a0 03 87 .. ..`.... .r... c0 00 20 0e 13 a0 03 87 c0 00 20 1b dc c0 03 87 .. ....... ..... backtrace: [<000000004cc2790f>] kvmppc_create_pte+0x838/0xd20 [kvm_hv] kvmppc_pmd_alloc at arch/powerpc/kvm/book3s_64_mmu_radix.c:366 (inlined by) kvmppc_create_pte at arch/powerpc/kvm/book3s_64_mmu_radix.c:590 [<00000000d123c49a>] kvmppc_book3s_instantiate_page+0x2e0/0x8c0 [kvm_hv] [<00000000bb549087>] kvmppc_book3s_radix_page_fault+0x1b4/0x2b0 [kvm_hv] [<0000000086dddc0e>] kvmppc_book3s_hv_page_fault+0x214/0x12a0 [kvm_hv] [<000000005ae9ccc2>] kvmppc_vcpu_run_hv+0xc5c/0x15f0 [kvm_hv] [<00000000d22162ff>] kvmppc_vcpu_run+0x34/0x48 [kvm] [<00000000d6953bc4>] kvm_arch_vcpu_ioctl_run+0x314/0x420 [kvm] [<000000002543dd54>] kvm_vcpu_ioctl+0x33c/0x950 [kvm] [<0000000048155cd6>] ksys_ioctl+0xd8/0x130 [<0000000041ffeaa7>] sys_ioctl+0x28/0x40 [<000000004afc4310>] system_call_exception+0x114/0x1e0 [<00000000fb70a873>] system_call_common+0xf0/0x278 unreferenced object 0xc0002001f0c03900 (size 256): comm "qemu-kvm", pid 124830, jiffies 4295735235 (age 326.570s) hex dump (first 32 bytes): c0 00 20 10 fa a0 03 87 c0 00 20 10 fa a1 03 87 .. ....... ..... c0 00 20 10 fa a2 03 87 c0 00 20 10 fa a3 03 87 .. ....... ..... backtrace: [<0000000023f675b8>] kvmppc_create_pte+0x854/0xd20 [kvm_hv] kvmppc_pte_alloc at arch/powerpc/kvm/book3s_64_mmu_radix.c:356 (inlined by) kvmppc_create_pte at arch/powerpc/kvm/book3s_64_mmu_radix.c:593 [<00000000d123c49a>] kvmppc_book3s_instantiate_page+0x2e0/0x8c0 [kvm_hv] [<00000000bb549087>] kvmppc_book3s_radix_page_fault+0x1b4/0x2b0 [kvm_hv] [<0000000086dddc0e>] kvmppc_book3s_hv_page_fault+0x214/0x12a0 [kvm_hv] [<000000005ae9ccc2>] kvmppc_vcpu_run_hv+0xc5c/0x15f0 [kvm_hv] [<00000000d22162ff>] kvmppc_vcpu_run+0x34/0x48 [kvm] [<00000000d6953bc4>] kvm_arch_vcpu_ioctl_run+0x314/0x420 [kvm] [<000000002543dd54>] kvm_vcpu_ioctl+0x33c/0x950 [kvm] [<0000000048155cd6>] ksys_ioctl+0xd8/0x130 [<0000000041ffeaa7>] sys_ioctl+0x28/0x40 [<000000004afc4310>] system_call_exception+0x114/0x1e0 [<00000000fb70a873>] system_call_common+0xf0/0x278 Signed-off-by: Qian Cai <cai@lca.pw> Signed-off-by: Paul Mackerras <paulus@ozlabs.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
* KVM: PPC: Book3S PR: Free shared page if mmu initialization failsSean Christopherson2020-02-111-1/+3
| | | | | | | | | | | | | | | | | commit cb10bf9194f4d2c5d830eddca861f7ca0fecdbb4 upstream. Explicitly free the shared page if kvmppc_mmu_init() fails during kvmppc_core_vcpu_create(), as the page is freed only in kvmppc_core_vcpu_free(), which is not reached via kvm_vcpu_uninit(). Fixes: 96bc451a15329 ("KVM: PPC: Introduce shared page") Cc: stable@vger.kernel.org Reviewed-by: Greg Kurz <groug@kaod.org> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Acked-by: Paul Mackerras <paulus@ozlabs.org> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* KVM: PPC: Book3S HV: Uninit vCPU if vcore creation failsSean Christopherson2020-02-111-1/+3
| | | | | | | | | | | | | | | | commit 1a978d9d3e72ddfa40ac60d26301b154247ee0bc upstream. Call kvm_vcpu_uninit() if vcore creation fails to avoid leaking any resources allocated by kvm_vcpu_init(), i.e. the vcpu->run page. Fixes: 371fefd6f2dc4 ("KVM: PPC: Allow book3s_hv guests to use SMT processor modes") Cc: stable@vger.kernel.org Reviewed-by: Greg Kurz <groug@kaod.org> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Acked-by: Paul Mackerras <paulus@ozlabs.org> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* KVM: PPC: Book3S HV: Fix lockdep warning when entering the guestAlexey Kardashevskiy2020-01-271-7/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | [ Upstream commit 3309bec85e60d60d6394802cb8e183a4f4a72def ] The trace_hardirqs_on() sets current->hardirqs_enabled and from here the lockdep assumes interrupts are enabled although they are remain disabled until the context switches to the guest. Consequent srcu_read_lock() checks the flags in rcu_lock_acquire(), observes disabled interrupts and prints a warning (see below). This moves trace_hardirqs_on/off closer to __kvmppc_vcore_entry to prevent lockdep from being confused. DEBUG_LOCKS_WARN_ON(current->hardirqs_enabled) WARNING: CPU: 16 PID: 8038 at kernel/locking/lockdep.c:4128 check_flags.part.25+0x224/0x280 [...] NIP [c000000000185b84] check_flags.part.25+0x224/0x280 LR [c000000000185b80] check_flags.part.25+0x220/0x280 Call Trace: [c000003fec253710] [c000000000185b80] check_flags.part.25+0x220/0x280 (unreliable) [c000003fec253780] [c000000000187ea4] lock_acquire+0x94/0x260 [c000003fec253840] [c00800001a1e9768] kvmppc_run_core+0xa60/0x1ab0 [kvm_hv] [c000003fec253a10] [c00800001a1ed944] kvmppc_vcpu_run_hv+0x73c/0xec0 [kvm_hv] [c000003fec253ae0] [c00800001a1095dc] kvmppc_vcpu_run+0x34/0x48 [kvm] [c000003fec253b00] [c00800001a1056bc] kvm_arch_vcpu_ioctl_run+0x2f4/0x400 [kvm] [c000003fec253b90] [c00800001a0f3618] kvm_vcpu_ioctl+0x460/0x850 [kvm] [c000003fec253d00] [c00000000041c4f4] do_vfs_ioctl+0xe4/0x930 [c000003fec253db0] [c00000000041ce04] ksys_ioctl+0xc4/0x110 [c000003fec253e00] [c00000000041ce78] sys_ioctl+0x28/0x80 [c000003fec253e20] [c00000000000b5a4] system_call+0x5c/0x70 Instruction dump: 419e0034 3d220004 39291730 81290000 2f890000 409e0020 3c82ffc6 3c62ffc5 3884be70 386329c0 4bf6ea71 60000000 <0fe00000> 3c62ffc6 3863be90 4801273d irq event stamp: 1025 hardirqs last enabled at (1025): [<c00800001a1e9728>] kvmppc_run_core+0xa20/0x1ab0 [kvm_hv] hardirqs last disabled at (1024): [<c00800001a1e9358>] kvmppc_run_core+0x650/0x1ab0 [kvm_hv] softirqs last enabled at (0): [<c0000000000f1210>] copy_process.isra.4.part.5+0x5f0/0x1d00 softirqs last disabled at (0): [<0000000000000000>] (null) ---[ end trace 31180adcc848993e ]--- possible reason: unannotated irqs-off. irq event stamp: 1025 hardirqs last enabled at (1025): [<c00800001a1e9728>] kvmppc_run_core+0xa20/0x1ab0 [kvm_hv] hardirqs last disabled at (1024): [<c00800001a1e9358>] kvmppc_run_core+0x650/0x1ab0 [kvm_hv] softirqs last enabled at (0): [<c0000000000f1210>] copy_process.isra.4.part.5+0x5f0/0x1d00 softirqs last disabled at (0): [<0000000000000000>] (null) Fixes: 8b24e69fc47e ("KVM: PPC: Book3S HV: Close race with testing for signals on guest entry", 2017-06-26) Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Paul Mackerras <paulus@ozlabs.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
* KVM: PPC: Release all hardware TCE tables attached to a groupAlexey Kardashevskiy2020-01-271-1/+0
| | | | | | | | | | | | | | | | | | | | | | | | | [ Upstream commit a67614cc05a5052b265ea48196dab2fce11f5f2e ] The SPAPR TCE KVM device references all hardware IOMMU tables assigned to some IOMMU group to ensure that in-kernel KVM acceleration of H_PUT_TCE can work. The tables are references when an IOMMU group gets registered with the VFIO KVM device by the KVM_DEV_VFIO_GROUP_ADD ioctl; KVM_DEV_VFIO_GROUP_DEL calls into the dereferencing code in kvm_spapr_tce_release_iommu_group() which walks through the list of LIOBNs, finds a matching IOMMU table and calls kref_put() when found. However that code stops after the very first successful derefencing leaving other tables referenced till the SPAPR TCE KVM device is destroyed which normally happens on guest reboot or termination so if we do hotplug and unplug in a loop, we are leaking IOMMU tables here. This removes a premature return to let kvm_spapr_tce_release_iommu_group() find and dereference all attached tables. Fixes: 121f80ba68f ("KVM: PPC: VFIO: Add in-kernel acceleration for VFIO") Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Paul Mackerras <paulus@ozlabs.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
