summaryrefslogtreecommitdiffstats
path: root/arch/x86/kvm/vmx
Commit message (Collapse)AuthorAgeFilesLines
...
| | * | KVM: VMX: return early if msr_bitmap is not supportedDongli Zhang2024-02-271-0/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The vmx_msr_filter_changed() may directly/indirectly calls only vmx_enable_intercept_for_msr() or vmx_disable_intercept_for_msr(). Those two functions may exit immediately if !cpu_has_vmx_msr_bitmap(). vmx_msr_filter_changed() -> vmx_disable_intercept_for_msr() -> pt_update_intercept_for_msr() -> vmx_set_intercept_for_msr() -> vmx_enable_intercept_for_msr() -> vmx_disable_intercept_for_msr() Therefore, we exit early if !cpu_has_vmx_msr_bitmap(). Signed-off-by: Dongli Zhang <dongli.zhang@oracle.com> Link: https://lore.kernel.org/r/20240223202104.3330974-3-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
| | * | KVM: VMX: fix comment to add LBR to passthrough MSRsDongli Zhang2024-02-271-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | According to the is_valid_passthrough_msr(), the LBR MSRs are also passthrough MSRs, since the commit 1b5ac3226a1a ("KVM: vmx/pmu: Pass-through LBR msrs when the guest LBR event is ACTIVE"). Signed-off-by: Dongli Zhang <dongli.zhang@oracle.com> Link: https://lore.kernel.org/r/20240223202104.3330974-2-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
| | * | KVM: VMX: Report up-to-date exit qualification to userspaceChao Gao2024-02-071-1/+1
| | |/ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Use vmx_get_exit_qual() to read the exit qualification. vcpu->arch.exit_qualification is cached for EPT violation only and even for EPT violation, it is stale at this point because the up-to-date value is cached later in handle_ept_violation(). Fixes: 70bcd708dfd1 ("KVM: vmx: expose more information for KVM_INTERNAL_ERROR_DELIVERY_EV exits") Signed-off-by: Chao Gao <chao.gao@intel.com> Link: https://lore.kernel.org/r/20231229022652.300095-1-chao.gao@intel.com Signed-off-by: Sean Christopherson <seanjc@google.com>
| * | Merge tag 'kvm-x86-misc-6.9' of https://github.com/kvm-x86/linux into HEADPaolo Bonzini2024-03-113-35/+54
| |\ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | KVM x86 misc changes for 6.9: - Explicitly initialize a variety of on-stack variables in the emulator that triggered KMSAN false positives (though in fairness in KMSAN, it's comically difficult to see that the uninitialized memory is never truly consumed). - Fix the deubgregs ABI for 32-bit KVM, and clean up code related to reading DR6 and DR7. - Rework the "force immediate exit" code so that vendor code ultimately decides how and when to force the exit. This allows VMX to further optimize handling preemption timer exits, and allows SVM to avoid sending a duplicate IPI (SVM also has a need to force an exit). - Fix a long-standing bug where kvm_has_noapic_vcpu could be left elevated if vCPU creation ultimately failed, and add WARN to guard against similar bugs. - Provide a dedicated arch hook for checking if a different vCPU was in-kernel (for directed yield), and simplify the logic for checking if the currently loaded vCPU is in-kernel. - Misc cleanups and fixes.
| | * | KVM: x86: Fully defer to vendor code to decide how to force immediate exitSean Christopherson2024-02-222-20/+14
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Now that vmx->req_immediate_exit is used only in the scope of vmx_vcpu_run(), use force_immediate_exit to detect that KVM should usurp the VMX preemption to force a VM-Exit and let vendor code fully handle forcing a VM-Exit. Opportunsitically drop __kvm_request_immediate_exit() and just have vendor code call smp_send_reschedule() directly. SVM already does this when injecting an event while also trying to single-step an IRET, i.e. it's not exactly secret knowledge that KVM uses a reschedule IPI to force an exit. Link: https://lore.kernel.org/r/20240110012705.506918-7-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
| | * | KVM: VMX: Handle KVM-induced preemption timer exits in fastpath for L2Sean Christopherson2024-02-221-2/+20
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Eat VMX treemption timer exits in the fastpath regardless of whether L1 or L2 is active. The VM-Exit is 100% KVM-induced, i.e. there is nothing directly related to the exit that KVM needs to do on behalf of the guest, thus there is no reason to wait until the slow path to do nothing. Opportunistically add comments explaining why preemption timer exits for emulating the guest's APIC timer need to go down the slow path. Link: https://lore.kernel.org/r/20240110012705.506918-6-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
| | * | KVM: x86: Move handling of is_guest_mode() into fastpath exit handlersSean Christopherson2024-02-221-3/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Let the fastpath code decide which exits can/can't be handled in the fastpath when L2 is active, e.g. when KVM generates a VMX preemption timer exit to forcefully regain control, there is no "work" to be done and so such exits can be handled in the fastpath regardless of whether L1 or L2 is active. Moving the is_guest_mode() check into the fastpath code also makes it easier to see that L2 isn't allowed to use the fastpath in most cases, e.g. it's not immediately obvious why handle_fastpath_preemption_timer() is called from the fastpath and the normal path. Link: https://lore.kernel.org/r/20240110012705.506918-5-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
