summaryrefslogtreecommitdiffstats
path: root/arch/sparc
Commit message (Collapse)AuthorAgeFilesLines
* security/keys: add CONFIG_KEYS_COMPAT to KconfigBilal Amarni2017-11-181-3/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | commit 47b2c3fff4932e6fc17ce13d51a43c6969714e20 upstream. CONFIG_KEYS_COMPAT is defined in arch-specific Kconfigs and is missing for several 64-bit architectures : mips, parisc, tile. At the moment and for those architectures, calling in 32-bit userspace the keyctl syscall would return an ENOSYS error. This patch moves the CONFIG_KEYS_COMPAT option to security/keys/Kconfig, to make sure the compatibility wrapper is registered by default for any 64-bit architecture as long as it is configured with CONFIG_COMPAT. [DH: Modified to remove arm64 compat enablement also as requested by Eric Biggers] Signed-off-by: Bilal Amarni <bilal.amarni@gmail.com> Signed-off-by: David Howells <dhowells@redhat.com> Reviewed-by: Arnd Bergmann <arnd@arndb.de> cc: Eric Biggers <ebiggers3@gmail.com> Signed-off-by: James Morris <james.l.morris@oracle.com> Cc: James Cowgill <james.cowgill@mips.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* sparc64: Migrate hvcons irq to panicked cpuVijay Kumar2017-10-212-2/+9
| | | | | | | | | | | | | [ Upstream commit 7dd4fcf5b70694dc961eb6b954673e4fc9730dbd ] On panic, all other CPUs are stopped except the one which had hit panic. To keep console alive, we need to migrate hvcons irq to panicked CPU. Signed-off-by: Vijay Kumar <vijay.ac.kumar@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Sasha Levin <alexander.levin@verizon.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* sparc64: Prevent perf from running during super critical sectionsRob Gardner2017-08-123-7/+22
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit fc290a114fc6034b0f6a5a46e2fb7d54976cf87a upstream. This fixes another cause of random segfaults and bus errors that may occur while running perf with the callgraph option. Critical sections beginning with spin_lock_irqsave() raise the interrupt level to PIL_NORMAL_MAX (14) and intentionally do not block performance counter interrupts, which arrive at PIL_NMI (15). But some sections of code are "super critical" with respect to perf because the perf_callchain_user() path accesses user space and may cause TLB activity as well as faults as it unwinds the user stack. One particular critical section occurs in switch_mm: spin_lock_irqsave(&mm->context.lock, flags); ... load_secondary_context(mm); tsb_context_switch(mm); ... spin_unlock_irqrestore(&mm->context.lock, flags); If a perf interrupt arrives in between load_secondary_context() and tsb_context_switch(), then perf_callchain_user() could execute with the context ID of one process, but with an active TSB for a different process. When the user stack is accessed, it is very likely to incur a TLB miss, since the h/w context ID has been changed. The TLB will then be reloaded with a translation from the TSB for one process, but using a context ID for another process. This exposes memory from one process to another, and since it is a mapping for stack memory, this usually causes the new process to crash quickly. This super critical section needs more protection than is provided by spin_lock_irqsave() since perf interrupts must not be allowed in. Since __tsb_context_switch already goes through the trouble of disabling interrupts completely, we fix this by moving the secondary context load down into this better protected region. Orabug: 25577560 Signed-off-by: Dave Aldridge <david.j.aldridge@oracle.com> Signed-off-by: Rob Gardner <rob.gardner@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* sparc64: Measure receiver forward progress to avoid send mondo timeoutJane Chu2017-08-114-70/+132
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | [ Upstream commit 9d53caec84c7c5700e7c1ed744ea584fff55f9ac ] A large sun4v SPARC system may have moments of intensive xcall activities, usually caused by unmapping many pages on many CPUs concurrently. This can flood receivers with CPU mondo interrupts for an extended period, causing some unlucky senders to hit send-mondo timeout. This problem gets worse as cpu count increases because sometimes mappings must be invalidated on all CPUs, and sometimes all CPUs may gang up on a single CPU. But a busy system is not a broken system. In the above scenario, as long as the receiver is making forward progress processing mondo interrupts, the sender should continue to retry. This patch implements the receiver's forward progress meter by introducing a per cpu counter 'cpu_mondo_counter[cpu]' where 'cpu' is in the range of 0..NR_CPUS. The receiver increments its counter as soon as it receives a mondo and the sender tracks the receiver's counter. If the receiver has stopped making forward progress when the retry limit is reached, the sender declares send-mondo-timeout and panic; otherwise, the receiver is allowed to keep making forward progress. In addition, it's been observed that PCIe hotplug events generate Correctable Errors that are handled by hypervisor and then OS. Hypervisor 'borrows' a guest cpu strand briefly to provide the service. If the cpu strand is simultaneously the only cpu targeted by a mondo, it may not be available for the mondo in 20msec, causing SUN4V mondo timeout. It appears that 1 second is the agreed wait time between hypervisor and guest OS, this patch makes the adjustment. Orabug: 25476541 Orabug: 26417466 Signed-off-by: Jane Chu <jane.chu@oracle.com> Reviewed-by: Steve Sistare <steven.sistare@oracle.com> Reviewed-by: Anthony Yznaga <anthony.yznaga@oracle.com> Reviewed-by: Rob Gardner <rob.gardner@oracle.com> Reviewed-by: Thomas Tai <thomas.tai@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* mm: larger stack guard gap, between vmasHugh Dickins2017-06-262-3/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 1be7107fbe18eed3e319a6c3e83c78254b693acb upstream. Stack guard page is a useful feature to reduce a risk of stack smashing into a different