summaryrefslogtreecommitdiffstats
path: root/arch/x86/kernel/cpu
Commit message (Collapse)AuthorAgeFilesLines
* x86/speculation/mds: Add 'mitigations=' support for MDSJosh Poimboeuf2019-05-141-2/+3
| | | | | | | | | | commit 5c14068f87d04adc73ba3f41c2a303d3c3d1fa12 upstream Add MDS to the new 'mitigations=' cmdline option. Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/speculation: Support 'mitigations=' cmdline optionJosh Poimboeuf2019-05-141-2/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit d68be4c4d31295ff6ae34a8ddfaa4c1a8ff42812 upstream Configure x86 runtime CPU speculation bug mitigations in accordance with the 'mitigations=' cmdline option. This affects Meltdown, Spectre v2, Speculative Store Bypass, and L1TF. The default behavior is unchanged. Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Jiri Kosina <jkosina@suse.cz> (on x86) Reviewed-by: Jiri Kosina <jkosina@suse.cz> Cc: Borislav Petkov <bp@alien8.de> Cc: "H . Peter Anvin" <hpa@zytor.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Jiri Kosina <jikos@kernel.org> Cc: Waiman Long <longman@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Jon Masters <jcm@redhat.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: linuxppc-dev@lists.ozlabs.org Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: linux-s390@vger.kernel.org Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-arm-kernel@lists.infradead.org Cc: linux-arch@vger.kernel.org Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Tyler Hicks <tyhicks@canonical.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Steven Price <steven.price@arm.com> Cc: Phil Auld <pauld@redhat.com> Link: https://lkml.kernel.org/r/6616d0ae169308516cfdf5216bedd169f8a8291b.1555085500.git.jpoimboe@redhat.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/speculation/mds: Print SMT vulnerable on MSBDS with mitigations offKonrad Rzeszutek Wilk2019-05-141-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | commit e2c3c94788b08891dcf3dbe608f9880523ecd71b upstream This code is only for CPUs which are affected by MSBDS, but are *not* affected by the other two MDS issues. For such CPUs, enabling the mds_idle_clear mitigation is enough to mitigate SMT. However if user boots with 'mds=off' and still has SMT enabled, we should not report that SMT is mitigated: $cat /sys//devices/system/cpu/vulnerabilities/mds Vulnerable; SMT mitigated But rather: Vulnerable; SMT vulnerable Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Tyler Hicks <tyhicks@canonical.com> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Link: https://lkml.kernel.org/r/20190412215118.294906495@localhost.localdomain Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/speculation/mds: Fix commentBoris Ostrovsky2019-05-141-1/+1
| | | | | | | | | | | | | commit cae5ec342645746d617dd420d206e1588d47768a upstream s/L1TF/MDS/ Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Tyler Hicks <tyhicks@canonical.com> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/speculation/mds: Add SMT warning messageJosh Poimboeuf2019-05-141-0/+8
| | | | | | | | | | | | | commit 39226ef02bfb43248b7db12a4fdccb39d95318e3 upstream MDS is vulnerable with SMT. Make that clear with a one-time printk whenever SMT first gets enabled. Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Tyler Hicks <tyhicks@canonical.com> Acked-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/speculation: Move arch_smt_update() call to after mitigation decisionsJosh Poimboeuf2019-05-141-3/+2
| | | | | | | | | | | | | | commit 7c3658b20194a5b3209a143f63bc9c643c6a3ae2 upstream arch_smt_update() now has a dependency on both Spectre v2 and MDS mitigations. Move its initial call to after all the mitigation decisions have been made. Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Tyler Hicks <tyhicks@canonical.com> Acked-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/speculation/mds: Add mds=full,nosmt cmdline optionJosh Poimboeuf2019-05-141-0/+10
| | | | | | | | | | | | | commit d71eb0ce109a124b0fa714832823b9452f2762cf upstream Add the mds=full,nosmt cmdline option. This is like mds=full, but with SMT disabled if the CPU is vulnerable. Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Tyler Hicks <tyhicks@canonical.com> Acked-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* Documentation: Move L1TF to separate directoryThomas Gleixner2019-05-141-1/+1
| | | | | | | | | | | | | commit 65fd4cb65b2dad97feb8330b6690445910b56d6a upstream Move L!TF to a separate directory so the MDS stuff can be added at the side. Otherwise the all hardware vulnerabilites have their own top level entry. Should have done that right away. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Jon Masters <jcm@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/speculation/mds: Add mitigation mode VMWERVThomas Gleixner2019-05-141-6/+12
| | | | | | | | | | | | | | | | | | | | | | | commit 22dd8365088b6403630b82423cf906491859b65e upstream In virtualized environments it can happen that the host has the microcode update which utilizes the VERW instruction to clear CPU buffers, but the hypervisor is not yet updated to expose the X86_FEATURE_MD_CLEAR CPUID bit to guests. Introduce an internal mitigation mode VMWERV which enables the invocation of the CPU buffer clearing even if X86_FEATURE_MD_CLEAR is not set. If the system has no updated microcode this results in a pointless execution of the VERW instruction wasting a few CPU cycles. If the microcode is updated, but not exposed to a guest then the CPU buffers will be cleared. That said: Virtual Machines Will Eventually Receive Vaccine Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Jon Masters <jcm@redhat.com> Tested-by: Jon Masters <jcm@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/speculation/mds: Add sysfs reporting for MDSThomas Gleixner2019-05-141-0/+25
| | | | | | | | | | | | | | | commit 8a4b06d391b0a42a373808979b5028f5c84d9c6a upstream Add the sysfs reporting file for MDS. It exposes the vulnerability and mitigation state similar to the existing files for the other speculative hardware vulnerabilities. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Jon Masters <jcm@redhat.com> Tested-by: Jon Masters <jcm@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/speculation/mds: Add mitigation control for MDSThomas Gleixner2019-05-141-0/+70