* KVM: PPC: Book3S HV: use smp_mb() when setting/clearing host_ipi flagMichael Roth2020-01-091-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | [ Upstream commit 3a83f677a6eeff65751b29e3648d7c69c3be83f3 ] On a 2-socket Power9 system with 32 cores/128 threads (SMT4) and 1TB of memory running the following guest configs: guest A: - 224GB of memory - 56 VCPUs (sockets=1,cores=28,threads=2), where: VCPUs 0-1 are pinned to CPUs 0-3, VCPUs 2-3 are pinned to CPUs 4-7, ... VCPUs 54-55 are pinned to CPUs 108-111 guest B: - 4GB of memory - 4 VCPUs (sockets=1,cores=4,threads=1) with the following workloads (with KSM and THP enabled in all): guest A: stress --cpu 40 --io 20 --vm 20 --vm-bytes 512M guest B: stress --cpu 4 --io 4 --vm 4 --vm-bytes 512M host: stress --cpu 4 --io 4 --vm 2 --vm-bytes 256M the below soft-lockup traces were observed after an hour or so and persisted until the host was reset (this was found to be reliably reproducible for this configuration, for kernels 4.15, 4.18, 5.0, and 5.3-rc5): [ 1253.183290] rcu: INFO: rcu_sched self-detected stall on CPU [ 1253.183319] rcu: 124-....: (5250 ticks this GP) idle=10a/1/0x4000000000000002 softirq=5408/5408 fqs=1941 [ 1256.287426] watchdog: BUG: soft lockup - CPU#105 stuck for 23s! [CPU 52/KVM:19709] [ 1264.075773] watchdog: BUG: soft lockup - CPU#24 stuck for 23s! [worker:19913] [ 1264.079769] watchdog: BUG: soft lockup - CPU#31 stuck for 23s! [worker:20331] [ 1264.095770] watchdog: BUG: soft lockup - CPU#45 stuck for 23s! [worker:20338] [ 1264.131773] watchdog: BUG: soft lockup - CPU#64 stuck for 23s! [avocado:19525] [ 1280.408480] watchdog: BUG: soft lockup - CPU#124 stuck for 22s! [ksmd:791] [ 1316.198012] rcu: INFO: rcu_sched self-detected stall on CPU [ 1316.198032] rcu: 124-....: (21003 ticks this GP) idle=10a/1/0x4000000000000002 softirq=5408/5408 fqs=8243 [ 1340.411024] watchdog: BUG: soft lockup - CPU#124 stuck for 22s! [ksmd:791] [ 1379.212609] rcu: INFO: rcu_sched self-detected stall on CPU [ 1379.212629] rcu: 124-....: (36756 ticks this GP) idle=10a/1/0x4000000000000002 softirq=5408/5408 fqs=14714 [ 1404.413615] watchdog: BUG: soft lockup - CPU#124 stuck for 22s! [ksmd:791] [ 1442.227095] rcu: INFO: rcu_sched self-detected stall on CPU [ 1442.227115] rcu: 124-....: (52509 ticks this GP) idle=10a/1/0x4000000000000002 softirq=5408/5408 fqs=21403 [ 1455.111787] INFO: task worker:19907 blocked for more than 120 seconds. [ 1455.111822] Tainted: G L 5.3.0-rc5-mdr-vanilla+ #1 [ 1455.111833] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 1455.111884] INFO: task worker:19908 blocked for more than 120 seconds. [ 1455.111905] Tainted: G L 5.3.0-rc5-mdr-vanilla+ #1 [ 1455.111925] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 1455.111966] INFO: task worker:20328 blocked for more than 120 seconds. [ 1455.111986] Tainted: G L 5.3.0-rc5-mdr-vanilla+ #1 [ 1455.111998] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 1455.112048] INFO: task worker:20330 blocked for more than 120 seconds. [ 1455.112068] Tainted: G L 5.3.0-rc5-mdr-vanilla+ #1 [ 1455.112097] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 1455.112138] INFO: task worker:20332 blocked for more than 120 seconds. [ 1455.112159] Tainted: G L 5.3.0-rc5-mdr-vanilla+ #1 [ 1455.112179] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 1455.112210] INFO: task worker:20333 blocked for more than 120 seconds. [ 1455.112231] Tainted: G L 5.3.0-rc5-mdr-vanilla+ #1 [ 1455.112242] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 1455.112282] INFO: task worker:20335 blocked for more than 120 seconds. [ 1455.112303] Tainted: G L 5.3.0-rc5-mdr-vanilla+ #1 [ 1455.112332] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 1455.112372] INFO: task worker:20336 blocked for more than 120 seconds. [ 1455.112392] Tainted: G L 5.3.0-rc5-mdr-vanilla+ #1 CPUs 45, 24, and 124 are stuck on spin locks, likely held by CPUs 105 and 31. CPUs 105 and 31 are stuck in smp_call_function_many(), waiting on target CPU 42. For instance: # CPU 105 registers (via xmon) R00 = c00000000020b20c R16 = 00007d1bcd800000 R01 = c00000363eaa7970 R17 = 0000000000000001 R02 = c0000000019b3a00 R18 = 000000000000006b R03 = 000000000000002a R19 = 00007d537d7aecf0 R04 = 000000000000002a R20 = 60000000000000e0 R05 = 000000000000002a R21 = 0801000000000080 R06 = c0002073fb0caa08 R22 = 0000000000000d60 R07 = c0000000019ddd78 R23 = 0000000000000001 R08 = 000000000000002a R24 = c00000000147a700 R09 = 0000000000000001 R25 = c0002073fb0ca908 R10 = c000008ffeb4e660 R26 = 0000000000000000 R11 = c0002073fb0ca900 R27 = c0000000019e2464 R12 = c000000000050790 R28 = c0000000000812b0 R13 = c000207fff623e00 R29 = c0002073fb0ca808 R14 = 00007d1bbee00000 R30 = c0002073fb0ca800 R15 = 00007d1bcd600000 R31 = 0000000000000800 pc = c00000000020b260 smp_call_function_many+0x3d0/0x460 cfar= c00000000020b270 smp_call_function_many+0x3e0/0x460 lr = c00000000020b20c smp_call_function_many+0x37c/0x460 msr = 900000010288b033 cr = 44024824 ctr = c000000000050790 xer = 0000000000000000 trap = 100 CPU 42 is running normally, doing VCPU work: # CPU 42 stack trace (via xmon) [link register ] c00800001be17188 kvmppc_book3s_radix_page_fault+0x90/0x2b0 [kvm_hv] [c000008ed3343820] c000008ed3343850 (unreliable) [c000008ed33438d0] c00800001be11b6c kvmppc_book3s_hv_page_fault+0x264/0xe30 [kvm_hv] [c000008ed33439d0] c00800001be0d7b4 kvmppc_vcpu_run_hv+0x8dc/0xb50 [kvm_hv] [c000008ed3343ae0] c00800001c10891c kvmppc_vcpu_run+0x34/0x48 [kvm] [c000008ed3343b00] c00800001c10475c kvm_arch_vcpu_ioctl_run+0x244/0x420 [kvm] [c000008ed3343b90] c00800001c0f5a78 kvm_vcpu_ioctl+0x470/0x7c8 [kvm] [c000008ed3343d00] c000000000475450 do_vfs_ioctl+0xe0/0xc70 [c000008ed3343db0] c0000000004760e4 ksys_ioctl+0x104/0x120 [c000008ed3343e00] c000000000476128 sys_ioctl+0x28/0x80 [c000008ed3343e20] c00000000000b388 system_call+0x5c/0x70 --- Exception: c00 (System Call) at 00007d545cfd7694 SP (7d53ff7edf50) is in userspace It was subsequently found that ipi_message[PPC_MSG_CALL_FUNCTION] was set for CPU 42 by at least 1 of the CPUs waiting in smp_call_function_many(), but somehow the corresponding call_single_queue entries were never processed by CPU 42, causing the callers to spin in csd_lock_wait() indefinitely. Nick Piggin suggested something similar to the following sequence as a possible explanation (interleaving of CALL_FUNCTION/RESCHEDULE IPI messages seems to be most common, but any mix of CALL_FUNCTION and !CALL_FUNCTION messages could trigger it): CPU X: smp_muxed_ipi_set_message(): X: smp_mb() X: message[RESCHEDULE] = 1 X: doorbell_global_ipi(42): X: kvmppc_set_host_ipi(42, 1) X: ppc_msgsnd_sync()/smp_mb() X: ppc_msgsnd() -> 42 42: doorbell_exception(): // from CPU X 42: ppc_msgsync() 105: smp_muxed_ipi_set_message(): 