| | * | KVM: VMX: Handle forced exit due to preemption timer in fastpathSean Christopherson2024-02-221-5/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Handle VMX preemption timer VM-Exits due to KVM forcing an exit in the exit fastpath, i.e. avoid calling back into handle_preemption_timer() for the same exit. There is no work to be done for forced exits, as the name suggests the goal is purely to get control back in KVM. In addition to shaving a few cycles, this will allow cleanly separating handle_fastpath_preemption_timer() from handle_preemption_timer(), e.g. it's not immediately obvious why _apparently_ calling handle_fastpath_preemption_timer() twice on a "slow" exit is necessary: the "slow" call is necessary to handle exits from L2, which are excluded from the fastpath by vmx_vcpu_run(). Link: https://lore.kernel.org/r/20240110012705.506918-4-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
| | * | KVM: VMX: Re-enter guest in fastpath for "spurious" preemption timer exitsSean Christopherson2024-02-221-2/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Re-enter the guest in the fast path if VMX preeemption timer VM-Exit was "spurious", i.e. if KVM "soft disabled" the timer by writing -1u and by some miracle the timer expired before any other VM-Exit occurred. This is just an intermediate step to cleaning up the preemption timer handling, optimizing these types of spurious VM-Exits is not interesting as they are extremely rare/infrequent. Link: https://lore.kernel.org/r/20240110012705.506918-3-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
| | * | KVM: x86: Plumb "force_immediate_exit" into kvm_entry() tracepointSean Christopherson2024-02-221-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Annotate the kvm_entry() tracepoint with "immediate exit" when KVM is forcing a VM-Exit immediately after VM-Enter, e.g. when KVM wants to inject an event but needs to first complete some other operation. Knowing that KVM is (or isn't) forcing an exit is useful information when debugging issues related to event injection. Suggested-by: Maxim Levitsky <mlevitsk@redhat.com> Link: https://lore.kernel.org/r/20240110012705.506918-2-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
| | * | KVM: x86: Open code all direct reads to guest DR6 and DR7Sean Christopherson2024-02-221-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Bite the bullet, and open code all direct reads of DR6 and DR7. KVM currently has a mix of open coded accesses and calls to kvm_get_dr(), which is confusing and ugly because there's no rhyme or reason as to why any particular chunk of code uses kvm_get_dr(). The obvious alternative is to force all accesses through kvm_get_dr(), but it's not at all clear that doing so would be a net positive, e.g. even if KVM ends up wanting/needing to force all reads through a common helper, e.g. to play caching games, the cost of reverting this change is likely lower than the ongoing cost of maintaining weird, arbitrary code. No functional change intended. Cc: Mathias Krause <minipli@grsecurity.net> Reviewed-by: Mathias Krause <minipli@grsecurity.net> Link: https://lore.kernel.org/r/20240209220752.388160-3-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
| | * | KVM: x86: Make kvm_get_dr() return a value, not use an out parameterSean Christopherson2024-02-222-5/+2
| | |/ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Convert kvm_get_dr()'s output parameter to a return value, and clean up most of the mess that was created by forcing callers to provide a pointer. No functional change intended. Acked-by: Mathias Krause <minipli@grsecurity.net> Reviewed-by: Mathias Krause <minipli@grsecurity.net> Link: https://lore.kernel.org/r/20240209220752.388160-2-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
* | | Merge tag 'x86-core-2024-03-11' of ↵Linus Torvalds2024-03-111-1/+1
|\ \ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull core x86 updates from Ingo Molnar: - The biggest change is the rework of the percpu code, to support the 'Named Address Spaces' GCC feature, by Uros Bizjak: - This allows C code to access GS and FS segment relative memory via variables declared with such attributes, which allows the compiler to better optimize those accesses than the previous inline assembly code. - The series also includes a number of micro-optimizations for various percpu access methods, plus a number of cleanups of %gs accesses in assembly code. - These changes have been exposed to linux-next testing for the last ~5 months, with no known regressions in this area. - Fix/clean up __switch_to()'s broken but accidentally working handling of FPU switching - which also generates better code - Propagate more RIP-relative addressing in assembly code, to generate slightly better code - Rework the CPU mitigations Kconfig space to be less idiosyncratic, to make it easier for distros to follow & maintain these options - Rework the x86 idle code to cure RCU violations and to clean up the logic - Clean up the vDSO Makefile logic - Misc cleanups and fixes * tag 'x86-core-2024-03-11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (52 commits) x86/idle: Select idle routine only once x86/idle: Let prefer_mwait_c1_over_halt() return bool x86/idle: Cleanup idle_setup() x86/idle: Clean up idle selection x86/idle: Sanitize X86_BUG_AMD_E400 handling sched/idle: Conditionally handle tick broadcast in default_idle_call() x86: Increase brk randomness entropy for 64-bit systems x86/vdso: Move vDSO to mmap region x86/vdso/kbuild: Group non-standard build attributes and primary object file rules together x86/vdso: Fix rethunk patching for vdso-image-{32,64}.o x86/retpoline: Ensure default return thunk isn't used at runtime x86/vdso: Use CONFIG_COMPAT_32 to specify vdso32 x86/vdso: Use $(addprefix ) instead of $(foreach ) x86/vdso: Simplify obj-y addition x86/vdso: Consolidate targets and clean-files x86/bugs: Rename CONFIG_RETHUNK => CONFIG_MITIGATION_RETHUNK x86/bugs: Rename CONFIG_CPU_SRSO => CONFIG_MITIGATION_SRSO x86/bugs: Rename CONFIG_CPU_IBRS_ENTRY => CONFIG_MITIGATION_IBRS_ENTRY x86/bugs: Rename CONFIG_CPU_UNRET_ENTRY => CONFIG_MITIGATION_UNRET_ENTRY x86/bugs: Rename CONFIG_SLS => CONFIG_MITIGATION_SLS ...