| | | | | | | | | | | | | | | | | | | | | | | | | | | | commit bc1241700acd82ec69fde98c5763ce51086269f8 upstream Now that the mitigations are in place, add a command line parameter to control the mitigation, a mitigation selector function and a SMT update mechanism. This is the minimal straight forward initial implementation which just provides an always on/off mode. The command line parameter is: mds=[full|off] This is consistent with the existing mitigations for other speculative hardware vulnerabilities. The idle invocation is dynamically updated according to the SMT state of the system similar to the dynamic update of the STIBP mitigation. The idle mitigation is limited to CPUs which are only affected by MSBDS and not any other variant, because the other variants cannot be mitigated on SMT enabled systems. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Jon Masters <jcm@redhat.com> Tested-by: Jon Masters <jcm@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/speculation/mds: Conditionally clear CPU buffers on idle entryThomas Gleixner2019-05-141-0/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 07f07f55a29cb705e221eda7894dd67ab81ef343 upstream Add a static key which controls the invocation of the CPU buffer clear mechanism on idle entry. This is independent of other MDS mitigations because the idle entry invocation to mitigate the potential leakage due to store buffer repartitioning is only necessary on SMT systems. Add the actual invocations to the different halt/mwait variants which covers all usage sites. mwaitx is not patched as it's not available on Intel CPUs. The buffer clear is only invoked before entering the C-State to prevent that stale data from the idling CPU is spilled to the Hyper-Thread sibling after the Store buffer got repartitioned and all entries are available to the non idle sibling. When coming out of idle the store buffer is partitioned again so each sibling has half of it available. Now CPU which returned from idle could be speculatively exposed to contents of the sibling, but the buffers are flushed either on exit to user space or on VMENTER. When later on conditional buffer clearing is implemented on top of this, then there is no action required either because before returning to user space the context switch will set the condition flag which causes a flush on the return to user path. Note, that the buffer clearing on idle is only sensible on CPUs which are solely affected by MSBDS and not any other variant of MDS because the other MDS variants cannot be mitigated when SMT is enabled, so the buffer clearing on idle would be a window dressing exercise. This intentionally does not handle the case in the acpi/processor_idle driver which uses the legacy IO port interface for C-State transitions for two reasons: - The acpi/processor_idle driver was replaced by the intel_idle driver almost a decade ago. Anything Nehalem upwards supports it and defaults to that new driver. - The legacy IO port interface is likely to be used on older and therefore unaffected CPUs or on systems which do not receive microcode updates anymore, so there is no point in adding that. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Reviewed-by: Jon Masters <jcm@redhat.com> Tested-by: Jon Masters <jcm@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/kvm/vmx: Add MDS protection when L1D Flush is not activeThomas Gleixner2019-05-141-0/+1
| | | | | | | | | | | | | | | | | | | | | commit 650b68a0622f933444a6d66936abb3103029413b upstream CPUs which are affected by L1TF and MDS mitigate MDS with the L1D Flush on VMENTER when updated microcode is installed. If a CPU is not affected by L1TF or if the L1D Flush is not in use, then MDS mitigation needs to be invoked explicitly. For these cases, follow the host mitigation state and invoke the MDS mitigation before VMENTER. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Jon Masters <jcm@redhat.com> Tested-by: Jon Masters <jcm@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/speculation/mds: Clear CPU buffers on exit to userThomas Gleixner2019-05-141-0/+3
| | | | | | | | | | | | | | | | | | | commit 04dcbdb8057827b043b3c71aa397c4c63e67d086 upstream Add a static key which controls the invocation of the CPU buffer clear mechanism on exit to user space and add the call into prepare_exit_to_usermode() and do_nmi() right before actually returning. Add documentation which kernel to user space transition this covers and explain why some corner cases are not mitigated. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Reviewed-by: Jon Masters <jcm@redhat.com> Tested-by: Jon Masters <jcm@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/speculation/mds: Add BUG_MSBDS_ONLYThomas Gleixner2019-05-141-8/+12
| | | | | | | | | | | | | | | | | | | | | | | | commit e261f209c3666e842fd645a1e31f001c3a26def9 upstream This bug bit is set on CPUs which are only affected by Microarchitectural Store Buffer Data Sampling (MSBDS) and not by any other MDS variant. This is important because the Store Buffers are partitioned between Hyper-Threads so cross thread forwarding is not possible. But if a thread enters or exits a sleep state the store buffer is repartitioned which can expose data from one thread to the other. This transition can be mitigated. That means that for CPUs which are only affected by MSBDS SMT can be enabled, if the CPU is not affected by other SMT sensitive vulnerabilities, e.g. L1TF. The XEON PHI variants fall into that category. Also the Silvermont/Airmont ATOMs, but for them it's not really relevant as they do not support SMT, but mark them for completeness sake. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Reviewed-by: Jon Masters <jcm@redhat.com> Tested-by: Jon Masters <jcm@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/speculation/mds: Add basic bug infrastructure for MDSAndi Kleen2019-05-141-8/+15
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit ed5194c2732c8084af9fd159c146ea92bf137128 upstream Microarchitectural Data Sampling (MDS), is a class of side channel attacks on internal buffers in Intel CPUs. The variants are: - Microarchitectural Store Buffer Data Sampling (MSBDS) (CVE-2018-12126) - Microarchitectural Fill Buffer Data Sampling (MFBDS) (CVE-2018-12130) - Microarchitectural Load Port Data Sampling (MLPDS) (CVE-2018-12127) MSBDS leaks Store Buffer Entries which can be speculatively forwarded to a dependent load (store-to-load forwarding) as an optimization. The forward can also happen to a faulting or assisting load operation for a different memory address, which can be exploited under certain conditions. Store buffers are partitioned between Hyper-Threads so cross thread forwarding is not possible. But if a thread enters or exits a sleep state the store buffer is repartitioned which can expose data from one thread to the other. MFBDS leaks Fill Buffer Entries. Fill buffers are used internally to manage L1 miss situations and to hold data which is returned or sent in response to a memory or I/O operation. Fill buffers can forward data to a load operation and also write data to the cache. When the fill buffer is deallocated it can retain the stale data of the preceding operations which can then be forwarded to a faulting or assisting load operation, which can be exploited under certain conditions. Fill buffers are shared between Hyper-Threads so cross thread leakage is possible. MLDPS leaks Load Port Data. Load ports are used to perform load operations from memory or I/O. The received data is then forwarded to the register file or a subsequent operation. In some implementations the Load Port can contain stale data from a previous operation which can be forwarded to faulting or assisting loads under certain conditions, which again can be exploited eventually. Load ports are shared between Hyper-Threads so cross thread leakage is possible. All variants have the same mitigation for single CPU thread case (SMT off), so the kernel can treat them as one MDS issue. Add the basic infrastructure to detect if the current CPU is affected by MDS. [ tglx: Rewrote changelog ] Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Reviewed-by: Jon Masters <jcm@redhat.com> Tested-by: Jon Masters <jcm@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/speculation: Consolidate CPU whitelistsThomas Gleixner2019-05-141-49/+56