105: smb_mb() // STORE DEFERRED DUE TO RE-ORDERING --105: message[CALL_FUNCTION] = 1 | 105: doorbell_global_ipi(42): | 105: kvmppc_set_host_ipi(42, 1) | 42: kvmppc_set_host_ipi(42, 0) | 42: smp_ipi_demux_relaxed() | 42: // returns to executing guest | // RE-ORDERED STORE COMPLETES ->105: message[CALL_FUNCTION] = 1 105: ppc_msgsnd_sync()/smp_mb() 105: ppc_msgsnd() -> 42 42: local_paca->kvm_hstate.host_ipi == 0 // IPI ignored 105: // hangs waiting on 42 to process messages/call_single_queue This can be prevented with an smp_mb() at the beginning of kvmppc_set_host_ipi(), such that stores to message[<type>] (or other state indicated by the host_ipi flag) are ordered vs. the store to to host_ipi. However, doing so might still allow for the following scenario (not yet observed): CPU X: smp_muxed_ipi_set_message(): X: smp_mb() X: message[RESCHEDULE] = 1 X: doorbell_global_ipi(42): X: kvmppc_set_host_ipi(42, 1) X: ppc_msgsnd_sync()/smp_mb() X: ppc_msgsnd() -> 42 42: doorbell_exception(): // from CPU X 42: ppc_msgsync() // STORE DEFERRED DUE TO RE-ORDERING -- 42: kvmppc_set_host_ipi(42, 0) | 42: smp_ipi_demux_relaxed() | 105: smp_muxed_ipi_set_message(): | 105: smb_mb() | 105: message[CALL_FUNCTION] = 1 | 105: doorbell_global_ipi(42): | 105: kvmppc_set_host_ipi(42, 1) | // RE-ORDERED STORE COMPLETES -> 42: kvmppc_set_host_ipi(42, 0) 42: // returns to executing guest 105: ppc_msgsnd_sync()/smp_mb() 105: ppc_msgsnd() -> 42 42: local_paca->kvm_hstate.host_ipi == 0 // IPI ignored 105: // hangs waiting on 42 to process messages/call_single_queue Fixing this scenario would require an smp_mb() *after* clearing host_ipi flag in kvmppc_set_host_ipi() to order the store vs. subsequent processing of IPI messages. To handle both cases, this patch splits kvmppc_set_host_ipi() into separate set/clear functions, where we execute smp_mb() prior to setting host_ipi flag, and after clearing host_ipi flag. These functions pair with each other to synchronize the sender and receiver sides. With that change in place the above workload ran for 20 hours without triggering any lock-ups. Fixes: 755563bc79c7 ("powerpc/powernv: Fixes for hypervisor doorbell handling") # v4.0 Signed-off-by: Michael Roth <mdroth@linux.vnet.ibm.com> Acked-by: Paul Mackerras <paulus@ozlabs.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20190911223155.16045-1-mdroth@linux.vnet.ibm.com Signed-off-by: Sasha Levin <sashal@kernel.org>
* KVM: PPC: Book3S HV: Flush link stack on guest exit to host kernelMichael Ellerman2019-12-011-0/+28
| | | | | | | | | | | | | | | | | | | | | | commit af2e8c68b9c5403f77096969c516f742f5bb29e0 upstream. On some systems that are vulnerable to Spectre v2, it is up to software to flush the link stack (return address stack), in order to protect against Spectre-RSB. When exiting from a guest we do some house keeping and then potentially exit to C code which is several stack frames deep in the host kernel. We will then execute a series of returns without preceeding calls, opening up the possiblity that the guest could have poisoned the link stack, and direct speculative execution of the host to a gadget of some sort. To prevent this we add a flush of the link stack on exit from a guest. Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> [dja: straightforward backport to v4.19] Signed-off-by: Daniel Axtens <dja@axtens.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* KVM: PPC: Book3S PR: Exiting split hack mode needs to fixup both PC and LRCameron Kaiser2019-11-241-0/+3
| | | | | | | | | | | | | | | | | [ Upstream commit 1006284c5e411872333967b1970c2ca46a9e225f ] When an OS (currently only classic Mac OS) is running in KVM-PR and makes a linked jump from code with split hack addressing enabled into code that does not, LR is not correctly updated and reflects the previously munged PC. To fix this, this patch undoes the address munge when exiting split hack mode so that code relying on LR being a proper address will now execute. This does not affect OS X or other operating systems running on KVM-PR. Signed-off-by: Cameron Kaiser <spectre@floodgap.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
* KVM: PPC: Inform the userspace about TCE update failuresAlexey Kardashevskiy2019-11-242-7/+7
| | | | | | | | | | | | | | | | | [ Upstream commit f7960e299f13f069d6f3d4e157d91bfca2669677 ] We return H_TOO_HARD from TCE update handlers when we think that the next handler (realmode -> virtual mode -> user mode) has a chance to handle the request; H_HARDWARE/H_CLOSED otherwise. This changes the handlers to return H_TOO_HARD on every error giving the userspace an opportunity to handle any request or at least log them all. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Sasha Levin <sashal@kernel.org>
* powerpc/mm: Fixup tlbie vs mtpidr/mtlpidr ordering issue on POWER9Aneesh Kumar K.V2019-11-101-10/+32
| | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 047e6575aec71d75b765c22111820c4776cd1c43 upstream. On POWER9, under some circumstances, a broadcast TLB invalidation will fail to invalidate the ERAT cache on some threads when there are parallel mtpidr/mtlpidr happening on other threads of the same core. This can cause stores to continue to go to a page after it's unmapped. The workaround is to force an ERAT flush using PID=0 or LPID=0 tlbie flush. This additional TLB flush will cause the ERAT cache invalidation. Since we are using PID=0 or LPID=0, we don't get filtered out by the TLB snoop filtering logic. We need to still follow this up with another tlbie to take care of store vs tlbie ordering issue explained in commit: a5d4b5891c2f ("powerpc/mm: Fixup tlbie vs store ordering issue on POWER9"). The presence of ERAT cache implies we can still get new stores and they may miss store queue marking flush. Cc: stable@vger.kernel.org Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20190924035254.24612-3-aneesh.kumar@linux.ibm.com [sandipan: Backported to v4.19] Signed-off-by: Sandipan Das <sandipan@linux.ibm.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* powerpc/book3s64/radix: Rename CPU_FTR_P9_TLBIE_BUG feature flagAneesh Kumar K.V2019-10-111-1/+1
| | | | | | | | | | | | | | | commit 09ce98cacd51fcd0fa0af2f79d1e1d3192f4cbb0 upstream. Rename the #define to indicate this is related to store vs tlbie ordering issue. In the next patch, we will be adding another feature flag that is used to handles ERAT flush vs tlbie ordering issue. Fixes: a5d4b5891c2f ("powerpc/mm: Fixup tlbie vs store ordering issue on POWER9") Cc: stable@vger.kernel.org # v4.16+ Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20190924035254.24612-2-aneesh.kumar@linux.ibm.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* KVM: PPC: Book3S HV: XIVE: Free escalation interrupts before disabling the VPCédric Le Goater2019-10-111-8/+10