mapping. We have been using a single page gap which is sufficient to prevent having stack adjacent to a different mapping. But this seems to be insufficient in the light of the stack usage in userspace. E.g. glibc uses as large as 64kB alloca() in many commonly used functions. Others use constructs liks gid_t buffer[NGROUPS_MAX] which is 256kB or stack strings with MAX_ARG_STRLEN. This will become especially dangerous for suid binaries and the default no limit for the stack size limit because those applications can be tricked to consume a large portion of the stack and a single glibc call could jump over the guard page. These attacks are not theoretical, unfortunatelly. Make those attacks less probable by increasing the stack guard gap to 1MB (on systems with 4k pages; but make it depend on the page size because systems with larger base pages might cap stack allocations in the PAGE_SIZE units) which should cover larger alloca() and VLA stack allocations. It is obviously not a full fix because the problem is somehow inherent, but it should reduce attack space a lot. One could argue that the gap size should be configurable from userspace, but that can be done later when somebody finds that the new 1MB is wrong for some special case applications. For now, add a kernel command line option (stack_guard_gap) to specify the stack gap size (in page units). Implementation wise, first delete all the old code for stack guard page: because although we could get away with accounting one extra page in a stack vma, accounting a larger gap can break userspace - case in point, a program run with "ulimit -S -v 20000" failed when the 1MB gap was counted for RLIMIT_AS; similar problems could come with RLIMIT_MLOCK and strict non-overcommit mode. Instead of keeping gap inside the stack vma, maintain the stack guard gap as a gap between vmas: using vm_start_gap() in place of vm_start (or vm_end_gap() in place of vm_end if VM_GROWSUP) in just those few places which need to respect the gap - mainly arch_get_unmapped_area(), and and the vma tree's subtree_gap support for that. Original-patch-by: Oleg Nesterov <oleg@redhat.com> Original-patch-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Tested-by: Helge Deller <deller@gmx.de> # parisc Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> [wt: backport to 4.11: adjust context] [wt: backport to 4.9: adjust context ; kernel doc was not in admin-guide] [wt: backport to 4.4: adjust context ; drop ppc hugetlb_radix changes] Signed-off-by: Willy Tarreau <w@1wt.eu> [gkh: minor build fixes for 4.4] Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* sparc64: make string buffers large enoughDan Carpenter2017-06-171-2/+2
| | | | | | | | | | | | | | commit b5c3206190f1fddd100b3060eb15f0d775ffeab8 upstream. My static checker complains that if "lvl" is ULONG_MAX (this is 64 bit) then some of the strings will overflow. I don't know if that's possible but it seems simple enough to make the buffers slightly larger. Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net> Cc: Waldemar Brodkorb <wbx@openadk.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* arch/sparc: support NR_CPUS = 4096Jane Chu2017-06-142-6/+15
| | | | | | | | | | | | | | | | | | | | | | [ Upstream commit c79a13734d104b5b147d7cb0870276ccdd660dae ] Linux SPARC64 limits NR_CPUS to 4064 because init_cpu_send_mondo_info() only allocates a single page for NR_CPUS mondo entries. Thus we cannot use all 4096 CPUs on some SPARC platforms. To fix, allocate (2^order) pages where order is set according to the size of cpu_list for possible cpus. Since cpu_list_pa and cpu_mondo_block_pa are not used in asm code, there are no imm13 offsets from the base PA that will break because they can only reach one page. Orabug: 25505750 Signed-off-by: Jane Chu <jane.chu@oracle.com> Reviewed-by: Bob Picco <bob.picco@oracle.com> Reviewed-by: Atish Patra <atish.patra@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* sparc64: delete old wrap codePavel Tatashin2017-06-146-45/+1
| | | | | | | | | | | | | | [ Upstream commit 0197e41ce70511dc3b71f7fefa1a676e2b5cd60b ] The old method that is using xcall and softint to get new context id is deleted, as it is replaced by a method of using per_cpu_secondary_mm without xcall to perform the context wrap. Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com> Reviewed-by: Bob Picco <bob.picco@oracle.com> Reviewed-by: Steven Sistare <steven.sistare@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* sparc64: new context wrapPavel Tatashin2017-06-141-27/+54
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | [ Upstream commit a0582f26ec9dfd5360ea2f35dd9a1b026f8adda0 ] The current wrap implementation has a race issue: it is called outside of the ctx_alloc_lock, and also does not wait for all CPUs to complete the wrap. This means that a thread can get a new context with a new version and another thread might still be running with the same context. The problem is especially severe on CPUs with shared TLBs, like sun4v. I used the following test to very quickly reproduce the problem: - start over 8K processes (must be more than context IDs) - write and read values at a memory location in every process. Very quickly memory corruptions start happening, and what we read back does not equal what we wrote. Several approaches were explored before settling on this one: Approach 1: Move smp_new_mmu_context_version() inside ctx_alloc_lock, and wait for every process to complete the wrap. (Note: every CPU must WAIT before leaving smp_new_mmu_context_version_client() until every one arrives). This approach ends up with deadlocks, as some threads own locks which other threads are waiting for, and they never receive softint until these threads exit smp_new_mmu_context_version_client(). Since we do not allow the exit, deadlock happens. Approach 2: Handle wrap right during mondo interrupt. Use etrap/rtrap to enter into into C code, and issue new versions to every CPU. This approach adds some overhead to runtime: in switch_mm() we must add