| | | | | | | | | | | | | | | | | | | commit 36ad35131adacc29b328b9c8b6277a8bf0d6fd5d upstream The CPU vulnerability whitelists have some overlap and there are more whitelists coming along. Use the driver_data field in the x86_cpu_id struct to denote the whitelisted vulnerabilities and combine all whitelists into one. Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Frederic Weisbecker <frederic@kernel.org> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Jon Masters <jcm@redhat.com> Tested-by: Jon Masters <jcm@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/cpu: Sanitize FAM6_ATOM namingPeter Zijlstra2019-05-142-16/+16
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit f2c4db1bd80720cd8cb2a5aa220d9bc9f374f04e upstream Going primarily by: https://en.wikipedia.org/wiki/List_of_Intel_Atom_microprocessors with additional information gleaned from other related pages; notably: - Bonnell shrink was called Saltwell - Moorefield is the Merriefield refresh which makes it Airmont The general naming scheme is: FAM6_ATOM_UARCH_SOCTYPE for i in `git grep -l FAM6_ATOM` ; do sed -i -e 's/ATOM_PINEVIEW/ATOM_BONNELL/g' \ -e 's/ATOM_LINCROFT/ATOM_BONNELL_MID/' \ -e 's/ATOM_PENWELL/ATOM_SALTWELL_MID/g' \ -e 's/ATOM_CLOVERVIEW/ATOM_SALTWELL_TABLET/g' \ -e 's/ATOM_CEDARVIEW/ATOM_SALTWELL/g' \ -e 's/ATOM_SILVERMONT1/ATOM_SILVERMONT/g' \ -e 's/ATOM_SILVERMONT2/ATOM_SILVERMONT_X/g' \ -e 's/ATOM_MERRIFIELD/ATOM_SILVERMONT_MID/g' \ -e 's/ATOM_MOOREFIELD/ATOM_AIRMONT_MID/g' \ -e 's/ATOM_DENVERTON/ATOM_GOLDMONT_X/g' \ -e 's/ATOM_GEMINI_LAKE/ATOM_GOLDMONT_PLUS/g' ${i} done Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Cc: dave.hansen@linux.intel.com Cc: len.brown@intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/mce: Improve error message when kernel cannot recover, p2Tony Luck2019-05-081-0/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 41f035a86b5b72a4f947c38e94239d20d595352a upstream. In c7d606f560e4 ("x86/mce: Improve error message when kernel cannot recover") a case was added for a machine check caused by a DATA access to poison memory from the kernel. A case should have been added also for an uncorrectable error during an instruction fetch in the kernel. Add that extra case so the error message now reads: mce: [Hardware Error]: Machine check: Instruction fetch error in kernel Fixes: c7d606f560e4 ("x86/mce: Improve error message when kernel cannot recover") Signed-off-by: Tony Luck <tony.luck@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Pu Wen <puwen@hygon.cn> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/20190225205940.15226-1-tony.luck@intel.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/cpu/bugs: Use __initconst for 'const' init dataAndi Kleen2019-04-271-3/+3
| | | | | | | | | | | | | | | | | commit 1de7edbb59c8f1b46071f66c5c97b8a59569eb51 upstream. Some of the recently added const tables use __initdata which causes section attribute conflicts. Use __initconst instead. Fixes: fa1202ef2243 ("x86/speculation: Add command line control") Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20190330004743.29541-9-andi@firstfloor.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/cpu/cyrix: Use correct macros for Cyrix calls on Geode processorsMatthew Whitehead2019-04-201-7/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | [ Upstream commit 18fb053f9b827bd98cfc64f2a35df8ab19745a1d ] There are comments in processor-cyrix.h advising you to _not_ make calls using the deprecated macros in this style: setCx86_old(CX86_CCR4, getCx86_old(CX86_CCR4) | 0x80); This is because it expands the macro into a non-functioning calling sequence. The calling order must be: outb(CX86_CCR2, 0x22); inb(0x23); From the comments: * When using the old macros a line like * setCx86(CX86_CCR2, getCx86(CX86_CCR2) | 0x88); * gets expanded to: * do { * outb((CX86_CCR2), 0x22); * outb((({ * outb((CX86_CCR2), 0x22); * inb(0x23); * }) | 0x88), 0x23); * } while (0); The new macros fix this problem, so use them instead. Tested on an actual Geode processor. Signed-off-by: Matthew Whitehead <tedheadster@gmail.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: luto@kernel.org Link: https://lkml.kernel.org/r/1552596361-8967-2-git-send-email-tedheadster@gmail.com Signed-off-by: Sasha Levin <sashal@kernel.org>
* x86/microcode/amd: Don't falsely trick the late loading mechanismThomas Lendacky2019-03-131-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | [ Upstream commit 912139cfbfa6a2bc1da052314d2c29338dae1f6a ] The load_microcode_amd() function searches for microcode patches and attempts to apply a microcode patch if it is of different level than the currently installed level. While the processor won't actually load a level that is less than what is already installed, the logic wrongly returns UCODE_NEW thus signaling to its caller reload_store() that a late loading should be attempted. If the file-system contains an older microcode revision than what is currently running, such a late microcode reload can result in these misleading messages: x86/CPU: CPU features have changed after loading microcode, but might not take effect. x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update. These messages were issued on a system where SME/SEV are not enabled by the BIOS (MSR C001_0010[23] = 0b) because during boot, early_detect_mem_encrypt() is called and cleared the SME and SEV features in this case. However, after the wrong late load attempt, get_cpu_cap() is called and reloads the SME and SEV feature bits, resulting in the messages. Update the microcode level check to not attempt microcode loading if the current level is greater than(!) and not only equal to the current patch level. [ bp: massage commit message. ] Fixes: 2613f36ed965 ("x86/microcode: Attempt late loading only when new microcode is present") Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/154894518427.9406.8246222496874202773.stgit@tlendack-t1.amdoffice.net Signed-off-by: Sasha Levin <sashal@kernel.org>
* x86/CPU/AMD: Set the CPB bit unconditionally on F17hJiaxun Yang2019-03-101-5/+3