| * \ \ Merge branch 'x86/bugs' into x86/core, to pick up pending changes before ↵Ingo Molnar2024-02-141-1/+1
| |\ \ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | dependent patches Merge in pending alternatives patching infrastructure changes, before applying more patches. Signed-off-by: Ingo Molnar <mingo@kernel.org>
| | * | | x86/bugs: Rename CONFIG_RETPOLINE => CONFIG_MITIGATION_RETPOLINEBreno Leitao2024-01-101-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Step 5/10 of the namespace unification of CPU mitigations related Kconfig options. [ mingo: Converted a few more uses in comments/messages as well. ] Suggested-by: Josh Poimboeuf <jpoimboe@kernel.org> Signed-off-by: Breno Leitao <leitao@debian.org> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Ariel Miculas <amiculas@cisco.com> Acked-by: Josh Poimboeuf <jpoimboe@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: https://lore.kernel.org/r/20231121160740.1249350-6-leitao@debian.org
* | | | | Merge tag 'x86-fred-2024-03-10' of ↵Linus Torvalds2024-03-111-3/+9
|\ \ \ \ \ | |_|_|/ / |/| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 FRED support from Thomas Gleixner: "Support for x86 Fast Return and Event Delivery (FRED). FRED is a replacement for IDT event delivery on x86 and addresses most of the technical nightmares which IDT exposes: 1) Exception cause registers like CR2 need to be manually preserved in nested exception scenarios. 2) Hardware interrupt stack switching is suboptimal for nested exceptions as the interrupt stack mechanism rewinds the stack on each entry which requires a massive effort in the low level entry of #NMI code to handle this. 3) No hardware distinction between entry from kernel or from user which makes establishing kernel context more complex than it needs to be especially for unconditionally nestable exceptions like NMI. 4) NMI nesting caused by IRET unconditionally reenabling NMIs, which is a problem when the perf NMI takes a fault when collecting a stack trace. 5) Partial restore of ESP when returning to a 16-bit segment 6) Limitation of the vector space which can cause vector exhaustion on large systems. 7) Inability to differentiate NMI sources FRED addresses these shortcomings by: 1) An extended exception stack frame which the CPU uses to save exception cause registers. This ensures that the meta information for each exception is preserved on stack and avoids the extra complexity of preserving it in software. 2) Hardware interrupt stack switching is non-rewinding if a nested exception uses the currently interrupt stack. 3) The entry points for kernel and user context are separate and GS BASE handling which is required to establish kernel context for per CPU variable access is done in hardware. 4) NMIs are now nesting protected. They are only reenabled on the return from NMI. 5) FRED guarantees full restore of ESP 6) FRED does not put a limitation on the vector space by design because it uses a central entry points for kernel and user space and the CPUstores the entry type (exception, trap, interrupt, syscall) on the entry stack along with the vector number. The entry code has to demultiplex this information, but this removes the vector space restriction. The first hardware implementations will still have the current restricted vector space because lifting this limitation requires further changes to the local APIC. 7) FRED stores the vector number and meta information on stack which allows having more than one NMI vector in future hardware when the required local APIC changes are in place. The series implements the initial FRED support by: - Reworking the existing entry and IDT handling infrastructure to accomodate for the alternative entry mechanism. - Expanding the stack frame to accomodate for the extra 16 bytes FRED requires to store context and meta information - Providing FRED specific C entry points for events which have information pushed to the extended stack frame, e.g. #PF and #DB. - Providing FRED specific C entry points for #NMI and #MCE - Implementing the FRED specific ASM entry points and the C code to demultiplex the events - Providing detection and initialization mechanisms and the necessary tweaks in context switching, GS BASE handling etc. The FRED integration aims for maximum code reuse vs the existing IDT implementation to the extent possible and the deviation in hot paths like context switching are handled with alternatives to minimalize the impact. The low level entry and exit paths are seperate due to the extended stack frame and the hardware based GS BASE swichting and therefore have no impact on IDT based systems. It has been extensively tested on existing systems and on the FRED simulation and as of now there are no outstanding problems" * tag 'x86-fred-2024-03-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (38 commits) x86/fred: Fix init_task thread stack pointer initialization MAINTAINERS: Add a maintainer entry for FRED x86/fred: Fix a build warning with allmodconfig due to 'inline' failing to inline properly x86/fred: Invoke FRED initialization code to enable FRED x86/fred: Add FRED initialization functions x86/syscall: Split IDT syscall setup code into idt_syscall_init() KVM: VMX: Call fred_entry_from_kvm() for IRQ/NMI handling x86/entry: Add fred_entry_from_kvm() for VMX to handle IRQ/NMI x86/entry/calling: Allow PUSH_AND_CLEAR_REGS being used beyond actual entry code x86/fred: Fixup fault on ERETU by jumping to fred_entrypoint_user x86/fred: Let ret_from_fork_asm() jmp to asm_fred_exit_user when FRED is enabled x86/traps: Add sysvec_install() to install a system interrupt handler x86/fred: FRED entry/exit and dispatch code x86/fred: Add a machine check entry stub for FRED x86/fred: Add a NMI entry stub for FRED x86/fred: Add a debug fault entry stub for FRED x86/idtentry: Incorporate definitions/declarations of the FRED entries x86/fred: Make exc_page_fault() work for FRED x86/fred: Allow single-step trap and NMI when starting a new task x86/fred: No ESPFIX needed when FRED is enabled ...