some checks to make sure that versions have not changed due to wrap while we were loading the new secondary context. (could be protected by PSTATE_IE but that degrades performance as on M7 and older CPUs as it takes 50 cycles for each access). Also, we still need a global per-cpu array of MMs to know where we need to load new contexts, otherwise we can change context to a thread that is going way (if we received mondo between switch_mm() and switch_to() time). Finally, there are some issues with window registers in rtrap() when context IDs are changed during CPU mondo time. The approach in this patch is the simplest and has almost no impact on runtime. We use the array with mm's where last secondary contexts were loaded onto CPUs and bump their versions to the new generation without changing context IDs. If a new process comes in to get a context ID, it will go through get_new_mmu_context() because of version mismatch. But the running processes do not need to be interrupted. And wrap is quicker as we do not need to xcall and wait for everyone to receive and complete wrap. Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com> Reviewed-by: Bob Picco <bob.picco@oracle.com> Reviewed-by: Steven Sistare <steven.sistare@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* sparc64: add per-cpu mm of secondary contextsPavel Tatashin2017-06-142-2/+4
| | | | | | | | | | | | | [ Upstream commit 7a5b4bbf49fe86ce77488a70c5dccfe2d50d7a2d ] The new wrap is going to use information from this array to figure out mm's that currently have valid secondary contexts setup. Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com> Reviewed-by: Bob Picco <bob.picco@oracle.com> Reviewed-by: Steven Sistare <steven.sistare@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* sparc64: redefine first versionPavel Tatashin2017-06-142-4/+4
| | | | | | | | | | | | | | [ Upstream commit c4415235b2be0cc791572e8e7f7466ab8f73a2bf ] CTX_FIRST_VERSION defines the first context version, but also it defines first context. This patch redefines it to only include the first context version. Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com> Reviewed-by: Bob Picco <bob.picco@oracle.com> Reviewed-by: Steven Sistare <steven.sistare@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* sparc64: combine activate_mm and switch_mmPavel Tatashin2017-06-141-20/+1
| | | | | | | | | | | | | | | [ Upstream commit 14d0334c6748ff2aedb3f2f7fdc51ee90a9b54e7 ] The only difference between these two functions is that in activate_mm we unconditionally flush context. However, there is no need to keep this difference after fixing a bug where cpumask was not reset on a wrap. So, in this patch we combine these. Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com> Reviewed-by: Bob Picco <bob.picco@oracle.com> Reviewed-by: Steven Sistare <steven.sistare@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* sparc64: reset mm cpumask after wrapPavel Tatashin2017-06-141-0/+2
| | | | | | | | | | | | | | | | | | | | | | [ Upstream commit 588974857359861891f478a070b1dc7ae04a3880 ] After a wrap (getting a new context version) a process must get a new context id, which means that we would need to flush the context id from the TLB before running for the first time with this ID on every CPU. But, we use mm_cpumask to determine if this process has been running on this CPU before, and this mask is not reset after a wrap. So, there are two possible fixes for this issue: 1. Clear mm cpumask whenever mm gets a new context id 2. Unconditionally flush context every time process is running on a CPU This patch implements the first solution Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com> Reviewed-by: Bob Picco <bob.picco@oracle.com> Reviewed-by: Steven Sistare <steven.sistare@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* sparc: Machine description indices can varyJames Clarke2017-06-142-4/+65
| | | | | | | | | | | | | | [ Upstream commit c982aa9c304bf0b9a7522fd118fed4afa5a0263c ] VIO devices were being looked up by their index in the machine description node block, but this often varies over time as devices are added and removed. Instead, store the ID and look up using the type, config handle and ID. Signed-off-by: James Clarke <jrtc27@jrtc27.com> Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=112541 Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* sparc64: mm: fix copy_tsb to correctly copy huge page TSBsMike Kravetz2017-06-142-6/+12
| | | | | | | | | | | | | | | | | | | | | | | | | [ Upstream commit 654f4807624a657f364417c2a7454f0df9961734 ] When a TSB grows beyond its current capacity, a new TSB is allocated and copy_tsb is called to copy entries from the old TSB to the new. A hash shift based on page size is used to calculate the index of an entry in the TSB. copy_tsb has hard coded PAGE_SHIFT in these calculations. However, for huge page TSBs the value REAL_HPAGE_SHIFT should be used. As a result, when copy_tsb is called for a huge page TSB the entries are placed at the incorrect index in the newly allocated TSB. When doing hardware table walk, the MMU does not match these entries and we end up in the TSB miss handling code. This code will then create and write an entry to the correct index in the TSB. We take a performance hit for the table walk miss and recreation of these entries. Pass a new parameter to copy_tsb that is the page size shift to be used when copying the TSB. Suggested-by: Anthony Yznaga <anthony.yznaga@oracle.com> Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* sparc: Fix -Wstringop-overflow warningOrlando Arias2017-06-073-4/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | [ Upstream commit deba804c90642c8ed0f15ac1083663976d578f54 ] Greetings, GCC 7 introduced the -Wstringop-overflow flag to detect buffer overflows in calls to string handling functions [1][2]. Due to the way ``empty_zero_page'' is declared in arch/sparc/include/setup.h, this causes a warning to trigger at compile time in the function mem_init(), which is subsequently