| | | | | | | | | | | | | | | | | | | | | | commit 0237199186e7a4aa5310741f0a6498a20c820fd7 upstream. Some F17h models do not have CPB set in CPUID even though the CPU supports it. Set the feature bit unconditionally on all F17h. [ bp: Rewrite commit message and patch. ] Signed-off-by: Jiaxun Yang <jiaxun.yang@flygoat.com> Signed-off-by: Borislav Petkov <bp@suse.de> Acked-by: Tom Lendacky <thomas.lendacky@amd.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Sherry Hurwitz <sherry.hurwitz@amd.com> Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/20181120030018.5185-1-jiaxun.yang@flygoat.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/MCE: Initialize mce.bank in the case of a fatal error in mce_no_way_out()Tony Luck2019-02-121-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit d28af26faa0b1daf3c692603d46bc4687c16f19e upstream. Internal injection testing crashed with a console log that said: mce: [Hardware Error]: CPU 7: Machine Check Exception: f Bank 0: bd80000000100134 This caused a lot of head scratching because the MCACOD (bits 15:0) of that status is a signature from an L1 data cache error. But Linux says that it found it in "Bank 0", which on this model CPU only reports L1 instruction cache errors. The answer was that Linux doesn't initialize "m->bank" in the case that it finds a fatal error in the mce_no_way_out() pre-scan of banks. If this was a local machine check, then this partially initialized struct mce is being passed to mce_panic(). Fix is simple: just initialize m->bank in the case of a fatal error. Fixes: 40c36e2741d7 ("x86/mce: Fix incorrect "Machine check from unknown source" message") Signed-off-by: Tony Luck <tony.luck@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vishal Verma <vishal.l.verma@intel.com> Cc: x86-ml <x86@kernel.org> Cc: stable@vger.kernel.org # v4.18 Note pre-v5.0 arch/x86/kernel/cpu/mce/core.c was called arch/x86/kernel/cpu/mcheck/mce.c Link: https://lkml.kernel.org/r/20190201003341.10638-1-tony.luck@intel.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* cpu/hotplug: Fix "SMT disabled by BIOS" detection for KVMJosh Poimboeuf2019-02-121-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit b284909abad48b07d3071a9fc9b5692b3e64914b upstream. With the following commit: 73d5e2b47264 ("cpu/hotplug: detect SMT disabled by BIOS") ... the hotplug code attempted to detect when SMT was disabled by BIOS, in which case it reported SMT as permanently disabled. However, that code broke a virt hotplug scenario, where the guest is booted with only primary CPU threads, and a sibling is brought online later. The problem is that there doesn't seem to be a way to reliably distinguish between the HW "SMT disabled by BIOS" case and the virt "sibling not yet brought online" case. So the above-mentioned commit was a bit misguided, as it permanently disabled SMT for both cases, preventing future virt sibling hotplugs. Going back and reviewing the original problems which were attempted to be solved by that commit, when SMT was disabled in BIOS: 1) /sys/devices/system/cpu/smt/control showed "on" instead of "notsupported"; and 2) vmx_vm_init() was incorrectly showing the L1TF_MSG_SMT warning. I'd propose that we instead consider #1 above to not actually be a problem. Because, at least in the virt case, it's possible that SMT wasn't disabled by BIOS and a sibling thread could be brought online later. So it makes sense to just always default the smt control to "on" to allow for that possibility (assuming cpuid indicates that the CPU supports SMT). The real problem is #2, which has a simple fix: change vmx_vm_init() to query the actual current SMT state -- i.e., whether any siblings are currently online -- instead of looking at the SMT "control" sysfs value. So fix it by: a) reverting the original "fix" and its followup fix: 73d5e2b47264 ("cpu/hotplug: detect SMT disabled by BIOS") bc2d8d262cba ("cpu/hotplug: Fix SMT supported evaluation") and b) changing vmx_vm_init() to query the actual current SMT state -- instead of the sysfs control value -- to determine whether the L1TF warning is needed. This also requires the 'sched_smt_present' variable to exported, instead of 'cpu_smt_control'. Fixes: 73d5e2b47264 ("cpu/hotplug: detect SMT disabled by BIOS") Reported-by: Igor Mammedov <imammedo@redhat.com> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Joe Mario <jmario@redhat.com> Cc: Jiri Kosina <jikos@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: kvm@vger.kernel.org Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/e3a85d585da28cc333ecbc1e78ee9216e6da9396.1548794349.git.jpoimboe@redhat.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/mce: Fix -Wmissing-prototypes warningsBorislav Petkov2019-01-263-4/+7
| | | | | | | | | | | | | | | | | | | | | | | | [ Upstream commit 68b5e4326e4b8ac9080835005d8254fed0fb3c56 ] Add the proper includes and make smca_get_name() static. Fix an actual bug too which the warning triggered: arch/x86/kernel/cpu/mcheck/therm_throt.c:395:39: error: conflicting \ types for ‘smp_thermal_interrupt’ asmlinkage __visible void __irq_entry smp_thermal_interrupt(struct pt_regs *r) ^~~~~~~~~~~~~~~~~~~~~ In file included from arch/x86/kernel/cpu/mcheck/therm_throt.c:29: ./arch/x86/include/asm/traps.h:107:17: note: previous declaration of \ ‘smp_thermal_interrupt’ was here asmlinkage void smp_thermal_interrupt(void); Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Yi Wang <wang.yi59@zte.com.cn> Cc: Michael Matz <matz@suse.de> Cc: x86@kernel.org Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1811081633160.1549@nanos.tec.linutronix.de Signed-off-by: Sasha Levin <sashal@kernel.org>
* x86, modpost: Replace last remnants of RETPOLINE with CONFIG_RETPOLINEWANG Chao2019-01-161-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit e4f358916d528d479c3c12bd2fd03f2d5a576380 upstream. Commit 4cd24de3a098 ("x86/retpoline: Make CONFIG_RETPOLINE depend on compiler support") replaced the RETPOLINE define with CONFIG_RETPOLINE checks. Remove the remaining pieces. [ bp: Massage commit message. ] Fixes: 4cd24de3a098 ("x86/retpoline: Make CONFIG_RETPOLINE depend on compiler support") Signed-off-by: WANG Chao <chao.wang@ucloud.cn> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Zhenzhong Duan <zhenzhong.duan@oracle.com> Reviewed-by: Masahiro Yamada <yamada.masahiro@socionext.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Daniel Borkmann <daniel@iogearbox.net> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Jessica Yu <jeyu@kernel.org> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Kees Cook <keescook@chromium.org> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Luc Van Oostenryck <luc.vanoostenryck@gmail.com> Cc: Michal Marek <michal.lkml@markovi.net> Cc: Miguel Ojeda <miguel.ojeda.sandonis@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: linux-kbuild@vger.kernel.org Cc: srinivas.eeda@oracle.com Cc: stable <stable@vger.kernel.org> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/20181210163725.95977-1-chao.wang@ucloud.cn Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/speculation/l1tf: Drop the swap storage limit restriction when l1tf=offMichal Hocko2019-01-091-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 5b5e4d623ec8a34689df98e42d038a3b594d2ff9 upstream. Swap storage is restricted to max_swapfile_size (~16TB on x86_64) whenever the system is deemed affected by L1TF vulnerability. Even though the limit is quite high for most deployments it seems to be too restrictive for deployments which are willing to live with the mitigation disabled. We have a customer to deploy 8x 6,4TB PCIe/NVMe SSD swap devices which is clearly out of the limit. Drop the swap restriction when l1tf=off is specified. It also doesn't make much sense to warn about too much memory for the l1tf mitigation when it is forcefully disabled by the administrator. [ tglx: Folded the documentation delta change ] Fixes: 377eeaa8e11f ("x86/speculation/l1tf: Limit swap file size to MAX_PA/2") Signed-off-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Pavel Tatashin <pasha.tatashin@soleen.com> Reviewed-by: Andi Kleen <ak@linux.intel.com> Acked-by: Jiri Kosina <jkosina@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Borislav Petkov <bp@suse.de> Cc: <linux-mm@kvack.