| * | | | KVM: VMX: Call fred_entry_from_kvm() for IRQ/NMI handlingXin Li2024-01-311-3/+9
| | |_|/ | |/| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When FRED is enabled, call fred_entry_from_kvm() to handle IRQ/NMI in IRQ/NMI induced VM exits. Signed-off-by: Xin Li <xin3.li@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de> Tested-by: Shan Kang <shan.kang@intel.com> Acked-by: Paolo Bonzini <pbonzini@redhat.com> Link: https://lore.kernel.org/r/20231205105030.8698-33-xin3.li@intel.com
* | | | KVM/VMX: Move VERW closer to VMentry for MDS mitigationPawan Gupta2024-02-192-4/+19
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | During VMentry VERW is executed to mitigate MDS. After VERW, any memory access like register push onto stack may put host data in MDS affected CPU buffers. A guest can then use MDS to sample host data. Although likelihood of secrets surviving in registers at current VERW callsite is less, but it can't be ruled out. Harden the MDS mitigation by moving the VERW mitigation late in VMentry path. Note that VERW for MMIO Stale Data mitigation is unchanged because of the complexity of per-guest conditional VERW which is not easy to handle that late in asm with no GPRs available. If the CPU is also affected by MDS, VERW is unconditionally executed late in asm regardless of guest having MMIO access. Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Acked-by: Sean Christopherson <seanjc@google.com> Link: https://lore.kernel.org/all/20240213-delay-verw-v8-6-a6216d83edb7%40linux.intel.com
* | | | KVM/VMX: Use BT+JNC, i.e. EFLAGS.CF to select VMRESUME vs. VMLAUNCHSean Christopherson2024-02-192-5/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Use EFLAGS.CF instead of EFLAGS.ZF to track whether to use VMRESUME versus VMLAUNCH. Freeing up EFLAGS.ZF will allow doing VERW, which clobbers ZF, for MDS mitigations as late as possible without needing to duplicate VERW for both paths. Signed-off-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Nikolay Borisov <nik.borisov@suse.com> Link: https://lore.kernel.org/all/20240213-delay-verw-v8-5-a6216d83edb7%40linux.intel.com
* | | | x86/bugs: Use ALTERNATIVE() instead of mds_user_clear static keyPawan Gupta2024-02-191-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The VERW mitigation at exit-to-user is enabled via a static branch mds_user_clear. This static branch is never toggled after boot, and can be safely replaced with an ALTERNATIVE() which is convenient to use in asm. Switch to ALTERNATIVE() to use the VERW mitigation late in exit-to-user path. Also remove the now redundant VERW in exc_nmi() and arch_exit_to_user_mode(). Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com> Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lore.kernel.org/all/20240213-delay-verw-v8-4-a6216d83edb7%40linux.intel.com
* | | | Merge tag 'kvm-x86-fixes-6.8-rcN' of https://github.com/kvm-x86/linux into HEADPaolo Bonzini2024-02-141-1/+1
|\ \ \ \ | |_|/ / |/| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | KVM x86 fixes for 6.8: - Make a KVM_REQ_NMI request while handling KVM_SET_VCPU_EVENTS if and only if the incoming events->nmi.pending is non-zero. If the target vCPU is in the UNITIALIZED state, the spurious request will result in KVM exiting to userspace, which in turn causes QEMU to constantly acquire and release QEMU's global mutex, to the point where the BSP is unable to make forward progress. - Fix a type (u8 versus u64) goof that results in pmu->fixed_ctr_ctrl being incorrectly truncated, and ultimately causes KVM to think a fixed counter has already been disabled (KVM thinks the old value is '0'). - Fix a stack leak in KVM_GET_MSRS where a failed MSR read from userspace that is ultimately ignored due to ignore_msrs=true doesn't zero the output as intended.
| * | | KVM: x86/pmu: Fix type length error when reading pmu->fixed_ctr_ctrlMingwei Zhang2024-02-021-1/+1
| |/ / | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Use a u64 instead of a u8 when taking a snapshot of pmu->fixed_ctr_ctrl when reprogramming fixed counters, as truncating the value results in KVM thinking fixed counter 2 is already disabled (the bug also affects fixed counters 3+, but KVM doesn't yet support those). As a result, if the guest disables fixed counter 2, KVM will get a false negative and fail to reprogram/disable emulation of the counter, which can leads to incorrect counts and spurious PMIs in the guest. Fixes: 76d287b2342e ("KVM: x86/pmu: Drop "u8 ctrl, int idx" for reprogram_fixed_counter()") Cc: stable@vger.kernel.org Signed-off-by: Mingwei Zhang <mizhang@google.com> Link: https://lore.kernel.org/r/20240123221220.3911317-1-mizhang@google.com [sean: rewrite changelog to call out the effects of the bug] Signed-off-by: Sean Christopherson <seanjc@google.com>
* / / work around gcc bugs with 'asm goto' with outputsLinus Torvalds2024-02-092-5/+5
|/ / | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | We've had issues with gcc and 'asm goto' before, and we created a 'asm_volatile_goto()' macro for that in the past: see commits 3f0116c3238a ("compiler/gcc4: Add quirk for 'asm goto' miscompilation bug") and a9f180345f53 ("compiler/gcc4: Make quirk for asm_volatile_goto() unconditional"). Then, much later, we ended up removing the workaround in commit 43c249ea0b1e ("compiler-gcc.h: remove ancient workaround for gcc PR 58670") because we no longer supported building the kernel with the affected gcc versions, but we left the macro uses around. Now, Sean Christopherson reports a new version of a very similar problem, which is fixed by re-applying that ancient workaround. But the problem in question is limited to only the 'asm goto with outputs' cases, so instead of re-introducing the old workaround as-is, let's rename and limit the workaround to just that much less common case. It looks like there are at least two separate issues that all hit in this area: (a) some versions of gcc don't mark the asm goto as 'volatile' when it has outputs: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=98619 https://gcc.gnu.org/bugzilla/show_bug.cgi?id=110420 which is easy to work around by just adding the 'volatile' by hand. (b) Internal compiler errors: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=110422 which are worked around by adding the extra empty 'asm' as a barrier, as in the original workaround. but the problem Sean sees may be a third thing since it involves bad code generation (not an ICE) even with the manually added 'volatile'. but the same old workaround works for this case, even if this feels a bit like voodoo programming and may only be hiding the issue. Reported-and-tested-by: Sean Christopherson <seanjc@google.com> Link: https://lore.kernel.org/all/20240208220604.140859-1-seanjc@google.com/ Cc: Nick Desaulniers <ndesaulniers@google.com> Cc: Uros Bizjak <ubizjak@gmail.com> Cc: Jakub Jelinek <jakub@redhat.com> Cc: Andrew Pinski <quic_apinski@quicinc.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds2024-01-1714-716/+867