converted to an error. The ensuing patch fixes this issue and aligns the declaration of empty_zero_page to that of other architectures. Thank you. Cheers, Orlando. [1] https://gcc.gnu.org/ml/gcc-patches/2016-10/msg02308.html [2] https://gcc.gnu.org/gcc-7/changes.html Signed-off-by: Orlando Arias <oarias@knights.ucf.edu> -------------------------------------------------------------------------------- Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* sparc64: Fix kernel panic due to erroneous #ifdef surrounding pmd_write()Tom Hromatka2017-05-021-7/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | [ Upstream commit 9ae34dbd8afd790cb5f52467e4f816434379eafa ] This commit moves sparc64's prototype of pmd_write() outside of the CONFIG_TRANSPARENT_HUGEPAGE ifdef. In 2013, commit a7b9403f0e6d ("sparc64: Encode huge PMDs using PTE encoding.") exposed a path where pmd_write() could be called without CONFIG_TRANSPARENT_HUGEPAGE defined. This can result in the panic below. The diff is awkward to read, but the changes are straightforward. pmd_write() was moved outside of #ifdef CONFIG_TRANSPARENT_HUGEPAGE. Also, __HAVE_ARCH_PMD_WRITE was defined. kernel BUG at include/asm-generic/pgtable.h:576! \|/ ____ \|/ "@'/ .. \`@" /_| \__/ |_\ \__U_/ oracle_8114_cdb(8114): Kernel bad sw trap 5 [#1] CPU: 120 PID: 8114 Comm: oracle_8114_cdb Not tainted 4.1.12-61.7.1.el6uek.rc1.sparc64 #1 task: fff8400700a24d60 ti: fff8400700bc4000 task.ti: fff8400700bc4000 TSTATE: 0000004411e01607 TPC: 00000000004609f8 TNPC: 00000000004609fc Y: 00000005 Not tainted TPC: <gup_huge_pmd+0x198/0x1e0> g0: 000000000001c000 g1: 0000000000ef3954 g2: 0000000000000000 g3: 0000000000000001 g4: fff8400700a24d60 g5: fff8001fa5c10000 g6: fff8400700bc4000 g7: 0000000000000720 o0: 0000000000bc5058 o1: 0000000000000240 o2: 0000000000006000 o3: 0000000000001c00 o4: 0000000000000000 o5: 0000048000080000 sp: fff8400700bc6ab1 ret_pc: 00000000004609f0 RPC: <gup_huge_pmd+0x190/0x1e0> l0: fff8400700bc74fc l1: 0000000000020000 l2: 0000000000002000 l3: 0000000000000000 l4: fff8001f93250950 l5: 000000000113f800 l6: 0000000000000004 l7: 0000000000000000 i0: fff8400700ca46a0 i1: bd0000085e800453 i2: 000000026a0c4000 i3: 000000026a0c6000 i4: 0000000000000001 i5: fff800070c958de8 i6: fff8400700bc6b61 i7: 0000000000460dd0 I7: <gup_pud_range+0x170/0x1a0> Call Trace: [0000000000460dd0] gup_pud_range+0x170/0x1a0 [0000000000460e84] get_user_pages_fast+0x84/0x120 [00000000006f5a18] iov_iter_get_pages+0x98/0x240 [00000000005fa744] do_direct_IO+0xf64/0x1e00 [00000000005fbbc0] __blockdev_direct_IO+0x360/0x15a0 [00000000101f74fc] ext4_ind_direct_IO+0xdc/0x400 [ext4] [00000000101af690] ext4_ext_direct_IO+0x1d0/0x2c0 [ext4] [00000000101af86c] ext4_direct_IO+0xec/0x220 [ext4] [0000000000553bd4] generic_file_read_iter+0x114/0x140 [00000000005bdc2c] __vfs_read+0xac/0x100 [00000000005bf254] vfs_read+0x54/0x100 [00000000005bf368] SyS_pread64+0x68/0x80 Signed-off-by: Tom Hromatka <tom.hromatka@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* sparc64: kern_addr_valid regressionbob picco2017-05-021-1/+1
| | | | | | | | | | | | | | | | | | [ Upstream commit adfae8a5d833fa2b46577a8081f350e408851f5b ] I encountered this bug when using /proc/kcore to examine the kernel. Plus a coworker inquired about debugging tools. We computed pa but did not use it during the maximum physical address bits test. Instead we used the identity mapped virtual address which will always fail this test. I believe the defect came in here: [bpicco@zareason linus.git]$ git describe --contains bb4e6e85daa52 v3.18-rc1~87^2~4 . Signed-off-by: Bob Picco <bob.picco@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* sparc/ptrace: Preserve previous registers for short regset writeDave Martin2017-03-311-1/+1
| | | | | | | | | | | | | commit d3805c546b275c8cc7d40f759d029ae92c7175f2 upstream. Ensure that if userspace supplies insufficient data to PTRACE_SETREGSET to fill all the registers, the thread's old registers are preserved. Signed-off-by: Dave Martin <Dave.Martin@arm.com> Acked-by: David S. Miller <davem@davemloft.net> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* sparc64: fix compile warning section mismatch in find_node()Thomas Tai2016-12-101-3/+3
| | | | | | | | | | | | | | [ Upstream commit 87a349f9cc0908bc0cfac0c9ece3179f650ae95a ] A compile warning is introduced by a commit to fix the find_node(). This patch fix the compile warning by moving find_node() into __init section. Because find_node() is only used by memblock_nid_range() which is only used by a __init add_node_ranges(). find_node() and memblock_nid_range() should also be inside __init section. Signed-off-by: Thomas Tai <thomas.tai@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* sparc64: Fix find_node warning if numa node cannot be foundThomas Tai2016-12-101-4/+61
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | [ Upstream commit 74a5ed5c4f692df2ff0a2313ea71e81243525519 ] When booting up LDOM, find_node() warns that a physical address doesn't match a NUMA node. WARNING: CPU: 0 PID: 0 at arch/sparc/mm/init_64.c:835 find_node+0xf4/0x120 find_node: A physical address doesn't match a NUMA node rule. Some physical memory will be owned by node 0.Modules linked in: CPU: 0 PID: 0 Comm: swapper Not tainted 4.9.0-rc3 #4 Call Trace: [0000000000468ba0] __warn+0xc0/0xe0 [0000000000468c74] warn_slowpath_fmt+0x34/0x60 [00000000004592f4] find_node+0xf4/0x120 [0000000000dd0774] add_node_ranges+0x38/0xe4 [0000000000dd0b1c] numa_parse_mdesc+0x268/0x2e4 [0000000000dd0e9c] bootmem_init+0xb8/0x160 [0000000000dd174c] paging_init+0x808/0x8fc [0000000000dcb0d0] setup_arch+0x2c8/0x2f0 [0000000000dc68a0] start_kernel+0x48/0x424 [0000000000dcb374] start_early_boot+0x27c/0x28c [0000000000a32c08] tlb_fixup_done+0x4c/0x64 [0000000000027f08] 0x27f08 It is because linux use an internal structure node_masks[] to keep the best memory latency node only. However, LDOM mdesc can contain single latency-group with multiple memory latency nodes. If the address doesn't match the best latency node within node_masks[], it should check for an alternative via mdesc. The warning message should only be printed if the address doesn't match any node_masks[] nor within mdesc. To minimize the impact of searching mdesc every time, the last matched mask and index is stored in a variable. Signed-off-by: Thomas Tai <thomas.tai@oracle.com> Reviewed-by: Chris Hyser <chris.hyser@oracle.com> Reviewed-by: Liam Merwick <liam.merwick@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* sparc32: Fix inverted invalid_frame_pointer checks on sigreturnsAndreas Larsson2016-12-101-2/+2