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20181113184910.26697-1-mhocko@kernel.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/intel_rdt: Ensure a CPU remains online for the region's pseudo-locking ↵Reinette Chatre2018-12-291-0/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | sequence commit 80b71c340f17705ec145911b9a193ea781811b16 upstream. The user triggers the creation of a pseudo-locked region when writing the requested schemata to the schemata resctrl file. The pseudo-locking of a region is required to be done on a CPU that is associated with the cache on which the pseudo-locked region will reside. In order to run the locking code on a specific CPU, the needed CPU has to be selected and ensured to remain online during the entire locking sequence. At this time, the cpu_hotplug_lock is not taken during the pseudo-lock region creation and it is thus possible for a CPU to be selected to run the pseudo-locking code and then that CPU to go offline before the thread is able to run on it. Fix this by ensuring that the cpu_hotplug_lock is taken while the CPU on which code has to run needs to be controlled. Since the cpu_hotplug_lock is always taken before rdtgroup_mutex the lock order is maintained. Fixes: e0bdfe8e36f3 ("x86/intel_rdt: Support creation/removal of pseudo-locked region") Signed-off-by: Reinette Chatre <reinette.chatre@intel.com> Signed-off-by: Borislav Petkov <bp@suse.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Luck <tony.luck@intel.com> Cc: gavin.hindman@intel.com Cc: jithu.joseph@intel.com Cc: stable <stable@vger.kernel.org> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/b7b17432a80f95a1fa21a1698ba643014f58ad31.1544476425.git.reinette.chatre@intel.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/mtrr: Don't copy uninitialized gentry fields back to userspaceColin Ian King2018-12-291-0/+2
| | | | | | | | | | | | | | | | | | | | | | commit 32043fa065b51e0b1433e48d118821c71b5cd65d upstream. Currently the copy_to_user of data in the gentry struct is copying uninitiaized data in field _pad from the stack to userspace. Fix this by explicitly memset'ing gentry to zero, this also will zero any compiler added padding fields that may be in struct (currently there are none). Detected by CoverityScan, CID#200783 ("Uninitialized scalar variable") Fixes: b263b31e8ad6 ("x86, mtrr: Use explicit sizing and padding for the 64-bit ioctls") Signed-off-by: Colin Ian King <colin.king@canonical.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Tyler Hicks <tyhicks@canonical.com> Cc: security@kernel.org Link: https://lkml.kernel.org/r/20181218172956.1440-1-colin.king@canonical.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/MCE/AMD: Fix the thresholding machinery initialization orderBorislav Petkov2018-12-051-13/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 60c8144afc287ef09ce8c1230c6aa972659ba1bb upstream. Currently, the code sets up the thresholding interrupt vector and only then goes about initializing the thresholding banks. Which is wrong, because an early thresholding interrupt would cause a NULL pointer dereference when accessing those banks and prevent the machine from booting. Therefore, set the thresholding interrupt vector only *after* having initialized the banks successfully. Fixes: 18807ddb7f88 ("x86/mce/AMD: Reset Threshold Limit after logging error") Reported-by: Rafał Miłecki <rafal@milecki.pl> Reported-by: John Clemens <clemej@gmail.com> Signed-off-by: Borislav Petkov <bp@suse.de> Tested-by: Rafał Miłecki <rafal@milecki.pl> Tested-by: John Clemens <john@deater.net> Cc: Aravind Gopalakrishnan <aravindksg.lkml@gmail.com> Cc: linux-edac@vger.kernel.org Cc: stable@vger.kernel.org Cc: Tony Luck <tony.luck@intel.com> Cc: x86@kernel.org Cc: Yazen Ghannam <Yazen.Ghannam@amd.com> Link: https://lkml.kernel.org/r/20181127101700.2964-1-zajec5@gmail.com Link: https://bugzilla.kernel.org/show_bug.cgi?id=201291 Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/speculation: Provide IBPB always command line optionsThomas Gleixner2018-12-051-11/+23
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 55a974021ec952ee460dc31ca08722158639de72 upstream Provide the possibility to enable IBPB always in combination with 'prctl' and 'seccomp'. Add the extra command line options and rework the IBPB selection to evaluate the command instead of the mode selected by the STIPB switch case. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Casey Schaufler <casey.schaufler@intel.com> Cc: Asit Mallick <asit.k.mallick@intel.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Jon Masters <jcm@redhat.com> Cc: Waiman Long <longman9394@gmail.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Dave Stewart <david.c.stewart@intel.com> Cc: Kees Cook <keescook@chromium.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20181125185006.144047038@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/speculation: Add seccomp Spectre v2 user space protection modeThomas Gleixner2018-12-051-1/+16
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 6b3e64c237c072797a9ec918654a60e3a46488e2 upstream If 'prctl' mode of user space protection from spectre v2 is selected on the kernel command-line, STIBP and IBPB are applied on tasks which restrict their indirect branch speculation via prctl. SECCOMP enables the SSBD mitigation for sandboxed tasks already, so it makes sense to prevent spectre v2 user space to user space attacks as well. The Intel mitigation guide documents how STIPB works: Setting bit 1 (STIBP) of the IA32_SPEC_CTRL MSR on a logical processor prevents the predicted targets of indirect branches on any logical processor of that core from being controlled by software that executes (or executed previously) on another logical processor of the same core. Ergo setting STIBP protects the task itself from being attacked from a task running on a different hyper-thread and protects the tasks running on different hyper-threads from being attacked. While the document suggests that the branch predictors are shielded between the logical processors, the observed performance regressions suggest that STIBP simply disables the branch predictor more or less completely. Of course the document wording is vague, but the fact that there is also no requirement for issuing IBPB when STIBP is used points clearly in that direction. The kernel still issues IBPB even when STIBP is used until Intel clarifies the whole mechanism. IBPB is issued when the task switches out, so malicious sandbox code cannot mistrain the branch predictor for the next user space task on the same logical processor. Signed-off-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Casey Schaufler <casey.schaufler@intel.com> Cc: Asit Mallick <asit.k.mallick@intel.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Jon Masters <jcm@redhat.com> Cc: Waiman Long <longman9394@gmail.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Dave Stewart <david.c.stewart@intel.com> Cc: Kees Cook <keescook@chromium.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20181125185006.051663132@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/speculation: Enable prctl mode for spectre_v2_userThomas Gleixner2018-12-051-9/+32