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | [ Upstream commit 237aed48c642328ff0ab19b63423634340224a06 ] When a vCPU is brought done, the XIVE VP (Virtual Processor) is first disabled and then the event notification queues are freed. When freeing the queues, we check for possible escalation interrupts and free them also. But when a XIVE VP is disabled, the underlying XIVE ENDs also are disabled in OPAL. When an END (Event Notification Descriptor) is disabled, its ESB pages (ESn and ESe) are disabled and loads return all 1s. Which means that any access on the ESB page of the escalation interrupt will return invalid values. When an interrupt is freed, the shutdown handler computes a 'saved_p' field from the value returned by a load in xive_do_source_set_mask(). This value is incorrect for escalation interrupts for the reason described above. This has no impact on Linux/KVM today because we don't make use of it but we will introduce in future changes a xive_get_irqchip_state() handler. This handler will use the 'saved_p' field to return the state of an interrupt and 'saved_p' being incorrect, softlockup will occur. Fix the vCPU cleanup sequence by first freeing the escalation interrupts if any, then disable the XIVE VP and last free the queues. Fixes: 90c73795afa2 ("KVM: PPC: Book3S HV: Add a new KVM device for the XIVE native exploitation mode") Fixes: 5af50993850a ("KVM: PPC: Book3S HV: Native usage of the XIVE interrupt controller") Cc: stable@vger.kernel.org # v4.12+ Signed-off-by: Cédric Le Goater <clg@kaod.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20190806172538.5087-1-clg@kaod.org Signed-off-by: Sasha Levin <sashal@kernel.org>
* KVM: PPC: Book3S HV: Don't lose pending doorbell request on migration on P9Paul Mackerras2019-10-111-1/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | commit ff42df49e75f053a8a6b4c2533100cdcc23afe69 upstream. On POWER9, when userspace reads the value of the DPDES register on a vCPU, it is possible for 0 to be returned although there is a doorbell interrupt pending for the vCPU. This can lead to a doorbell interrupt being lost across migration. If the guest kernel uses doorbell interrupts for IPIs, then it could malfunction because of the lost interrupt. This happens because a newly-generated doorbell interrupt is signalled by setting vcpu->arch.doorbell_request to 1; the DPDES value in vcpu->arch.vcore->dpdes is not updated, because it can only be updated when holding the vcpu mutex, in order to avoid races. To fix this, we OR in vcpu->arch.doorbell_request when reading the DPDES value. Cc: stable@vger.kernel.org # v4.13+ Fixes: 579006944e0d ("KVM: PPC: Book3S HV: Virtualize doorbell facility on POWER9") Signed-off-by: Paul Mackerras <paulus@ozlabs.org> Tested-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* KVM: PPC: Book3S HV: Check for MMU ready on piggybacked virtual coresPaul Mackerras2019-10-111-5/+10
| | | | | | | | | | | | | | | | | | | commit d28eafc5a64045c78136162af9d4ba42f8230080 upstream. When we are running multiple vcores on the same physical core, they could be from different VMs and so it is possible that one of the VMs could have its arch.mmu_ready flag cleared (for example by a concurrent HPT resize) when we go to run it on a physical core. We currently check the arch.mmu_ready flag for the primary vcore but not the flags for the other vcores that will be run alongside it. This adds that check, and also a check when we select the secondary vcores from the preempted vcores list. Cc: stable@vger.kernel.org # v4.14+ Fixes: 38c53af85306 ("KVM: PPC: Book3S HV: Fix exclusion between HPT resizing and other HPT updates") Signed-off-by: Paul Mackerras <paulus@ozlabs.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* KVM: PPC: Book3S HV: Fix race in re-enabling XIVE escalation interruptsPaul Mackerras2019-10-111-13/+23
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 959c5d5134786b4988b6fdd08e444aa67d1667ed upstream. Escalation interrupts are interrupts sent to the host by the XIVE hardware when it has an interrupt to deliver to a guest VCPU but that VCPU is not running anywhere in the system. Hence we disable the escalation interrupt for the VCPU being run when we enter the guest and re-enable it when the guest does an H_CEDE hypercall indicating it is idle. It is possible that an escalation interrupt gets generated just as we are entering the guest. In that case the escalation interrupt may be using a queue entry in one of the interrupt queues, and that queue entry may not have been processed when the guest exits with an H_CEDE. The existing entry code detects this situation and does not clear the vcpu->arch.xive_esc_on flag as an indication that there is a pending queue entry (if the queue entry gets processed, xive_esc_irq() will clear the flag). There is a comment in the code saying that if the flag is still set on H_CEDE, we have to abort the cede rather than re-enabling the escalation interrupt, lest we end up with two occurrences of the escalation interrupt in the interrupt queue. However, the exit code doesn't do that; it aborts the cede in the sense that vcpu->arch.ceded gets cleared, but it still enables the escalation interrupt by setting the source's PQ bits to 00. Instead we need to set the PQ bits to 10, indicating that an interrupt has been triggered. We also need to avoid setting vcpu->arch.xive_esc_on in this case (i.e. vcpu->arch.xive_esc_on seen to be set on H_CEDE) because xive_esc_irq() will run at some point and clear it, and if we race with that we may end up with an incorrect result (i.e. xive_esc_on set when the escalation interrupt has just been handled). It is extremely unlikely that having two queue entries would cause observable problems; theoretically it could cause queue overflow, but the CPU would have to have thousands of interrupts targetted to it for that to be possible. However, this fix will also make it possible to determine accurately whether there is an unhandled escalation interrupt in the queue, which will be needed by the following patch. Fixes: 9b9b13a6d153 ("KVM: PPC: Book3S HV: Keep XIVE escalation interrupt masked unless ceded") Cc: stable@vger.kernel.org # v4.16+ Signed-off-by: Paul Mackerras <paulus@ozlabs.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20190813100349.GD9567@blackberry Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* KVM: PPC: Book3S HV: Fix CR0 setting in TM emulationMichael Neuling2019-09-161-3/+3
| | | | | | | | | | | | | | | | | | | | | [ Upstream commit 3fefd1cd95df04da67c83c1cb93b663f04b3324f ] When emulating tsr, treclaim and trechkpt, we incorrectly set CR0. The code currently sets: CR0 <- 00 || MSR[TS] but according to the ISA it should be: CR0 <- 0 || MSR[TS] || 0 This fixes the bit shift to put the bits in the correct location. This is a data integrity issue as CR0 is corrupted. Fixes: 4bb3c7a0208f ("KVM: PPC: Book3S HV: Work around transactional memory bugs in POWER9") Cc: stable@vger.kernel.org # v4.17+ Tested-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com> Signed-off-by: Michael Neuling <mikey@neuling.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Sasha Levin <sashal@kernel.org>
* KVM: PPC: Use ccr field in pt_regs struct embedded in vcpu structPaul Mackerras2019-09-168-22/+22