|\ \ | |/ |/| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Pull kvm updates from Paolo Bonzini: "Generic: - Use memdup_array_user() to harden against overflow. - Unconditionally advertise KVM_CAP_DEVICE_CTRL for all architectures. - Clean up Kconfigs that all KVM architectures were selecting - New functionality around "guest_memfd", a new userspace API that creates an anonymous file and returns a file descriptor that refers to it. guest_memfd files are bound to their owning virtual machine, cannot be mapped, read, or written by userspace, and cannot be resized. guest_memfd files do however support PUNCH_HOLE, which can be used to switch a memory area between guest_memfd and regular anonymous memory. - New ioctl KVM_SET_MEMORY_ATTRIBUTES allowing userspace to specify per-page attributes for a given page of guest memory; right now the only attribute is whether the guest expects to access memory via guest_memfd or not, which in Confidential SVMs backed by SEV-SNP, TDX or ARM64 pKVM is checked by firmware or hypervisor that guarantees confidentiality (AMD PSP, Intel TDX module, or EL2 in the case of pKVM). x86: - Support for "software-protected VMs" that can use the new guest_memfd and page attributes infrastructure. This is mostly useful for testing, since there is no pKVM-like infrastructure to provide a meaningfully reduced TCB. - Fix a relatively benign off-by-one error when splitting huge pages during CLEAR_DIRTY_LOG. - Fix a bug where KVM could incorrectly test-and-clear dirty bits in non-leaf TDP MMU SPTEs if a racing thread replaces a huge SPTE with a non-huge SPTE. - Use more generic lockdep assertions in paths that don't actually care about whether the caller is a reader or a writer. - let Xen guests opt out of having PV clock reported as "based on a stable TSC", because some of them don't expect the "TSC stable" bit (added to the pvclock ABI by KVM, but never set by Xen) to be set. - Revert a bogus, made-up nested SVM consistency check for TLB_CONTROL. - Advertise flush-by-ASID support for nSVM unconditionally, as KVM always flushes on nested transitions, i.e. always satisfies flush requests. This allows running bleeding edge versions of VMware Workstation on top of KVM. - Sanity check that the CPU supports flush-by-ASID when enabling SEV support. - On AMD machines with vNMI, always rely on hardware instead of intercepting IRET in some cases to detect unmasking of NMIs - Support for virtualizing Linear Address Masking (LAM) - Fix a variety of vPMU bugs where KVM fail to stop/reset counters and other state prior to refreshing the vPMU model. - Fix a double-overflow PMU bug by tracking emulated counter events using a dedicated field instead of snapshotting the "previous" counter. If the hardware PMC count triggers overflow that is recognized in the same VM-Exit that KVM manually bumps an event count, KVM would pend PMIs for both the hardware-triggered overflow and for KVM-triggered overflow. - Turn off KVM_WERROR by default for all configs so that it's not inadvertantly enabled by non-KVM developers, which can be problematic for subsystems that require no regressions for W=1 builds. - Advertise all of the host-supported CPUID bits that enumerate IA32_SPEC_CTRL "features". - Don't force a masterclock update when a vCPU synchronizes to the current TSC generation, as updating the masterclock can cause kvmclock's time to "jump" unexpectedly, e.g. when userspace hotplugs a pre-created vCPU. - Use RIP-relative address to read kvm_rebooting in the VM-Enter fault paths, partly as a super minor optimization, but mostly to make KVM play nice with position independent executable builds. - Guard KVM-on-HyperV's range-based TLB flush hooks with an #ifdef on CONFIG_HYPERV as a minor optimization, and to self-document the code. - Add CONFIG_KVM_HYPERV to allow disabling KVM support for HyperV "emulation" at build time. ARM64: - LPA2 support, adding 52bit IPA/PA capability for 4kB and 16kB base granule sizes. Branch shared with the arm64 tree. - Large Fine-Grained Trap rework, bringing some sanity to the feature, although there is more to come. This comes with a prefix branch shared with the arm64 tree. - Some additional Nested Virtualization groundwork, mostly introducing the NV2 VNCR support and retargetting the NV support to that version of the architecture. - A small set of vgic fixes and associated cleanups. Loongarch: - Optimization for memslot hugepage checking - Cleanup and fix some HW/SW timer issues - Add LSX/LASX (128bit/256bit SIMD) support RISC-V: - KVM_GET_REG_LIST improvement for vector registers - Generate ISA extension reg_list using macros in get-reg-list selftest - Support for reporting steal time along with selftest s390: - Bugfixes Selftests: - Fix an annoying goof where the NX hugepage test prints out garbage instead of the magic token needed to run the test. - Fix build errors when a header is delete/moved due to a missing flag in the Makefile. - Detect if KVM bugged/killed a selftest's VM and print out a helpful message instead of complaining that a random ioctl() failed. - Annotate the guest printf/assert helpers with __printf(), and fix the various bugs that were lurking due to lack of said annotation" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (185 commits) x86/kvm: Do not try to disable kvmclock if it was not enabled KVM: x86: add missing "depends on KVM" KVM: fix direction of dependency on MMU notifiers KVM: introduce CONFIG_KVM_COMMON KVM: arm64: Add missing memory barriers when switching to pKVM's hyp pgd KVM: arm64: vgic-its: Avoid potential UAF in LPI translation cache RISC-V: KVM: selftests: Add get-reg-list test for STA registers RISC-V: KVM: selftests: Add steal_time test support RISC-V: KVM: selftests: Add guest_sbi_probe_extension RISC-V: KVM: selftests: Move sbi_ecall to processor.c RISC-V: KVM: Implement SBI STA extension RISC-V: KVM: Add support for SBI STA registers RISC-V: KVM: Add support for SBI extension registers RISC-V: KVM: Add SBI STA info to vcpu_arch RISC-V: KVM: Add steal-update vcpu request RISC-V: KVM: Add SBI STA extension skeleton RISC-V: paravirt: Implement steal-time support RISC-V: Add SBI STA extension definitions RISC-V: paravirt: Add skeleton for pv-time support RISC-V: KVM: Fix indentation in kvm_riscv_vcpu_set_reg_csr() ...