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 7cc765a67d8e04ef7d772425ca5a2a1e2b894c15 upstream Now that all prerequisites are in place: - Add the prctl command line option - Default the 'auto' mode to 'prctl' - When SMT state changes, update the static key which controls the conditional STIBP evaluation on context switch. - At init update the static key which controls the conditional IBPB evaluation on context switch. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Casey Schaufler <casey.schaufler@intel.com> Cc: Asit Mallick <asit.k.mallick@intel.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Jon Masters <jcm@redhat.com> Cc: Waiman Long <longman9394@gmail.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Dave Stewart <david.c.stewart@intel.com> Cc: Kees Cook <keescook@chromium.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20181125185005.958421388@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/speculation: Add prctl() control for indirect branch speculationThomas Gleixner2018-12-051-0/+67
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 9137bb27e60e554dab694eafa4cca241fa3a694f upstream Add the PR_SPEC_INDIRECT_BRANCH option for the PR_GET_SPECULATION_CTRL and PR_SET_SPECULATION_CTRL prctls to allow fine grained per task control of indirect branch speculation via STIBP and IBPB. Invocations: Check indirect branch speculation status with - prctl(PR_GET_SPECULATION_CTRL, PR_SPEC_INDIRECT_BRANCH, 0, 0, 0); Enable indirect branch speculation with - prctl(PR_SET_SPECULATION_CTRL, PR_SPEC_INDIRECT_BRANCH, PR_SPEC_ENABLE, 0, 0); Disable indirect branch speculation with - prctl(PR_SET_SPECULATION_CTRL, PR_SPEC_INDIRECT_BRANCH, PR_SPEC_DISABLE, 0, 0); Force disable indirect branch speculation with - prctl(PR_SET_SPECULATION_CTRL, PR_SPEC_INDIRECT_BRANCH, PR_SPEC_FORCE_DISABLE, 0, 0); See Documentation/userspace-api/spec_ctrl.rst. Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Casey Schaufler <casey.schaufler@intel.com> Cc: Asit Mallick <asit.k.mallick@intel.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Jon Masters <jcm@redhat.com> Cc: Waiman Long <longman9394@gmail.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Dave Stewart <david.c.stewart@intel.com> Cc: Kees Cook <keescook@chromium.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20181125185005.866780996@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/speculation: Prepare arch_smt_update() for PRCTL modeThomas Gleixner2018-12-051-21/+25
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 6893a959d7fdebbab5f5aa112c277d5a44435ba1 upstream The upcoming fine grained per task STIBP control needs to be updated on CPU hotplug as well. Split out the code which controls the strict mode so the prctl control code can be added later. Mark the SMP function call argument __unused while at it. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Casey Schaufler <casey.schaufler@intel.com> Cc: Asit Mallick <asit.k.mallick@intel.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Jon Masters <jcm@redhat.com> Cc: Waiman Long <longman9394@gmail.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Dave Stewart <david.c.stewart@intel.com> Cc: Kees Cook <keescook@chromium.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20181125185005.759457117@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/speculation: Prevent stale SPEC_CTRL msr contentThomas Gleixner2018-12-051-11/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 6d991ba509ebcfcc908e009d1db51972a4f7a064 upstream The seccomp speculation control operates on all tasks of a process, but only the current task of a process can update the MSR immediately. For the other threads the update is deferred to the next context switch. This creates the following situation with Process A and B: Process A task 2 and Process B task 1 are pinned on CPU1. Process A task 2 does not have the speculation control TIF bit set. Process B task 1 has the speculation control TIF bit set. CPU0 CPU1 MSR bit is set ProcB.T1 schedules out ProcA.T2 schedules in MSR bit is cleared ProcA.T1 seccomp_update() set TIF bit on ProcA.T2 ProcB.T1 schedules in MSR is not updated <-- FAIL This happens because the context switch code tries to avoid the MSR update if the speculation control TIF bits of the incoming and the outgoing task are the same. In the worst case ProcB.T1 and ProcA.T2 are the only tasks scheduling back and forth on CPU1, which keeps the MSR stale forever. In theory this could be remedied by IPIs, but chasing the remote task which could be migrated is complex and full of races. The straight forward solution is to avoid the asychronous update of the TIF bit and defer it to the next context switch. The speculation control state is stored in task_struct::atomic_flags by the prctl and seccomp updates already. Add a new TIF_SPEC_FORCE_UPDATE bit and set this after updating the atomic_flags. Check the bit on context switch and force a synchronous update of the speculation control if set. Use the same mechanism for updating the current task. Reported-by: Tim Chen <tim.c.chen@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Casey Schaufler <casey.schaufler@intel.com> Cc: Asit Mallick <asit.k.mallick@intel.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Jon Masters <jcm@redhat.com> Cc: Waiman Long <longman9394@gmail.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Dave Stewart <david.c.stewart@intel.com> Cc: Kees Cook <keescook@chromium.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1811272247140.1875@nanos.tec.linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/speculation: Split out TIF updateThomas Gleixner2018-12-051-12/+23
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit e6da8bb6f9abb2628381904b24163c770e630bac upstream The update of the TIF_SSBD flag and the conditional speculation control MSR update is done in the ssb_prctl_set() function directly. The upcoming prctl support for controlling indirect branch speculation via STIBP needs the same mechanism. Split the code out and make it reusable. Reword the comment about updates for other tasks. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Casey Schaufler <casey.schaufler@intel.com> Cc: Asit Mallick <asit.k.mallick@intel.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Jon Masters <jcm@redhat.com> Cc: Waiman Long <longman9394@gmail.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Dave Stewart <david.c.stewart@intel.com> Cc: Kees Cook <keescook@chromium.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20181125185005.652305076@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/speculation: Prepare for conditional IBPB in switch_mm()Thomas Gleixner2018-12-051-5/+24