| | | | | | | | [ Upstream commit 07b5ab3f71d318e52c18cc3b73c1d44c908aacfa ] Signed-off-by: Andreas Larsson <andreas@gaisler.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* sparc64: Delete now unused user copy fixup functions.David S. Miller2016-11-213-103/+4
| | | | | | | | | | | [ Upstream commit 0fd0ff01d4c3c01e7fe69b762ee1a13236639acc ] Now that all of the user copy routines are converted to return accurate residual lengths when an exception occurs, we no longer need the broken fixup routines. Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* sparc64: Delete now unused user copy assembler helpers.David S. Miller2016-11-211-30/+0
| | | | | | | | | [ Upstream commit 614da3d9685b67917cab48c8452fd8bf93de0867 ] All of __ret{,l}_mone{_asi,_fp,_asi_fpu} are now unused. Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* sparc64: Convert U3copy_{from,to}_user to accurate exception reporting.David S. Miller2016-11-213-81/+162
| | | | | | | | | | [ Upstream commit ee841d0aff649164080e445e84885015958d8ff4 ] Report the exact number of bytes which have not been successfully copied when an exception occurs, using the running remaining length. Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* sparc64: Convert NG2copy_{from,to}_user to accurate exception reporting.David S. Miller2016-11-213-91/+153
| | | | | | | | | | [ Upstream commit e93704e4464fdc191f73fce35129c18de2ebf95d ] Report the exact number of bytes which have not been successfully copied when an exception occurs, using the running remaining length. Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* sparc64: Convert NGcopy_{from,to}_user to accurate exception reporting.David S. Miller2016-11-213-79/+162
| | | | | | | | | | [ Upstream commit 7ae3aaf53f1695877ccd5ebbc49ea65991e41f1e ] Report the exact number of bytes which have not been successfully copied when an exception occurs, using the running remaining length. Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* sparc64: Convert NG4copy_{from,to}_user to accurate exception reporting.David S. Miller2016-11-213-79/+231
| | | | | | | | | | [ Upstream commit 95707704800988093a9b9a27e0f2f67f5b4bf2fa ] Report the exact number of bytes which have not been successfully copied when an exception occurs, using the running remaining length. Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* sparc64: Convert U1copy_{from,to}_user to accurate exception reporting.David S. Miller2016-11-213-124/+237
| | | | | | | | | | [ Upstream commit cb736fdbb208eb3420f1a2eb2bfc024a6e9dcada ] Report the exact number of bytes which have not been successfully copied when an exception occurs, using the running remaining length. Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* sparc64: Convert GENcopy_{from,to}_user to accurate exception reporting.David S. Miller2016-11-213-18/+38
| | | | | | | | | | [ Upstream commit d0796b555ba60c22eb41ae39a8362156cb08eee9 ] Report the exact number of bytes which have not been successfully copied when an exception occurs, using the running remaining length. Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* sparc64: Convert copy_in_user to accurate exception reporting.David S. Miller2016-11-211-10/+25
| | | | | | | | | | [ Upstream commit 0096ac9f47b1a2e851b3165d44065d18e5f13d58 ] Report the exact number of bytes which have not been successfully copied when an exception occurs, using the running remaining length. Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* sparc64: Prepare to move to more saner user copy exception handling.David S. Miller2016-11-2115-39/+47
| | | | | | | | | | | | | | | | | | | | | | | [ Upstream commit 83a17d2661674d8c198adc0e183418f72aabab79 ] The fixup helper function mechanism for handling user copy fault handling is not %100 accurrate, and can never be made so. We are going to transition the code to return the running return return length, which is always kept track in one or more registers of each of these routines. In order to convert them one by one, we have to allow the existing behavior to continue functioning. Therefore make all the copy code that wants the fixup helper to be used return negative one. After all of the user copy routines have been converted, this logic and the fixup helpers themselves can be removed completely. Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* sparc64: Delete __ret_efault.David S. Miller2016-11-213-48/+1
| | | | | | | | | [ Upstream commit aa95ce361ed95c72ac42dcb315166bce5cf1a014 ] It is completely unused. Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* sparc64: Handle extremely large kernel TLB range flushes more gracefully.David S. Miller2016-11-211-55/+228