| * Merge tag 'kvm-x86-lam-6.8' of https://github.com/kvm-x86/linux into HEADPaolo Bonzini2024-01-084-5/+64
| |\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | KVM x86 support for virtualizing Linear Address Masking (LAM) Add KVM support for Linear Address Masking (LAM). LAM tweaks the canonicality checks for most virtual address usage in 64-bit mode, such that only the most significant bit of the untranslated address bits must match the polarity of the last translated address bit. This allows software to use ignored, untranslated address bits for metadata, e.g. to efficiently tag pointers for address sanitization. LAM can be enabled separately for user pointers and supervisor pointers, and for userspace LAM can be select between 48-bit and 57-bit masking - 48-bit LAM: metadata bits 62:48, i.e. LAM width of 15. - 57-bit LAM: metadata bits 62:57, i.e. LAM width of 6. For user pointers, LAM enabling utilizes two previously-reserved high bits from CR3 (similar to how PCID_NOFLUSH uses bit 63): LAM_U48 and LAM_U57, bits 62 and 61 respectively. Note, if LAM_57 is set, LAM_U48 is ignored, i.e.: - CR3.LAM_U48=0 && CR3.LAM_U57=0 == LAM disabled for user pointers - CR3.LAM_U48=1 && CR3.LAM_U57=0 == LAM-48 enabled for user pointers - CR3.LAM_U48=x && CR3.LAM_U57=1 == LAM-57 enabled for user pointers For supervisor pointers, LAM is controlled by a single bit, CR4.LAM_SUP, with the 48-bit versus 57-bit LAM behavior following the current paging mode, i.e.: - CR4.LAM_SUP=0 && CR4.LA57=x == LAM disabled for supervisor pointers - CR4.LAM_SUP=1 && CR4.LA57=0 == LAM-48 enabled for supervisor pointers - CR4.LAM_SUP=1 && CR4.LA57=1 == LAM-57 enabled for supervisor pointers The modified LAM canonicality checks: - LAM_S48 : [ 1 ][ metadata ][ 1 ] 63 47 - LAM_U48 : [ 0 ][ metadata ][ 0 ] 63 47 - LAM_S57 : [ 1 ][ metadata ][ 1 ] 63 56 - LAM_U57 + 5-lvl paging : [ 0 ][ metadata ][ 0 ] 63 56 - LAM_U57 + 4-lvl paging : [ 0 ][ metadata ][ 0...0 ] 63 56..47 The bulk of KVM support for LAM is to emulate LAM's modified canonicality checks. The approach taken by KVM is to "fill" the metadata bits using the highest bit of the translated address, e.g. for LAM-48, bit 47 is sign-extended to bits 62:48. The most significant bit, 63, is *not* modified, i.e. its value from the raw, untagged virtual address is kept for the canonicality check. This untagging allows Aside from emulating LAM's canonical checks behavior, LAM has the usual KVM touchpoints for selectable features: enumeration (CPUID.7.1:EAX.LAM[bit 26], enabling via CR3 and CR4 bits, etc.
| | * KVM: x86: Use KVM-governed feature framework to track "LAM enabled"Binbin Wu2023-11-281-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Use the governed feature framework to track if Linear Address Masking (LAM) is "enabled", i.e. if LAM can be used by the guest. Using the framework to avoid the relative expensive call guest_cpuid_has() during cr3 and vmexit handling paths for LAM. No functional change intended. Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com> Tested-by: Xuelian Guo <xuelian.guo@intel.com> Link: https://lore.kernel.org/r/20230913124227.12574-14-binbin.wu@linux.intel.com Signed-off-by: Sean Christopherson <seanjc@google.com>
| | * KVM: x86: Virtualize LAM for user pointerRobert Hoo2023-11-281-3/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Add support to allow guests to set the new CR3 control bits for Linear Address Masking (LAM) and add implementation to get untagged address for user pointers. LAM modifies the canonical check for 64-bit linear addresses, allowing software to use the masked/ignored address bits for metadata. Hardware masks off the metadata bits before using the linear addresses to access memory. LAM uses two new CR3 non-address bits, LAM_U48 (bit 62) and LAM_U57 (bit 61), to configure LAM for user pointers. LAM also changes VMENTER to allow both bits to be set in VMCS's HOST_CR3 and GUEST_CR3 for virtualization. When EPT is on, CR3 is not trapped by KVM and it's up to the guest to set any of the two LAM control bits. However, when EPT is off, the actual CR3 used by the guest is generated from the shadow MMU root which is different from the CR3 that is *set* by the guest, and KVM needs to manually apply any active control bits to VMCS's GUEST_CR3 based on the cached CR3 *seen* by the guest. KVM manually checks guest's CR3 to make sure it points to a valid guest physical address (i.e. to support smaller MAXPHYSADDR in the guest). Extend this check to allow the two LAM control bits to be set. After check, LAM bits of guest CR3 will be stripped off to extract guest physical address. In case of nested, for a guest which supports LAM, both VMCS12's HOST_CR3 and GUEST_CR3 are allowed to have the new LAM control bits set, i.e. when L0 enters L1 to emulate a VMEXIT from L2 to L1 or when L0 enters L2 directly. KVM also manually checks VMCS12's HOST_CR3 and GUEST_CR3 being valid physical address. Extend such check to allow the new LAM control bits too. Note, LAM doesn't have a global control bit to turn on/off LAM completely, but purely depends on hardware's CPUID to determine it can be enabled or not. That means, when EPT is on, even when KVM doesn't expose LAM to guest, the guest can still set LAM control bits in CR3 w/o causing problem. This is an unfortunate virtualization hole. KVM could choose to intercept CR3 in this case and inject fault but this would hurt performance when running a normal VM w/o LAM support. This is undesirable. Just choose to let the guest do such illegal thing as the worst case is guest being killed when KVM eventually find out such illegal behaviour and that the guest is misbehaving. Suggested-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Robert Hoo <robert.hu@linux.intel.com> Co-developed-by: Binbin Wu <binbin.wu@linux.intel.com> Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com> Reviewed-by: Kai Huang <kai.huang@intel.com> Reviewed-by: Chao Gao <chao.gao@intel.com> Tested-by: Xuelian Guo <xuelian.guo@intel.com> Link: https://lore.kernel.org/r/20230913124227.12574-12-binbin.wu@linux.intel.com Signed-off-by: Sean Christopherson <seanjc@google.com>