| | | | | | | | | | | | | | | | | [ Upstream commit fd0944baad806dfb4c777124ec712c55b714ff51 ] When the 'regs' field was added to struct kvm_vcpu_arch, the code was changed to use several of the fields inside regs (e.g., gpr, lr, etc.) but not the ccr field, because the ccr field in struct pt_regs is 64 bits on 64-bit platforms, but the cr field in kvm_vcpu_arch is only 32 bits. This changes the code to use the regs.ccr field instead of cr, and changes the assembly code on 64-bit platforms to use 64-bit loads and stores instead of 32-bit ones. Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Paul Mackerras <paulus@ozlabs.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Sasha Levin <sashal@kernel.org>
* powerpc/kvm: Save and restore host AMR/IAMR/UAMORMichael Ellerman2019-09-161-9/+17
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | [ Upstream commit c3c7470c75566a077c8dc71dcf8f1948b8ddfab4 ] When the hash MMU is active the AMR, IAMR and UAMOR are used for pkeys. The AMR is directly writable by user space, and the UAMOR masks those writes, meaning both registers are effectively user register state. The IAMR is used to create an execute only key. Also we must maintain the value of at least the AMR when running in process context, so that any memory accesses done by the kernel on behalf of the process are correctly controlled by the AMR. Although we are correctly switching all registers when going into a guest, on returning to the host we just write 0 into all regs, except on Power9 where we restore the IAMR correctly. This could be observed by a user process if it writes the AMR, then runs a guest and we then return immediately to it without rescheduling. Because we have written 0 to the AMR that would have the effect of granting read/write permission to pages that the process was trying to protect. In addition, when using the Radix MMU, the AMR can prevent inadvertent kernel access to userspace data, writing 0 to the AMR disables that protection. So save and restore AMR, IAMR and UAMOR. Fixes: cf43d3b26452 ("powerpc: Enable pkey subsystem") Cc: stable@vger.kernel.org # v4.16+ Signed-off-by: Russell Currey <ruscur@russell.cc> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Acked-by: Paul Mackerras <paulus@ozlabs.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
* KVM: PPC: Book3S HV: Fix race between kvm_unmap_hva_range and MMU mode switchPaul Mackerras2019-09-162-4/+14
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | [ Upstream commit 234ff0b729ad882d20f7996591a964965647addf ] Testing has revealed an occasional crash which appears to be caused by a race between kvmppc_switch_mmu_to_hpt and kvm_unmap_hva_range_hv. The symptom is a NULL pointer dereference in __find_linux_pte() called from kvm_unmap_radix() with kvm->arch.pgtable == NULL. Looking at kvmppc_switch_mmu_to_hpt(), it does indeed clear kvm->arch.pgtable (via kvmppc_free_radix()) before setting kvm->arch.radix to NULL, and there is nothing to prevent kvm_unmap_hva_range_hv() or the other MMU callback functions from being called concurrently with kvmppc_switch_mmu_to_hpt() or kvmppc_switch_mmu_to_radix(). This patch therefore adds calls to spin_lock/unlock on the kvm->mmu_lock around the assignments to kvm->arch.radix, and makes sure that the partition-scoped radix tree or HPT is only freed after changing kvm->arch.radix. This also takes the kvm->mmu_lock in kvmppc_rmap_reset() to make sure that the clearing of each rmap array (one per memslot) doesn't happen concurrently with use of the array in the kvm_unmap_hva_range_hv() or the other MMU callbacks. Fixes: 18c3640cefc7 ("KVM: PPC: Book3S HV: Add infrastructure for running HPT guests on radix host") Cc: stable@vger.kernel.org # v4.15+ Signed-off-by: Paul Mackerras <paulus@ozlabs.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
* KVM: PPC: Book3S: Fix incorrect guest-to-user-translation error handlingAlexey Kardashevskiy2019-09-062-4/+8
| | | | | | | | | | | | | | | | | | | | | [ Upstream commit ddfd151f3def9258397fcde7a372205a2d661903 ] H_PUT_TCE_INDIRECT handlers receive a page with up to 512 TCEs from a guest. Although we verify correctness of TCEs before we do anything with the existing tables, there is a small window when a check in kvmppc_tce_validate might pass and right after that the guest alters the page of TCEs, causing an early exit from the handler and leaving srcu_read_lock(&vcpu->kvm->srcu) (virtual mode) or lock_rmap(rmap) (real mode) locked. This fixes the bug by jumping to the common exit code with an appropriate unlock. Cc: stable@vger.kernel.org # v4.11+ Fixes: 121f80ba68f1 ("KVM: PPC: VFIO: Add in-kernel acceleration for VFIO") Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Paul Mackerras <paulus@ozlabs.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
* KVM: Fix leak vCPU's VMCS value into other pCPUWanpeng Li2019-08-161-0/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 17e433b54393a6269acbcb792da97791fe1592d8 upstream. After commit d73eb57b80b (KVM: Boost vCPUs that are delivering interrupts), a five years old bug is exposed. Running ebizzy benchmark in three 80 vCPUs VMs on one 80 pCPUs Skylake server, a lot of rcu_sched stall warning splatting in the VMs after stress testing: INFO: rcu_sched detected stalls on CPUs/tasks: { 4 41 57 62 77} (detected by 15, t=60004 jiffies, g=899, c=898, q=15073) Call Trace: flush_tlb_mm_range+0x68/0x140 tlb_flush_mmu.part.75+0x37/0xe0 tlb_finish_mmu+0x55/0x60 zap_page_range+0x142/0x190 SyS_madvise+0x3cd/0x9c0 system_call_fastpath+0x1c/0x21 swait_active() sustains to be true before finish_swait() is called in kvm_vcpu_block(), voluntarily preempted vCPUs are taken into account by kvm_vcpu_on_spin() loop greatly increases the probability condition kvm_arch_vcpu_runnable(vcpu) is checked and can be true, when APICv is enabled the yield-candidate vCPU's VMCS RVI field leaks(by vmx_sync_pir_to_irr()) into spinning-on-a-taken-lock vCPU's current VMCS. This patch fixes it by checking conservatively a subset of events. Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Marc Zyngier <Marc.Zyngier@arm.com> Cc: stable@vger.kernel.org Fixes: 98f4a1467 (KVM: add kvm_arch_vcpu_runnable() test to kvm_vcpu_on_spin() loop) Signed-off-by: Wanpeng Li <wanpengli@tencent.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* KVM: PPC: Book3S HV: Don't take kvm->lock around kvm_for_each_vcpuPaul Mackerras2019-06-221-8/+1
| | | | | | | | | | | | | | | | | | | | | | [ Upstream commit 5a3f49364c3ffa1107bd88f8292406e98c5d206c ] Currently the HV KVM code takes the kvm->lock around calls to kvm_for_each_vcpu() and kvm_get_vcpu_by_id() (which can call kvm_for_each_vcpu() internally). However, that leads to a lock order inversion problem, because these are called in contexts where the vcpu mutex is held, but the vcpu mutexes nest within kvm->lock according to Documentation/virtual/kvm/locking.txt. Hence there is a possibility of deadlock. To fix this, we simply don't take the kvm->lock mutex around these calls. This is safe because the implementations of kvm_for_each_vcpu() and kvm_get_vcpu_by_id() have been designed to be able to be called locklessly. Signed-off-by: Paul Mackerras <paulus@ozlabs.org> Reviewed-by: Cédric Le Goater <clg@kaod.org> Signed-off-by: Paul Mackerras <paulus@ozlabs.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
* KVM: PPC: Book3S: Use new mutex to synchronize access to rtas token listPaul Mackerras2019-06-222-8/+7