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 4c71a2b6fd7e42814aa68a6dec88abf3b42ea573 upstream The IBPB speculation barrier is issued from switch_mm() when the kernel switches to a user space task with a different mm than the user space task which ran last on the same CPU. An additional optimization is to avoid IBPB when the incoming task can be ptraced by the outgoing task. This optimization only works when switching directly between two user space tasks. When switching from a kernel task to a user space task the optimization fails because the previous task cannot be accessed anymore. So for quite some scenarios the optimization is just adding overhead. The upcoming conditional IBPB support will issue IBPB only for user space tasks which have the TIF_SPEC_IB bit set. This requires to handle the following cases: 1) Switch from a user space task (potential attacker) which has TIF_SPEC_IB set to a user space task (potential victim) which has TIF_SPEC_IB not set. 2) Switch from a user space task (potential attacker) which has TIF_SPEC_IB not set to a user space task (potential victim) which has TIF_SPEC_IB set. This needs to be optimized for the case where the IBPB can be avoided when only kernel threads ran in between user space tasks which belong to the same process. The current check whether two tasks belong to the same context is using the tasks context id. While correct, it's simpler to use the mm pointer because it allows to mangle the TIF_SPEC_IB bit into it. The context id based mechanism requires extra storage, which creates worse code. When a task is scheduled out its TIF_SPEC_IB bit is mangled as bit 0 into the per CPU storage which is used to track the last user space mm which was running on a CPU. This bit can be used together with the TIF_SPEC_IB bit of the incoming task to make the decision whether IBPB needs to be issued or not to cover the two cases above. As conditional IBPB is going to be the default, remove the dubious ptrace check for the IBPB always case and simply issue IBPB always when the process changes. Move the storage to a different place in the struct as the original one created a hole. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Casey Schaufler <casey.schaufler@intel.com> Cc: Asit Mallick <asit.k.mallick@intel.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Jon Masters <jcm@redhat.com> Cc: Waiman Long <longman9394@gmail.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Dave Stewart <david.c.stewart@intel.com> Cc: Kees Cook <keescook@chromium.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20181125185005.466447057@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/speculation: Prepare for per task indirect branch speculation controlTim Chen2018-12-051-0/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 5bfbe3ad5840d941b89bcac54b821ba14f50a0ba upstream To avoid the overhead of STIBP always on, it's necessary to allow per task control of STIBP. Add a new task flag TIF_SPEC_IB and evaluate it during context switch if SMT is active and flag evaluation is enabled by the speculation control code. Add the conditional evaluation to x86_virt_spec_ctrl() as well so the guest/host switch works properly. This has no effect because TIF_SPEC_IB cannot be set yet and the static key which controls evaluation is off. Preparatory patch for adding the control code. [ tglx: Simplify the context switch logic and make the TIF evaluation depend on SMP=y and on the static key controlling the conditional update. Rename it to TIF_SPEC_IB because it controls both STIBP and IBPB ] Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Casey Schaufler <casey.schaufler@intel.com> Cc: Asit Mallick <asit.k.mallick@intel.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Jon Masters <jcm@redhat.com> Cc: Waiman Long <longman9394@gmail.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Dave Stewart <david.c.stewart@intel.com> Cc: Kees Cook <keescook@chromium.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20181125185005.176917199@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/speculation: Add command line control for indirect branch speculationThomas Gleixner2018-12-051-17/+116
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit fa1202ef224391b6f5b26cdd44cc50495e8fab54 upstream Add command line control for user space indirect branch speculation mitigations. The new option is: spectre_v2_user= The initial options are: - on: Unconditionally enabled - off: Unconditionally disabled -auto: Kernel selects mitigation (default off for now) When the spectre_v2= command line argument is either 'on' or 'off' this implies that the application to application control follows that state even if a contradicting spectre_v2_user= argument is supplied. Originally-by: Tim Chen <tim.c.chen@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Casey Schaufler <casey.schaufler@intel.com> Cc: Asit Mallick <asit.k.mallick@intel.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Jon Masters <jcm@redhat.com> Cc: Waiman Long <longman9394@gmail.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Dave Stewart <david.c.stewart@intel.com> Cc: Kees Cook <keescook@chromium.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20181125185005.082720373@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/speculation: Unify conditional spectre v2 print functionsThomas Gleixner2018-12-051-13/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 495d470e9828500e0155027f230449ac5e29c025 upstream There is no point in having two functions and a conditional at the call site. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Casey Schaufler <casey.schaufler@intel.com> Cc: Asit Mallick <asit.k.mallick@intel.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Jon Masters <jcm@redhat.com> Cc: Waiman Long <longman9394@gmail.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Dave Stewart <david.c.stewart@intel.com> Cc: Kees Cook <keescook@chromium.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20181125185004.986890749@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/speculataion: Mark command line parser data __initdataThomas Gleixner2018-12-051-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 30ba72a990f5096ae08f284de17986461efcc408 upstream No point to keep that around. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Casey Schaufler <casey.schaufler@intel.com> Cc: Asit Mallick <asit.k.mallick@intel.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Jon Masters <jcm@redhat.com> Cc: Waiman Long <longman9394@gmail.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Dave Stewart <david.c.stewart@intel.com> Cc: Kees Cook <keescook@chromium.