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | [ Upstream commit a74ad5e660a9ee1d071665e7e8ad822784a2dc7f ] When the vmalloc area gets fragmented, and because the firmware mapping area sits between where modules live and the vmalloc area, we can sometimes receive requests for enormous kernel TLB range flushes. When this happens the cpu just spins flushing billions of pages and this triggers the NMI watchdog and other problems. We took care of this on the TSB side by doing a linear scan of the table once we pass a certain threshold. Do something similar for the TLB flush, however we are limited by the TLB flush facilities provided by the different chip variants. First of all we use an (mostly arbitrary) cut-off of 256K which is about 32 pages. This can be tuned in the future. The huge range code path for each chip works as follows: 1) On spitfire we flush all non-locked TLB entries using diagnostic acceses. 2) On cheetah we use the "flush all" TLB flush. 3) On sun4v/hypervisor we do a TLB context flush on context 0, which unlike previous chips does not remove "permanent" or locked entries. We could probably do something better on spitfire, such as limiting the flush to kernel TLB entries or even doing range comparisons. However that probably isn't worth it since those chips are old and the TLB only had 64 entries. Reported-by: James Clarke <jrtc27@jrtc27.com> Tested-by: James Clarke <jrtc27@jrtc27.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* sparc64: Fix illegal relative branches in hypervisor patched TLB cross-call ↵David S. Miller2016-11-211-12/+30
| | | | | | | | | | | | code. [ Upstream commit a236441bb69723032db94128761a469030c3fe6d ] Just like the non-cross-call TLB flush handlers, the cross-call ones need to avoid doing PC-relative branches outside of their code blocks. Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* sparc64: Fix instruction count in comment for __hypervisor_flush_tlb_pending.David S. Miller2016-11-211-1/+1
| | | | | | | | | [ Upstream commit 830cda3f9855ff092b0e9610346d110846fc497c ] Noticed by James Clarke. Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* sparc64: Fix illegal relative branches in hypervisor patched TLB code.David S. Miller2016-11-211-14/+51
| | | | | | | | | | | | | | | | [ Upstream commit b429ae4d5b565a71dfffd759dfcd4f6c093ced94 ] When we copy code over to patch another piece of code, we can only use PC-relative branches that target code within that piece of code. Such PC-relative branches cannot be made to external symbols because the patch moves the location of the code and thus modifies the relative address of external symbols. Use an absolute jmpl to fix this problem. Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* sparc64: Handle extremely large kernel TSB range flushes sanely.David S. Miller2016-11-211-0/+17
| | | | | | | | | | | | | [ Upstream commit 849c498766060a16aad5b0e0d03206726e7d2fa4 ] If the number of pages we are flushing is more than twice the number of entries in the TSB, just scan the TSB table for matches rather than probing each and every page in the range. Based upon a patch and report by James Clarke. Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* sparc: Handle negative offsets in arch_jump_label_transformJames Clarke2016-11-211-6/+17
| | | | | | | | | | | [ Upstream commit 9d9fa230206a3aea6ef451646c97122f04777983 ] Additionally, if the offset will overflow the immediate for a ba,pt instruction, fall back on a standard ba to get an extra 3 bits. Signed-off-by: James Clarke <jrtc27@jrtc27.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* sparc64 mm: Fix base TSB sizing when hugetlb pages are usedMike Kravetz2016-11-216-15/+19
| | | | | | | | | | | | | | | | | | | | | | | | | | [ Upstream commit af1b1a9b36b8f9d583d4b4f90dd8946ed0cd4bd0 ] do_sparc64_fault() calculates both the base and huge page RSS sizes and uses this information in calls to tsb_grow(). The calculation for base page TSB size is not correct if the task uses hugetlb pages. hugetlb pages are not accounted for in RSS, therefore the call to get_mm_rss(mm) does not include hugetlb pages. However, the number of pages based on huge_pte_count (which does include hugetlb pages) is subtracted from this value. This will result in an artificially small and often negative RSS calculation. The base TSB size is then often set to max_tsb_size as the passed RSS is unsigned, so a negative value looks really big. THP pages are also accounted for in huge_pte_count, and THP pages are accounted for in RSS so the calculation in do_sparc64_fault() is correct if a task only uses THP pages. A single huge_pte_count is not sufficient for TSB sizing if both hugetlb and THP pages can be used. Instead of a single counter, use two: one for hugetlb and one for THP. Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* sparc: Don't leak context bits into thread->fault_addressDavid S. Miller2016-11-213-4/+24
| | | | | | | | | | | | | | | | | | | [ Upstream commit 4f6deb8cbab532a8d7250bc09234c1795ecb5e2c ] On pre-Niagara systems, we fetch the fault address on data TLB exceptions from the TLB_TAG_ACCESS register. But this register also contains the context ID assosciated with the fault in the low 13 bits of the register value. This propagates into current_thread_info()->fault_address and can cause trouble later on. So clear the low 13-bits out of the TLB_TAG_ACCESS value in the cases where it matters. Reported-by: Mikulas Patocka <mpatocka@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* sparc32: fix copy_from_user()Al Viro2016-09-241-1/+3
| | | | | | | | | commit 917400cecb4b52b5cde5417348322bb9c8272fa6 upstream. Acked-by: David S. Miller <davem@davemloft.net> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* sparc64: Fix return from trap window fill crashes.David S. Miller2016-06-245-52/+116
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | [ Upstream commit 7cafc0b8bf130f038b0ec2dcdd6a9de6dc59b65a ] We must handle data access exception as well as memory address unaligned exceptions from return from trap window fill faults, not just normal TLB misses. Otherwise we can get an OOPS that looks like this: ld-linux.so.2(36808): Kernel bad sw trap 5 [#1] CPU: 1 PID: 36808 Comm: ld-linux.so.2 Not tainted 4.6.0 #34 task: fff8000303be5c60 ti: fff8000301344000 task.ti: fff8000301344000 TSTATE: 0000004410001601 TPC: 0000000000a1a784 TNPC: 0000000000a1a788 Y: 00000002 Not tainted TPC: <do_sparc64_fault+0x5c4/0x700> g0: fff8000024fc8248 g1: 0000000000db04dc g2: 0000000000000000 g3: 0000000000000001 g4: fff8000303be5c60 g5: fff800030e672000 g6: fff8000301344000 g7: 0000000000000001 o0: 0000000000b95ee8 o1: 000000000000012b o2: 0000000000000000 o3: 0000000200b9b358 o4: 0000000000000000 o5: fff8000301344040 sp: fff80003013475c1 ret_pc: 0000000000a1a77c RPC: <do_sparc64_fault+0x5bc/0x700> l0: 00000000000007ff l1: 0000000000000000 l2: 000000000000005f l3: 0000000000000000 l4: fff8000301347e98 l5: fff8000024ff3060 l6: 0000000000000000 l7: 0000000000000000 i0: fff8000301347f60 i1: 0000000000102400 i2: 0000000000000000 i3: 0000000000000000 i4: 0000000000000000 i5: 0000000000000000 i6: fff80003013476a1 i7: 0000000000404d4c I7: <user_rtt_fill_fixup+0x6c/0x7c> Call Trace: [0000000000404d4c] user_rtt_fill_fixup+0x6c/0x7c The window trap handlers are slightly clever, the trap table entries for them are composed of two pieces of code. First comes the code that actually performs the window fill or spill trap handling, and then there are three instructions at the end which are for exception processing. The userland register window fill handler is: add %sp, STACK_BIAS + 0x00, %g1; \ ldxa [%g1 + %g0] ASI, %l0; \ mov 0x08, %g2; \ mov 0x10, %g3; \ ldxa [%g1 + %g2] ASI, %l1; \ mov 0x18, %g5; \ ldxa [%g1 + %g3] ASI, %l2; \ ldxa [%g1 + %g5] ASI, %l3; \ add %g1, 0x20, %g1; \ ldxa [%g1 + %g0] ASI, %l4; \ ldxa [%g1 + %g2] ASI, %l5; \ ldxa [%g1 + %g3] ASI, %l6; \ ldxa [%g1 + %g5] ASI, %l7; \ add %g1, 0x20, %g1; \ ldxa [%g1 + %g0] ASI, %i0; \ ldxa [%g1 + %g2] ASI, %i1; \ ldxa [%g1 + %g3] ASI, %i2; \ ldxa [%g1 + %g5] ASI, %i3; \ add %g1, 0x20, %g1; \ ldxa [%g1 + %g0] ASI, %i4; \ ldxa [%g1 + %g2] ASI, %i5; \ ldxa [%g1 + %g3] ASI, %i6; \ ldxa [%g1 + %g5] ASI, %i7; \ restored; \ retry; nop; nop; nop; nop; \ b,a,pt %xcc, fill_fixup_dax; \ b,a,pt %xcc, fill_fixup_mna; \ b,a,pt %xcc, fill_fixup; And the way this works is that if any of those memory accesses generate an exception, the exception handler can revector to one of those final three branch instructions depending upon which kind of exception the memory access took. In this way, the fault handler doesn't have to know if it was a spill or a fill that it's handling the fault for. It just always branches to the last instruction in the parent trap's handler. For example, for a regular fault, the code goes: winfix_trampoline: rdpr %tpc, %g3 or %g3, 0x7c, %g3 wrpr %g3, %tnpc done All window trap handlers are 0x80 aligned, so if we "or" 0x7c into the trap time program counter, we'll get that final instruction in the trap handler. On return from trap, we have to pull the register window in but we do this by hand instead of just executing a "restore" instruction for several reasons. The largest being that from Niagara and onward we simply don't have enough levels in the trap stack to fully resolve all possible exception cases of a window fault when we are already at trap level 1 (which we enter to get ready to return from the original trap). This is executed inline via the FILL_*_RTRAP handlers. rtrap_64.S's code branches directly to these to do the window fill by hand if necessary. Now if you look at them, we'll see at the end: ba,a,pt %xcc, user_rtt_fill_fixup; ba,a,pt %xcc, user_rtt_fill_fixup; ba,a,pt %xcc, user_rtt_fill_fixup; And oops, all three cases are handled like a fault. This doesn't work because each of these trap types (data access exception, memory address unaligned, and faults) store their auxiliary info in different registers to pass on to the C handler which does the real work. So in the case where the stack was unaligned, the unaligned trap handler sets up the arg registers one way, and then we branched to the fault handler which expects them setup another way. So the FAULT_TYPE_* value ends up basically being garbage, and randomly would generate the backtrace seen above. Reported-by: Nick Alcock <nix@esperi.org.uk> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* sparc: Harden signal return frame checks.David S. Miller2016-06-245-45/+92
| | | | | | | | | | | | | [ Upstream commit d11c2a0de2824395656cf8ed15811580c9dd38aa ] All signal frames must be at least 16-byte aligned, because that is the alignment we explicitly create when we build signal return stack frames. All stack pointers must be at least 8-byte aligned. Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* sparc64: Take ctx_alloc_lock properly in hugetlb_setup().David S. Miller2016-06-241-3/+7
| | | | | | | | | | | | | | | | | [ Upstream commit 9ea46abe22550e3366ff7cee2f8391b35b12f730 ] On cheetahplus chips we take the ctx_alloc_lock in order to modify the TLB lookup parameters for the indexed TLBs, which are stored in the context register. This is called with interrupts disabled, however ctx_alloc_lock is an IRQ safe lock, therefore we must take acquire/release it properly with spin_{lock,unlock}_irq(). Reported-by: Meelis Roos <mroos@linux.ee> Tested-by: Meelis Roos <mroos@linux.ee> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* sparc64: Reduce TLB flushes during hugepte changesNitin Gupta2016-06-246-51/+97
| | | | | | | | | | | | | | | | | | [ Upstream commit 24e49ee3d76b70853a96520e46b8837e5eae65b2 ] During hugepage map/unmap, TSB and TLB flushes are currently issued at every PAGE_SIZE'd boundary which is unnecessary. We now issue the flush at REAL_HPAGE_SIZE boundaries only. Without this patch workloads which unmap a large hugepage backed VMA region get CPU lockups due to excessive TLB flush calls. Orabug: 22365539, 22643230, 22995196 Signed-off-by: Nitin Gupta <nitin.m.gupta@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* sparc/PCI: Fix for panic while enabling SR-IOVBabu Moger2016-06-241-0/+17