| | | | | | | | | | | | | | | | | | | | | | | [ Upstream commit 1659e27d2bc1ef47b6d031abe01b467f18cb72d9 ] Currently the Book 3S KVM code uses kvm->lock to synchronize access to the kvm->arch.rtas_tokens list. Because this list is scanned inside kvmppc_rtas_hcall(), which is called with the vcpu mutex held, taking kvm->lock cause a lock inversion problem, which could lead to a deadlock. To fix this, we add a new mutex, kvm->arch.rtas_token_lock, which nests inside the vcpu mutexes, and use that instead of kvm->lock when accessing the rtas token list. This removes the lockdep_assert_held() in kvmppc_rtas_tokens_free(). At this point we don't hold the new mutex, but that is OK because kvmppc_rtas_tokens_free() is only called when the whole VM is being destroyed, and at that point nothing can be looking up a token in the list. Signed-off-by: Paul Mackerras <paulus@ozlabs.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
* KVM: s390: Do not report unusabled IDs via KVM_CAP_MAX_VCPU_IDThomas Huth2019-06-091-0/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit a86cb413f4bf273a9d341a3ab2c2ca44e12eb317 upstream. KVM_CAP_MAX_VCPU_ID is currently always reporting KVM_MAX_VCPU_ID on all architectures. However, on s390x, the amount of usable CPUs is determined during runtime - it is depending on the features of the machine the code is running on. Since we are using the vcpu_id as an index into the SCA structures that are defined by the hardware (see e.g. the sca_add_vcpu() function), it is not only the amount of CPUs that is limited by the hard- ware, but also the range of IDs that we can use. Thus KVM_CAP_MAX_VCPU_ID must be determined during runtime on s390x, too. So the handling of KVM_CAP_MAX_VCPU_ID has to be moved from the common code into the architecture specific code, and on s390x we have to return the same value here as for KVM_CAP_MAX_VCPUS. This problem has been discovered with the kvm_create_max_vcpus selftest. With this change applied, the selftest now passes on s390x, too. Reviewed-by: Andrew Jones <drjones@redhat.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Reviewed-by: David Hildenbrand <david@redhat.com> Signed-off-by: Thomas Huth <thuth@redhat.com> Message-Id: <20190523164309.13345-9-thuth@redhat.com> Cc: stable@vger.kernel.org Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* KVM: PPC: Book3S HV: XIVE: Do not clear IRQ data of passthrough interruptsCédric Le Goater2019-06-091-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit ef9740204051d0e00f5402fe96cf3a43ddd2bbbf upstream. The passthrough interrupts are defined at the host level and their IRQ data should not be cleared unless specifically deconfigured (shutdown) by the host. They differ from the IPI interrupts which are allocated by the XIVE KVM device and reserved to the guest usage only. This fixes a host crash when destroying a VM in which a PCI adapter was passed-through. In this case, the interrupt is cleared and freed by the KVM device and then shutdown by vfio at the host level. [ 1007.360265] BUG: Kernel NULL pointer dereference at 0x00000d00 [ 1007.360285] Faulting instruction address: 0xc00000000009da34 [ 1007.360296] Oops: Kernel access of bad area, sig: 7 [#1] [ 1007.360303] LE PAGE_SIZE=64K MMU=Radix MMU=Hash SMP NR_CPUS=2048 NUMA PowerNV [ 1007.360314] Modules linked in: vhost_net vhost iptable_mangle ipt_MASQUERADE iptable_nat nf_nat xt_conntrack nf_conntrack nf_defrag_ipv4 ipt_REJECT nf_reject_ipv4 tun bridge stp llc kvm_hv kvm xt_tcpudp iptable_filter squashfs fuse binfmt_misc vmx_crypto ib_iser rdma_cm iw_cm ib_cm libiscsi scsi_transport_iscsi nfsd ip_tables x_tables autofs4 btrfs zstd_decompress zstd_compress lzo_compress raid10 raid456 async_raid6_recov async_memcpy async_pq async_xor async_tx xor raid6_pq multipath mlx5_ib ib_uverbs ib_core crc32c_vpmsum mlx5_core [ 1007.360425] CPU: 9 PID: 15576 Comm: CPU 18/KVM Kdump: loaded Not tainted 5.1.0-gad7e7d0ef #4 [ 1007.360454] NIP: c00000000009da34 LR: c00000000009e50c CTR: c00000000009e5d0 [ 1007.360482] REGS: c000007f24ccf330 TRAP: 0300 Not tainted (5.1.0-gad7e7d0ef) [ 1007.360500] MSR: 900000000280b033 <SF,HV,VEC,VSX,EE,FP,ME,IR,DR,RI,LE> CR: 24002484 XER: 00000000 [ 1007.360532] CFAR: c00000000009da10 DAR: 0000000000000d00 DSISR: 00080000 IRQMASK: 1 [ 1007.360532] GPR00: c00000000009e62c c000007f24ccf5c0 c000000001510600 c000007fe7f947c0 [ 1007.360532] GPR04: 0000000000000d00 0000000000000000 0000000000000000 c000005eff02d200 [ 1007.360532] GPR08: 0000000000400000 0000000000000000 0000000000000000 fffffffffffffffd [ 1007.360532] GPR12: c00000000009e5d0 c000007fffff7b00 0000000000000031 000000012c345718 [ 1007.360532] GPR16: 0000000000000000 0000000000000008 0000000000418004 0000000000040100 [ 1007.360532] GPR20: 0000000000000000 0000000008430000 00000000003c0000 0000000000000027 [ 1007.360532] GPR24: 00000000000000ff 0000000000000000 00000000000000ff c000007faa90d98c [ 1007.360532] GPR28: c000007faa90da40 00000000000fe040 ffffffffffffffff c000007fe7f947c0 [ 1007.360689] NIP [c00000000009da34] xive_esb_read+0x34/0x120 [ 1007.360706] LR [c00000000009e50c] xive_do_source_set_mask.part.0+0x2c/0x50 [ 1007.360732] Call Trace: [ 1007.360738] [c000007f24ccf5c0] [c000000000a6383c] snooze_loop+0x15c/0x270 (unreliable) [ 1007.360775] [c000007f24ccf5f0] [c00000000009e62c] xive_irq_shutdown+0x5c/0xe0 [ 1007.360795] [c000007f24ccf630] [c00000000019e4a0] irq_shutdown+0x60/0xe0 [ 1007.360813] [c000007f24ccf660] [c000000000198c44] __free_irq+0x3a4/0x420 [ 1007.360831] [c000007f24ccf700] [c000000000198dc8] free_irq+0x78/0xe0 [ 1007.360849] [c000007f24ccf730] [c00000000096c5a8] vfio_msi_set_vector_signal+0xa8/0x350 [ 1007.360878] [c000007f24ccf7f0] [c00000000096c938] vfio_msi_set_block+0xe8/0x1e0 [ 1007.360899] [c000007f24ccf850] [c00000000096cae0] vfio_msi_disable+0xb0/0x110 [ 1007.360912] [c000007f24ccf8a0] [c00000000096cd04] vfio_pci_set_msi_trigger+0x1c4/0x3d0 [ 1007.360922] [c000007f24ccf910] [c00000000096d910] vfio_pci_set_irqs_ioctl+0xa0/0x170 [ 1007.360941] [c000007f24ccf930] [c00000000096b400] vfio_pci_disable+0x80/0x5e0 [ 1007.360963] [c000007f24ccfa10] [c00000000096b9bc] vfio_pci_release+0x5c/0x90 [ 1007.360991] [c000007f24ccfa40] [c000000000963a9c] vfio_device_fops_release+0x3c/0x70 [ 1007.361012] [c000007f24ccfa70] [c0000000003b5668] __fput+0xc8/0x2b0 [ 1007.361040] [c000007f24ccfac0] [c0000000001409b0] task_work_run+0x140/0x1b0 [ 1007.361059] [c000007f24ccfb20] [c000000000118f8c] do_exit+0x3ac/0xd00 [ 1007.361076] [c000007f24ccfc00] [c0000000001199b0] do_group_exit+0x60/0x100 [ 1007.361094] [c000007f24ccfc40] [c00000000012b514] get_signal+0x1a4/0x8f0 [ 1007.361112] [c000007f24ccfd30] [c000000000021cc8] do_notify_resume+0x1a8/0x430 [ 1007.361141] [c000007f24ccfe20] [c00000000000e444] ret_from_except_lite+0x70/0x74 [ 1007.361159] Instruction dump: [ 1007.361175] 38422c00 e9230000 712a0004 41820010 548a2036 7d442378 78840020 71290020 [ 1007.361194] 4082004c e9230010 7c892214 7c0004ac <e9240000> 0c090000 4c00012c 792a0022 Cc: stable@vger.kernel.org # v4.12+ Fixes: 5af50993850a ("KVM: PPC: Book3S HV: Native usage of the XIVE interrupt controller") Signed-off-by: Cédric Le Goater <clg@kaod.org> Signed-off-by: Greg Kurz <groug@kaod.org> Signed-off-by: Paul Mackerras <paulus@ozlabs.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* powerpc/fsl: Flush branch predictor when entering KVMDiana Craciun2019-04-031-0/+4