| | * KVM: x86: Virtualize LAM for supervisor pointerRobert Hoo2023-11-281-1/+38
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Add support to allow guests to set the new CR4 control bit for LAM and add implementation to get untagged address for supervisor pointers. LAM modifies the canonicality check applied to 64-bit linear addresses for data accesses, allowing software to use of the untranslated address bits for metadata and masks the metadata bits before using them as linear addresses to access memory. LAM uses CR4.LAM_SUP (bit 28) to configure and enable LAM for supervisor pointers. It also changes VMENTER to allow the bit to be set in VMCS's HOST_CR4 and GUEST_CR4 to support virtualization. Note CR4.LAM_SUP is allowed to be set even not in 64-bit mode, but it will not take effect since LAM only applies to 64-bit linear addresses. Move CR4.LAM_SUP out of CR4_RESERVED_BITS, its reservation depends on vcpu supporting LAM or not. Leave it intercepted to prevent guest from setting the bit if LAM is not exposed to guest as well as to avoid vmread every time when KVM fetches its value, with the expectation that guest won't toggle the bit frequently. Set CR4.LAM_SUP bit in the emulated IA32_VMX_CR4_FIXED1 MSR for guests to allow guests to enable LAM for supervisor pointers in nested VMX operation. Hardware is not required to do TLB flush when CR4.LAM_SUP toggled, KVM doesn't need to emulate TLB flush based on it. There's no other features or vmx_exec_controls connection, and no other code needed in {kvm,vmx}_set_cr4(). Skip address untag for instruction fetches (which includes branch targets), operand of INVLPG instructions, and implicit system accesses, all of which are not subject to untagging. Note, get_untagged_addr() isn't invoked for implicit system accesses as there is no reason to do so, but check the flag anyways for documentation purposes. Signed-off-by: Robert Hoo <robert.hu@linux.intel.com> Co-developed-by: Binbin Wu <binbin.wu@linux.intel.com> Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com> Reviewed-by: Chao Gao <chao.gao@intel.com> Reviewed-by: Kai Huang <kai.huang@intel.com> Tested-by: Xuelian Guo <xuelian.guo@intel.com> Link: https://lore.kernel.org/r/20230913124227.12574-11-binbin.wu@linux.intel.com Signed-off-by: Sean Christopherson <seanjc@google.com>
| | * KVM: x86: Untag addresses for LAM emulation where applicableBinbin Wu2023-11-284-0/+15
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Stub in vmx_get_untagged_addr() and wire up calls from the emulator (via get_untagged_addr()) and "direct" calls from various VM-Exit handlers in VMX where LAM untagging is supposed to be applied. Defer implementing the guts of vmx_get_untagged_addr() to future patches purely to make the changes easier to consume. LAM is active only for 64-bit linear addresses and several types of accesses are exempted. - Cases need to untag address (handled in get_vmx_mem_address()) Operand(s) of VMX instructions and INVPCID. Operand(s) of SGX ENCLS. - Cases LAM doesn't apply to (no change needed) Operand of INVLPG. Linear address in INVPCID descriptor. Linear address in INVVPID descriptor. BASEADDR specified in SECS of ECREATE. Note: - LAM doesn't apply to write to control registers or MSRs - LAM masking is applied before walking page tables, i.e. the faulting linear address in CR2 doesn't contain the metadata. - The guest linear address saved in VMCS doesn't contain metadata. Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com> Reviewed-by: Chao Gao <chao.gao@intel.com> Tested-by: Xuelian Guo <xuelian.guo@intel.com> Link: https://lore.kernel.org/r/20230913124227.12574-10-binbin.wu@linux.intel.com [sean: massage changelog] Signed-off-by: Sean Christopherson <seanjc@google.com>
| | * KVM: x86: Remove kvm_vcpu_is_illegal_gpa()Binbin Wu2023-11-282-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Remove kvm_vcpu_is_illegal_gpa() and use !kvm_vcpu_is_legal_gpa() instead. The "illegal" helper actually predates the "legal" helper, the only reason the "illegal" variant wasn't removed by commit 4bda0e97868a ("KVM: x86: Add a helper to check for a legal GPA") was to avoid code churn. Now that CR3 has a dedicated helper, there are fewer callers, and so the code churn isn't that much of a deterrent. No functional change intended. Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com> Tested-by: Xuelian Guo <xuelian.guo@intel.com> Link: https://lore.kernel.org/r/20230913124227.12574-8-binbin.wu@linux.intel.com [sean: provide a bit of history in the changelog] Signed-off-by: Sean Christopherson <seanjc@google.com>
| | * KVM: x86: Add & use kvm_vcpu_is_legal_cr3() to check CR3's legalityBinbin Wu2023-11-281-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Add and use kvm_vcpu_is_legal_cr3() to check CR3's legality to provide a clear distinction between CR3 and GPA checks. This will allow exempting bits from kvm_vcpu_is_legal_cr3() without affecting general GPA checks, e.g. for upcoming features that will use high bits in CR3 for feature enabling. No functional change intended. Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com> Tested-by: Xuelian Guo <xuelian.guo@intel.com> Link: https://lore.kernel.org/r/20230913124227.12574-7-binbin.wu@linux.intel.com Signed-off-by: Sean Christopherson <seanjc@google.com>
| * | Merge tag 'kvm-x86-pmu-6.8' of https://github.com/kvm-x86/linux into HEADPaolo Bonzini2024-01-081-22/+0
| |\ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | KVM x86 PMU changes for 6.8: - Fix a variety of bugs where KVM fail to stop/reset counters and other state prior to refreshing the vPMU model. - Fix a double-overflow PMU bug by tracking emulated counter events using a dedicated field instead of snapshotting the "previous" counter. If the hardware PMC count triggers overflow that is recognized in the same VM-Exit that KVM manually bumps an event count, KVM would pend PMIs for both the hardware-triggered overflow and for KVM-triggered overflow.