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | [ Upstream commit d0c31e02005764dae0aab130a57e9794d06b824d ] We noticed this panic while enabling SR-IOV in sparc. mlx4_core: Mellanox ConnectX core driver v2.2-1 (Jan 1 2015) mlx4_core: Initializing 0007:01:00.0 mlx4_core 0007:01:00.0: Enabling SR-IOV with 5 VFs mlx4_core: Initializing 0007:01:00.1 Unable to handle kernel NULL pointer dereference insmod(10010): Oops [#1] CPU: 391 PID: 10010 Comm: insmod Not tainted 4.1.12-32.el6uek.kdump2.sparc64 #1 TPC: <dma_supported+0x20/0x80> I7: <__mlx4_init_one+0x324/0x500 [mlx4_core]> Call Trace: [00000000104c5ea4] __mlx4_init_one+0x324/0x500 [mlx4_core] [00000000104c613c] mlx4_init_one+0xbc/0x120 [mlx4_core] [0000000000725f14] local_pci_probe+0x34/0xa0 [0000000000726028] pci_call_probe+0xa8/0xe0 [0000000000726310] pci_device_probe+0x50/0x80 [000000000079f700] really_probe+0x140/0x420 [000000000079fa24] driver_probe_device+0x44/0xa0 [000000000079fb5c] __device_attach+0x3c/0x60 [000000000079d85c] bus_for_each_drv+0x5c/0xa0 [000000000079f588] device_attach+0x88/0xc0 [000000000071acd0] pci_bus_add_device+0x30/0x80 [0000000000736090] virtfn_add.clone.1+0x210/0x360 [00000000007364a4] sriov_enable+0x2c4/0x520 [000000000073672c] pci_enable_sriov+0x2c/0x40 [00000000104c2d58] mlx4_enable_sriov+0xf8/0x180 [mlx4_core] [00000000104c49ac] mlx4_load_one+0x42c/0xd40 [mlx4_core] Disabling lock debugging due to kernel taint Caller[00000000104c5ea4]: __mlx4_init_one+0x324/0x500 [mlx4_core] Caller[00000000104c613c]: mlx4_init_one+0xbc/0x120 [mlx4_core] Caller[0000000000725f14]: local_pci_probe+0x34/0xa0 Caller[0000000000726028]: pci_call_probe+0xa8/0xe0 Caller[0000000000726310]: pci_device_probe+0x50/0x80 Caller[000000000079f700]: really_probe+0x140/0x420 Caller[000000000079fa24]: driver_probe_device+0x44/0xa0 Caller[000000000079fb5c]: __device_attach+0x3c/0x60 Caller[000000000079d85c]: bus_for_each_drv+0x5c/0xa0 Caller[000000000079f588]: device_attach+0x88/0xc0 Caller[000000000071acd0]: pci_bus_add_device+0x30/0x80 Caller[0000000000736090]: virtfn_add.clone.1+0x210/0x360 Caller[00000000007364a4]: sriov_enable+0x2c4/0x520 Caller[000000000073672c]: pci_enable_sriov+0x2c/0x40 Caller[00000000104c2d58]: mlx4_enable_sriov+0xf8/0x180 [mlx4_core] Caller[00000000104c49ac]: mlx4_load_one+0x42c/0xd40 [mlx4_core] Caller[00000000104c5f90]: __mlx4_init_one+0x410/0x500 [mlx4_core] Caller[00000000104c613c]: mlx4_init_one+0xbc/0x120 [mlx4_core] Caller[0000000000725f14]: local_pci_probe+0x34/0xa0 Caller[0000000000726028]: pci_call_probe+0xa8/0xe0 Caller[0000000000726310]: pci_device_probe+0x50/0x80 Caller[000000000079f700]: really_probe+0x140/0x420 Caller[000000000079fa24]: driver_probe_device+0x44/0xa0 Caller[000000000079fb08]: __driver_attach+0x88/0xa0 Caller[000000000079d90c]: bus_for_each_dev+0x6c/0xa0 Caller[000000000079f29c]: driver_attach+0x1c/0x40 Caller[000000000079e35c]: bus_add_driver+0x17c/0x220 Caller[00000000007a02d4]: driver_register+0x74/0x120 Caller[00000000007263fc]: __pci_register_driver+0x3c/0x60 Caller[00000000104f62bc]: mlx4_init+0x60/0xcc [mlx4_core] Kernel panic - not syncing: Fatal exception Press Stop-A (L1-A) to return to the boot prom ---[ end Kernel panic - not syncing: Fatal exception Details: Here is the call sequence virtfn_add->__mlx4_init_one->dma_set_mask->dma_supported The panic happened at line 760(file arch/sparc/kernel/iommu.c) 758 int dma_supported(struct device *dev, u64 device_mask) 759 { 760 struct iommu *iommu = dev->archdata.iommu; 761 u64 dma_addr_mask = iommu->dma_addr_mask; 762 763 if (device_mask >= (1UL << 32UL)) 764 return 0; 765 766 if ((device_mask & dma_addr_mask) == dma_addr_mask) 767 return 1; 768 769 #ifdef CONFIG_PCI 770 if (dev_is_pci(dev)) 771 return pci64_dma_supported(to_pci_dev(dev), device_mask); 772 #endif 773 774 return 0; 775 } 776 EXPORT_SYMBOL(dma_supported); Same panic happened with Intel ixgbe driver also. SR-IOV code looks for arch specific data while enabling VFs. When VF device is added, driver probe function makes set of calls to initialize the pci device. Because the VF device is added different way than the normal PF device(which happens via of_create_pci_dev for sparc), some of the arch specific initialization does not happen for VF device. That causes panic when archdata is accessed. To fix this, I have used already defined weak function pcibios_setup_device to copy archdata from PF to VF. Also verified the fix. Signed-off-by: Babu Moger <babu.moger@oracle.com> Signed-off-by: Sowmini Varadhan <sowmini.varadhan@oracle.com> Reviewed-by: Ethan Zhao <ethan.zhao@oracle.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* sparc64: Fix sparc64_set_context stack handling.David S. Miller2016-06-241-1/+1
| | | | | | | | | | | [ Upstream commit 397d1533b6cce0ccb5379542e2e6d079f6936c46 ] Like a signal return, we should use synchronize_user_stack() rather than flush_user_windows(). Reported-by: Ilya Malakhov <ilmalakhovthefirst@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* sparc64: Fix numa node distance initializationNitin Gupta2016-06-241-7/+8
| | | | | | | | | | | | | | | | | [ Upstream commit 36beca6571c941b28b0798667608239731f9bc3a ] Orabug: 22495713 Currently, NUMA node distance matrix is initialized only when a machine descriptor (MD) exists. However, sun4u machines (e.g. Sun Blade 2500) do not have an MD and thus distance values were left uninitialized. The initialization is now moved such that it happens on both sun4u and sun4v. Signed-off-by: Nitin Gupta <nitin.m.gupta@oracle.com> Tested-by: Mikael Pettersson <mikpelinux@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* sparc64: Fix bootup regressions on some Kconfig combinations.David S. Miller2016-06-248-55/+34
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | [ Upstream commit 49fa5230462f9f2c4e97c81356473a6bdf06c422 ] The system call tracing bug fix mentioned in the Fixes tag below increased the amount of assembler code in the sequence of assembler files included by head_64.S This caused to total set of code to exceed 0x4000 bytes in size, which overflows the expression in head_64.S that works to place swapper_tsb at address 0x408000. When this is violated, the TSB is not properly aligned, and also the trap table is not aligned properly either. All of this together results in failed boots. So, do two things: 1) Simplify some code by using ba,a instead of ba/nop to get those bytes back. 2) Add a linker script assertion to make sure that if this happens again the build will fail. Fixes: 1a40b95374f6 ("sparc: Fix system call tracing register handling.") Reported-by: Meelis Roos <mroos@linux.ee> Reported-by: Joerg Abraham <joerg.abraham@nokia.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>