| | | | | | | | | | | | commit e7aa61f47b23afbec41031bc47ca8d6cb6516abc upstream. Switching from the guest to host is another place where the speculative accesses can be exploited. Flush the branch predictor when entering KVM. Signed-off-by: Diana Craciun <diana.craciun@nxp.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* powerpc/fsl: Emulate SPRN_BUCSR registerDiana Craciun2019-04-031-0/+7
| | | | | | | | | | | | | | | commit 98518c4d8728656db349f875fcbbc7c126d4c973 upstream. In order to flush the branch predictor the guest kernel performs writes to the BUCSR register which is hypervisor privilleged. However, the branch predictor is flushed at each KVM entry, so the branch predictor has been already flushed, so just return as soon as possible to guest. Signed-off-by: Diana Craciun <diana.craciun@nxp.com> [mpe: Tweak comment formatting] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* KVM: PPC: Book3S: Only report KVM_CAP_SPAPR_TCE_VFIO on powernv machinesSuraj Jitindar Singh2019-02-121-1/+4
| | | | | | | | | | | | | | | | | | [ Upstream commit 693ac10a88a2219bde553b2e8460dbec97e594e6 ] The kvm capability KVM_CAP_SPAPR_TCE_VFIO is used to indicate the availability of in kernel tce acceleration for vfio. However it is currently the case that this is only available on a powernv machine, not for a pseries machine. Thus make this capability dependent on having the cpu feature CPU_FTR_HVMODE. [paulus@ozlabs.org - fixed compilation for Book E.] Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
* KVM: PPC: Move and undef TRACE_INCLUDE_PATH/FILEScott Wood2018-12-014-8/+27
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | [ Upstream commit 28c5bcf74fa07c25d5bd118d1271920f51ce2a98 ] TRACE_INCLUDE_PATH and TRACE_INCLUDE_FILE are used by <trace/define_trace.h>, so like that #include, they should be outside #ifdef protection. They also need to be #undefed before defining, in case multiple trace headers are included by the same C file. This became the case on book3e after commit cf4a6085151a ("powerpc/mm: Add missing tracepoint for tlbie"), leading to the following build error: CC arch/powerpc/kvm/powerpc.o In file included from arch/powerpc/kvm/powerpc.c:51:0: arch/powerpc/kvm/trace.h:9:0: error: "TRACE_INCLUDE_PATH" redefined [-Werror] #define TRACE_INCLUDE_PATH . ^ In file included from arch/powerpc/kvm/../mm/mmu_decl.h:25:0, from arch/powerpc/kvm/powerpc.c:48: ./arch/powerpc/include/asm/trace.h:224:0: note: this is the location of the previous definition #define TRACE_INCLUDE_PATH asm ^ cc1: all warnings being treated as errors Reported-by: Christian Zigotzky <chzigotzky@xenosoft.de> Signed-off-by: Scott Wood <oss@buserror.net> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Sasha Levin <sashal@kernel.org>
* KVM: PPC: Book3S HV: Avoid crash from THP collapse during radix page faultPaul Mackerras2018-10-041-0/+10
| | | | | | | | | | | | | | | | | | | | | | | | Commit 71d29f43b633 ("KVM: PPC: Book3S HV: Don't use compound_order to determine host mapping size", 2018-09-11) added a call to __find_linux_pte() and a dereference of the returned PTE pointer to the radix page fault path in the common case where the page is normal system memory. Previously, __find_linux_pte() was only called for mappings to physical addresses which don't have a page struct (e.g. memory-mapped I/O) or where the page struct is marked as reserved memory. This exposes us to the possibility that the returned PTE pointer could be NULL, for example in the case of a concurrent THP collapse operation. Dereferencing the returned NULL pointer causes a host crash. To fix this, we check for NULL, and if it is NULL, we retry the operation by returning to the guest, with the expectation that it will generate the same page fault again (unless of course it has been fixed up by another CPU in the meantime). Fixes: 71d29f43b633 ("KVM: PPC: Book3S HV: Don't use compound_order to determine host mapping size") Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
* KVM: PPC: Book3S HV: Don't use compound_order to determine host mapping sizeNicholas Piggin2018-09-121-54/+37
| | | | | | | | | | | | | | | | | | | THP paths can defer splitting compound pages until after the actual remap and TLB flushes to split a huge PMD/PUD. This causes radix partition scope page table mappings to get out of synch with the host qemu page table mappings. This results in random memory corruption in the guest when running with THP. The easiest way to reproduce is use KVM balloon to free up a lot of memory in the guest and then shrink the balloon to give the memory back, while some work is being done in the guest. Cc: David Gibson <david@gibson.dropbear.id.au> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.ibm.com> Cc: kvm-ppc@vger.kernel.org Cc: linuxppc-dev@lists.ozlabs.org Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
* KVM: PPC: Avoid marking DMA-mapped pages dirty in real modeAlexey Kardashevskiy2018-09-121-8/+31
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | At the moment the real mode handler of H_PUT_TCE calls iommu_tce_xchg_rm() which in turn reads the old TCE and if it was a valid entry, marks the physical page dirty if it was mapped for writing. Since it is in real mode, realmode_pfn_to_page() is used instead of pfn_to_page() to get the page struct. However SetPageDirty() itself reads the compound page head and returns a virtual address for the head page struct and setting dirty bit for that kills the system. This adds additional dirty bit tracking into the MM/IOMMU API for use in the real mode. Note that this does not change how VFIO and KVM (in virtual mode) set this bit. The KVM (real mode) changes include: - use the lowest bit of the cached host phys address to carry the dirty bit; - mark pages dirty when they are unpinned which happens when the preregistered memory is released which always happens in virtual mode; - add mm_iommu_ua_mark_dirty_rm() helper to set delayed dirty bit; - change iommu_tce_xchg_rm() to take the kvm struct for the mm to use in the new mm_iommu_ua_mark_dirty_rm() helper; - move iommu_tce_xchg_rm() to book3s_64_vio_hv.c (which is the only caller anyway) to reduce the real mode KVM and IOMMU knowledge across different subsystems. This removes realmode_pfn_to_page() as it is not used anymore. While we at it, remove some EXPORT_SYMBOL_GPL() as that code is for the real mode only and modules cannot call it anyway. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
* Merge tag 'kvm-ppc-fixes-4.19-1' of ↵Radim Krčmář2018-09-042-4/+4
|\ | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc PPC KVM fixes for 4.19 Two small fixes for KVM on POWER machines; one fixes a bug where pages might not get marked dirty, causing guest memory corruption on migration, and the other fixes a bug causing reads from guest memory to use the wrong guest real address for very large HPT guests (>256G of memory), leading to failures in instruction emulation.