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20181125185004.893886356@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/speculation: Mark string arrays const correctlyThomas Gleixner2018-12-051-3/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 8770709f411763884535662744a3786a1806afd3 upstream checkpatch.pl muttered when reshuffling the code: WARNING: static const char * array should probably be static const char * const Fix up all the string arrays. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Casey Schaufler <casey.schaufler@intel.com> Cc: Asit Mallick <asit.k.mallick@intel.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Jon Masters <jcm@redhat.com> Cc: Waiman Long <longman9394@gmail.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Dave Stewart <david.c.stewart@intel.com> Cc: Kees Cook <keescook@chromium.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20181125185004.800018931@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/speculation: Reorder the spec_v2 codeThomas Gleixner2018-12-051-84/+84
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 15d6b7aab0793b2de8a05d8a828777dd24db424e upstream Reorder the code so it is better grouped. No functional change. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Casey Schaufler <casey.schaufler@intel.com> Cc: Asit Mallick <asit.k.mallick@intel.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Jon Masters <jcm@redhat.com> Cc: Waiman Long <longman9394@gmail.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Dave Stewart <david.c.stewart@intel.com> Cc: Kees Cook <keescook@chromium.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20181125185004.707122879@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/l1tf: Show actual SMT stateThomas Gleixner2018-12-051-2/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 130d6f946f6f2a972ee3ec8540b7243ab99abe97 upstream Use the now exposed real SMT state, not the SMT sysfs control knob state. This reflects the state of the system when the mitigation status is queried. This does not change the warning in the VMX launch code. There the dependency on the control knob makes sense because siblings could be brought online anytime after launching the VM. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Casey Schaufler <casey.schaufler@intel.com> Cc: Asit Mallick <asit.k.mallick@intel.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Jon Masters <jcm@redhat.com> Cc: Waiman Long <longman9394@gmail.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Dave Stewart <david.c.stewart@intel.com> Cc: Kees Cook <keescook@chromium.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20181125185004.613357354@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/speculation: Rework SMT state changeThomas Gleixner2018-12-051-6/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit a74cfffb03b73d41e08f84c2e5c87dec0ce3db9f upstream arch_smt_update() is only called when the sysfs SMT control knob is changed. This means that when SMT is enabled in the sysfs control knob the system is considered to have SMT active even if all siblings are offline. To allow finegrained control of the speculation mitigations, the actual SMT state is more interesting than the fact that siblings could be enabled. Rework the code, so arch_smt_update() is invoked from each individual CPU hotplug function, and simplify the update function while at it. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Casey Schaufler <casey.schaufler@intel.com> Cc: Asit Mallick <asit.k.mallick@intel.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Jon Masters <jcm@redhat.com> Cc: Waiman Long <longman9394@gmail.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Dave Stewart <david.c.stewart@intel.com> Cc: Kees Cook <keescook@chromium.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20181125185004.521974984@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/speculation: Rename SSBD update functionsThomas Gleixner2018-12-051-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 26c4d75b234040c11728a8acb796b3a85ba7507c upstream During context switch, the SSBD bit in SPEC_CTRL MSR is updated according to changes of the TIF_SSBD flag in the current and next running task. Currently, only the bit controlling speculative store bypass disable in SPEC_CTRL MSR is updated and the related update functions all have "speculative_store" or "ssb" in their names. For enhanced mitigation control other bits in SPEC_CTRL MSR need to be updated as well, which makes the SSB names inadequate. Rename the "speculative_store*" functions to a more generic name. No functional change. Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Casey Schaufler <casey.schaufler@intel.com> Cc: Asit Mallick <asit.k.mallick@intel.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Jon Masters <jcm@redhat.com> Cc: Waiman Long <longman9394@gmail.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Dave Stewart <david.c.stewart@intel.com> Cc: Kees Cook <keescook@chromium.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20181125185004.058866968@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/speculation: Disable STIBP when enhanced IBRS is in useTim Chen2018-12-051-0/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 34bce7c9690b1d897686aac89604ba7adc365556 upstream If enhanced IBRS is active, STIBP is redundant for mitigating Spectre v2 user space exploits from hyperthread sibling. Disable STIBP when enhanced IBRS is used. Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Casey Schaufler <casey.schaufler@intel.com> Cc: Asit Mallick <asit.k.mallick@intel.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Jon Masters <jcm@redhat.com> Cc: Waiman Long <longman9394@gmail.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Dave Stewart <david.c.stewart@intel.com> Cc: Kees Cook <keescook@chromium.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20181125185003.966801480@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/speculation: Move STIPB/IBPB string conditionals out of cpu_show_common()Tim Chen2018-12-051-2/+18
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit a8f76ae41cd633ac00be1b3019b1eb4741be3828 upstream The Spectre V2 printout in cpu_show_common() handles conditionals for the various mitigation methods directly in the sprintf() argument list. That's hard to read and will become unreadable if more complex decisions need to be made for a particular method. Move the conditionals for STIBP and IBPB string selection into helper functions, so they can be extended later on. Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Casey Schaufler <casey.schaufler@intel.com> Cc: Asit Mallick <asit.k.mallick@intel.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Jon Masters <jcm@redhat.com> Cc: Waiman Long <longman9394@gmail.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Dave Stewart <david.c.stewart@intel.com> Cc: Kees Cook <keescook@chromium.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20181125185003.874479208@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>