summaryrefslogtreecommitdiffstats
path: root/arch/x86/include/asm/shared
Commit message (Collapse)AuthorAgeFilesLines
* Merge tag 'x86_tdx_for_v5.19_rc1' of ↵Linus Torvalds2022-05-232-0/+74
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull Intel TDX support from Borislav Petkov: "Intel Trust Domain Extensions (TDX) support. This is the Intel version of a confidential computing solution called Trust Domain Extensions (TDX). This series adds support to run the kernel as part of a TDX guest. It provides similar guest protections to AMD's SEV-SNP like guest memory and register state encryption, memory integrity protection and a lot more. Design-wise, it differs from AMD's solution considerably: it uses a software module which runs in a special CPU mode called (Secure Arbitration Mode) SEAM. As the name suggests, this module serves as sort of an arbiter which the confidential guest calls for services it needs during its lifetime. Just like AMD's SNP set, this series reworks and streamlines certain parts of x86 arch code so that this feature can be properly accomodated" * tag 'x86_tdx_for_v5.19_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (34 commits) x86/tdx: Fix RETs in TDX asm x86/tdx: Annotate a noreturn function x86/mm: Fix spacing within memory encryption features message x86/kaslr: Fix build warning in KASLR code in boot stub Documentation/x86: Document TDX kernel architecture ACPICA: Avoid cache flush inside virtual machines x86/tdx/ioapic: Add shared bit for IOAPIC base address x86/mm: Make DMA memory shared for TD guest x86/mm/cpa: Add support for TDX shared memory x86/tdx: Make pages shared in ioremap() x86/topology: Disable CPU online/offline control for TDX guests x86/boot: Avoid #VE during boot for TDX platforms x86/boot: Set CR0.NE early and keep it set during the boot x86/acpi/x86/boot: Add multiprocessor wake-up support x86/boot: Add a trampoline for booting APs via firmware handoff x86/tdx: Wire up KVM hypercalls x86/tdx: Port I/O: Add early boot support x86/tdx: Port I/O: Add runtime hypercalls x86/boot: Port I/O: Add decompression-time support for TDX x86/boot: Port I/O: Allow to hook up alternative helpers ...
| * x86/boot: Port I/O: Add decompression-time support for TDXKirill A. Shutemov2022-04-071-0/+32
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Port I/O instructions trigger #VE in the TDX environment. In response to the exception, kernel emulates these instructions using hypercalls. But during early boot, on the decompression stage, it is cumbersome to deal with #VE. It is cleaner to go to hypercalls directly, bypassing #VE handling. Hook up TDX-specific port I/O helpers if booting in TDX environment. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lkml.kernel.org/r/20220405232939.73860-17-kirill.shutemov@linux.intel.com
| * x86: Consolidate port I/O helpersKirill A. Shutemov2022-04-071-0/+34
| | | | | | | | | | | | | | | | | | | | | | | | | | There are two implementations of port I/O helpers: one in the kernel and one in the boot stub. Move the helpers required for both to <asm/shared/io.h> and use the one implementation everywhere. Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20220405232939.73860-15-kirill.shutemov@linux.intel.com
| * x86/tdx: Detect TDX at early kernel decompression timeKuppuswamy Sathyanarayanan2022-04-071-0/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The early decompression code does port I/O for its console output. But, handling the decompression-time port I/O demands a different approach from normal runtime because the IDT required to support #VE based port I/O emulation is not yet set up. Paravirtualizing I/O calls during the decompression step is acceptable because the decompression code doesn't have a lot of call sites to IO instruction. To support port I/O in decompression code, TDX must be detected before the decompression code might do port I/O. Detect whether the kernel runs in a TDX guest. Add an early_is_tdx_guest() interface to query the cached TDX guest status in the decompression code. TDX is detected with CPUID. Make cpuid_count() accessible outside boot/cpuflags.c. TDX detection in the main kernel is very similar. Move common bits into <asm/shared/tdx.h>. The actual port I/O paravirtualization will come later in the series. Signed-off-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Tony Luck <tony.luck@intel.com> Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lkml.kernel.org/r/20220405232939.73860-13-kirill.shutemov@linux.intel.com
* x86/boot: Introduce helpers for MSR reads/writesMichael Roth2022-04-061-0/+15
The current set of helpers used throughout the run-time kernel have dependencies on code/facilities outside of the boot kernel, so there are a number of call-sites throughout the boot kernel where inline assembly is used instead. More will be added with subsequent patches that add support for SEV-SNP, so take the opportunity to provide a basic set of helpers that can be used by the boot kernel to reduce reliance on inline assembly. Use boot_* prefix so that it's clear these are helpers specific to the boot kernel to avoid any confusion with the various other MSR read/write helpers. [ bp: Disambiguate parameter names and trim comment. ] Suggested-by: Borislav Petkov <bp@alien8.de> Signed-off-by: Michael Roth <michael.roth@amd.com> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lore.kernel.org/r/20220307213356.2797205-6-brijesh.singh@amd.com