| * KVM: PPC: Book3S HV: Don't truncate HPTE index in xlate functionPaul Mackerras2018-08-201-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This fixes a bug which causes guest virtual addresses to get translated to guest real addresses incorrectly when the guest is using the HPT MMU and has more than 256GB of RAM, or more specifically has a HPT larger than 2GB. This has showed up in testing as a failure of the host to emulate doorbell instructions correctly on POWER9 for HPT guests with more than 256GB of RAM. The bug is that the HPTE index in kvmppc_mmu_book3s_64_hv_xlate() is stored as an int, and in forming the HPTE address, the index gets shifted left 4 bits as an int before being signed-extended to 64 bits. The simple fix is to make the variable a long int, matching the return type of kvmppc_hv_find_lock_hpte(), which is what calculates the index. Fixes: 697d3899dcb4 ("KVM: PPC: Implement MMIO emulation support for Book3S HV guests") Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
| * KVM: PPC: Book3S HV: Use correct pagesize in kvm_unmap_radix()Paul Mackerras2018-08-151-3/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Since commit e641a317830b ("KVM: PPC: Book3S HV: Unify dirty page map between HPT and radix", 2017-10-26), kvm_unmap_radix() computes the number of PAGE_SIZEd pages being unmapped and passes it to kvmppc_update_dirty_map(), which expects to be passed the page size instead. Consequently it will only mark one system page dirty even when a large page (for example a THP page) is being unmapped. The consequence of this is that part of the THP page might not get copied during live migration, resulting in memory corruption for the guest. This fixes it by computing and passing the page size in kvm_unmap_radix(). Cc: stable@vger.kernel.org # v4.15+ Fixes: e641a317830b (KVM: PPC: Book3S HV: Unify dirty page map between HPT and radix) Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
* | Merge tag 'powerpc-4.19-2' of ↵Linus Torvalds2018-08-241-0/+1
|\ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux Pull powerpc fixes from Michael Ellerman: - An implementation for the newly added hv_ops->flush() for the OPAL hvc console driver backends, I forgot to apply this after merging the hvc driver changes before the merge window. - Enable all PCI bridges at boot on powernv, to avoid races when multiple children of a bridge try to enable it simultaneously. This is a workaround until the PCI core can be enhanced to fix the races. - A fix to query PowerVM for the correct system topology at boot before initialising sched domains, seen in some configurations to cause broken scheduling etc. - A fix for pte_access_permitted() on "nohash" platforms. - Two commits to fix SIGBUS when using remap_pfn_range() seen on Power9 due to a workaround when using the nest MMU (GPUs, accelerators). - Another fix to the VFIO code used by KVM, the previous fix had some bugs which caused guests to not start in some configurations. - A handful of other minor fixes. Thanks to: Aneesh Kumar K.V, Benjamin Herrenschmidt, Christophe Leroy, Hari Bathini, Luke Dashjr, Mahesh Salgaonkar, Nicholas Piggin, Paul Mackerras, Srikar Dronamraju. * tag 'powerpc-4.19-2' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: powerpc/mce: Fix SLB rebolting during MCE recovery path. KVM: PPC: Book3S: Fix guest DMA when guest partially backed by THP pages powerpc/mm/radix: Only need the Nest MMU workaround for R -> RW transition powerpc/mm/books3s: Add new pte bit to mark pte temporarily invalid. powerpc/nohash: fix pte_access_permitted() powerpc/topology: Get topology for shared processors at boot powerpc64/ftrace: Include ftrace.h needed for enable/disable calls powerpc/powernv/pci: Work around races in PCI bridge enabling powerpc/fadump: cleanup crash memory ranges support powerpc/powernv: provide a console flush operation for opal hvc driver powerpc/traps: Avoid rate limit messages from show unhandled signals powerpc/64s: Fix PACA_IRQ_HARD_DIS accounting in idle_power4()
| * | powerpc64/ftrace: Include ftrace.h needed for enable/disable callsLuke Dashjr2018-08-211-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | this_cpu_disable_ftrace and this_cpu_enable_ftrace are inlines in ftrace.h Without it included, the build fails. Fixes: a4bc64d305af ("powerpc64/ftrace: Disable ftrace during kvm entry/exit") Cc: stable@vger.kernel.org # v4.18+ Signed-off-by: Luke Dashjr <luke-jr+git@utopios.org> Acked-by: Naveen N. Rao <naveen.n.rao at linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
* | | treewide: correct "differenciate" and "instanciate" typosFinn Thain2018-08-232-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Also add these typos to spelling.txt so checkpatch.pl will look for them. Link: http://lkml.kernel.org/r/88af06b9de34d870cb0afc46cfd24e0458be2575.1529471371.git.fthain@telegraphics.com.au Signed-off-by: Finn Thain <fthain@telegraphics.com.au> Cc: Masahiro Yamada <yamada.masahiro@socionext.com> Cc: Joe Perches <joe@perches.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | | Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds2018-08-195-42/+61
|\ \ \ | | |/ | |/| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Pull first set of KVM updates from Paolo Bonzini: "PPC: - minor code cleanups x86: - PCID emulation and CR3 caching for shadow page tables - nested VMX live migration - nested VMCS shadowing - optimized IPI hypercall - some optimizations ARM will come next week" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (85 commits) kvm: x86: Set highest physical address bits in non-present/reserved SPTEs KVM/x86: Use CC_SET()/CC_OUT in arch/x86/kvm/vmx.c KVM: X86: Implement PV IPIs in linux guest KVM: X86: Add kvm hypervisor init time platform setup callback KVM: X86: Implement "send IPI" hypercall KVM/x86: Move X86_CR4_OSXSAVE check into kvm_valid_sregs() KVM: x86: Skip pae_root shadow allocation if tdp enabled KVM/MMU: Combine flushing remote tlb in mmu_set_spte() KVM: vmx: skip VMWRITE of HOST_{FS,GS}_BASE when possible KVM: vmx: skip VMWRITE of HOST_{FS,GS}_SEL when possible KVM: vmx: always initialize HOST_{FS,GS}_BASE to zero during setup KVM: vmx: move struct host_state usage to struct loaded_vmcs KVM: vmx: compute need to reload FS/GS/LDT on demand KVM: nVMX: remove a misleading comment regarding vmcs02 fields KVM: vmx: rename __vmx_load_host_state() and vmx_save_host_state() KVM: vmx: add dedicated utility to access guest's kernel_gs_base KVM: vmx: track host_state.loaded using a loaded_vmcs pointer KVM: vmx: refactor segmentation code in vmx_save_host_state() kvm: nVMX: Fix fault priority for VMX operations kvm: nVMX: Fix fault vector for VMX operation at CPL > 0 ...
| * | Merge tag 'v4.18-rc6' into HEADPaolo Bonzini2018-08-062-3/+5
| |\ \ | | | | | | | | | | | | Pull bug fixes into the KVM development tree to avoid nasty conflicts.
| * | | KVM: PPC: Book3S HV: Read kvm->arch.emul_smt_mode under kvm->lockPaul Mackerras2018-07-261-9/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Commit 1e175d2 ("KVM: PPC: Book3S HV: Pack VCORE IDs to access full VCPU ID space", 2018-07-25) added code that uses kvm->arch.emul_smt_mode before any VCPUs are created. However, userspace can change kvm->arch.emul_smt_mode at any time up until the first VCPU is created. Hence it is (theoretically) possible for the check in kvmppc_core_vcpu_create_hv() to race with another userspace thread changing kvm->arch.emul_smt_mode. This fixes it by moving the test that uses kvm->arch.emul_smt_mode into the block where kvm->lock is held. Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
| * | | KVM: PPC: Book3S HV: Pack VCORE IDs to access full VCPU ID spaceSam Bobroff2018-07-262-13/+33
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | It is not currently possible to create the full number of possible VCPUs (KVM_MAX_VCPUS) on Power9 with KVM-HV when the guest uses fewer threads per core than its core stride (or "VSMT mode"). This is because the VCORE ID and XIVE offsets grow beyond KVM_MAX_VCPUS even though the VCPU ID is less than KVM_MAX_VCPU_ID. To address this, "pack" the VCORE ID and XIVE offsets by using knowledge of the way the VCPU IDs will be used when there are fewer guest threads per core than the core stride. The primary thread of each core will always be used first. Then, if the guest uses more than one thread per core, these secondary threads will sequentially follow the primary in each core. So, the only way an ID above KVM_MAX_VCPUS can be seen, is if the VCPUs are being spaced apart, so at least half of each core is empty, and IDs between KVM_MAX_VCPUS and (KVM_MAX_VCPUS * 2) can be mapped into the second half of each core (4..7, in an 8-thread core). Similarly, if IDs above KVM_MAX_VCPUS * 2 are seen, at least 3/4 of each core is being left empty, and we can map down into the second and third quarters of each core (2, 3 and 5, 6 in an 8-thread core). Lastly, if IDs above KVM_MAX_VCPUS * 4 are seen, only the primary threads are being used and 7/8 of the core is empty, allowing use of the 1, 5, 3 and 7 thread slots. (Strides less than 8 are handled similarly.) This allows the VCORE ID or offset to be calculated quickly from the VCPU ID or XIVE server numbers, without access to the VCPU structure. [paulus@ozlabs.org - tidied up comment a little, changed some WARN_ONCE to pr_devel, wrapped line, fixed id check.] Signed-off-by: Sam Bobroff <sam.bobroff@au1.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
| * | | KVM: PPC: Book3S HV: Fix constant size warningNicholas Mc Guire2018-07-181-8/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The constants are 64bit but not explicitly declared UL resulting in sparse warnings. Fix this by declaring the constants UL. Signed-off-by: Nicholas Mc Guire <hofrat@osadl.org> Signed-off-by: Paul Mackerras <paulus@ozlabs.org>