| | * | KVM: x86/pmu: Update sample period in pmc_write_counter()Sean Christopherson2023-11-301-2/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Update a PMC's sample period in pmc_write_counter() to deduplicate code across all callers of pmc_write_counter(). Opportunistically move pmc_write_counter() into pmc.c now that it's doing more work. WRMSR isn't such a hot path that an extra CALL+RET pair will be problematic, and the order of function definitions needs to be changed anyways, i.e. now is a convenient time to eat the churn. Reviewed-by: Dapeng Mi <dapeng1.mi@linux.intel.com> Link: https://lore.kernel.org/r/20231103230541.352265-6-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
| | * | KVM: x86/pmu: Move PMU reset logic to common x86 codeSean Christopherson2023-11-301-20/+0
| | |/ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Move the common (or at least "ignored") aspects of resetting the vPMU to common x86 code, along with the stop/release helpers that are no used only by the common pmu.c. There is no need to manually handle fixed counters as all_valid_pmc_idx tracks both fixed and general purpose counters, and resetting the vPMU is far from a hot path, i.e. the extra bit of overhead to the PMC from the index is a non-issue. Zero fixed_ctr_ctrl in common code even though it's Intel specific. Ensuring it's zero doesn't harm AMD/SVM in any way, and stopping the fixed counters via all_valid_pmc_idx, but not clearing the associated control bits, would be odd/confusing. Make the .reset() hook optional as SVM no longer needs vendor specific handling. Cc: stable@vger.kernel.org Reviewed-by: Dapeng Mi <dapeng1.mi@linux.intel.com> Link: https://lore.kernel.org/r/20231103230541.352265-2-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>
| * | Merge tag 'kvm-x86-misc-6.8' of https://github.com/kvm-x86/linux into HEADPaolo Bonzini2024-01-081-1/+1
| |\ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | KVM x86 misc changes for 6.8: - Turn off KVM_WERROR by default for all configs so that it's not inadvertantly enabled by non-KVM developers, which can be problematic for subsystems that require no regressions for W=1 builds. - Advertise all of the host-supported CPUID bits that enumerate IA32_SPEC_CTRL "features". - Don't force a masterclock update when a vCPU synchronizes to the current TSC generation, as updating the masterclock can cause kvmclock's time to "jump" unexpectedly, e.g. when userspace hotplugs a pre-created vCPU. - Use RIP-relative address to read kvm_rebooting in the VM-Enter fault paths, partly as a super minor optimization, but mostly to make KVM play nice with position independent executable builds.
| | * | KVM: SVM,VMX: Use %rip-relative addressing to access kvm_rebootingUros Bizjak2023-11-301-1/+1
| | |/ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Instruction with %rip-relative address operand is one byte shorter than its absolute address counterpart and is also compatible with position independent executable (-fpie) build. No functional changes intended. Cc: Sean Christopherson <seanjc@google.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Uros Bizjak <ubizjak@gmail.com> Link: https://lore.kernel.org/r/20231031075312.47525-1-ubizjak@gmail.com Signed-off-by: Sean Christopherson <seanjc@google.com>
| * | KVM: nVMX: Hide more stuff under CONFIG_KVM_HYPERVVitaly Kuznetsov2023-12-073-0/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 'hv_evmcs_vmptr'/'hv_evmcs_map'/'hv_evmcs' fields in 'struct nested_vmx' should not be used when !CONFIG_KVM_HYPERV, hide them when !CONFIG_KVM_HYPERV. No functional change intended. Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Tested-by: Jeremi Piotrowski <jpiotrowski@linux.microsoft.com> Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Link: https://lore.kernel.org/r/20231205103630.1391318-16-vkuznets@redhat.com Signed-off-by: Sean Christopherson <seanjc@google.com>
| * | KVM: nVMX: Introduce accessor to get Hyper-V eVMCS pointerVitaly Kuznetsov2023-12-072-15/+28
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | There's a number of 'vmx->nested.hv_evmcs' accesses in nested.c, introduce 'nested_vmx_evmcs()' accessor to hide them all in !CONFIG_KVM_HYPERV case. No functional change intended. Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Tested-by: Jeremi Piotrowski <jpiotrowski@linux.microsoft.com> Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Link: https://lore.kernel.org/r/20231205103630.1391318-15-vkuznets@redhat.com Signed-off-by: Sean Christopherson <seanjc@google.com>
| * | KVM: nVMX: Introduce helpers to check if Hyper-V evmptr12 is valid/setVitaly Kuznetsov2023-12-073-20/+50
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In order to get rid of raw 'vmx->nested.hv_evmcs_vmptr' accesses when !CONFIG_KVM_HYPERV, introduce a pair of helpers: nested_vmx_is_evmptr12_valid() to check that eVMPTR points to a valid address. nested_vmx_is_evmptr12_valid() to check that eVMPTR either points to a valid address or is in 'pending' port-migration state (meaning it is supposed to be valid but the exact address wasn't acquired from guest's memory yet). No functional change intended. Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Tested-by: Jeremi Piotrowski <jpiotrowski@linux.microsoft.com> Link: https://lore.kernel.org/r/20231205103630.1391318-14-vkuznets@redhat.com Signed-off-by: Sean Christopherson <seanjc@google.com>
| * | KVM: x86: Make Hyper-V emulation optionalVitaly Kuznetsov2023-12-073-5/+44
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Hyper-V emulation in KVM is a fairly big chunk and in some cases it may be desirable to not compile it in to reduce module sizes as well as the attack surface. Introduce CONFIG_KVM_HYPERV option to make it possible. Note, there's room for further nVMX/nSVM code optimizations when !CONFIG_KVM_HYPERV, this will be done in follow-up patches. Reorganize Makefile a bit so all CONFIG_HYPERV and CONFIG_KVM_HYPERV files are grouped together. Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Tested-by: Jeremi Piotrowski <jpiotrowski@linux.microsoft.com> Link: https://lore.kernel.org/r/20231205103630.1391318-13-vkuznets@redhat.com Signed-off-by: Sean Christopherson <seanjc@google.com>
| * | KVM: nVMX: Move guest_cpuid_has_evmcs() to hyperv.hVitaly Kuznetsov2023-12-072-10/+11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In preparation for making Hyper-V emulation optional, move Hyper-V specific guest_cpuid_has_evmcs() to hyperv.h. No functional change intended. Suggested-by: Sean Christopherson <seanjc@google.com> Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Tested-by: Jeremi Piotrowski <jpiotrowski@linux.microsoft.com> Link: https://lore.kernel.org/r/20231205103630.1391318-12-vkuznets@redhat.com Signed-off-by: Sean Christopherson <seanjc@google.com>
| * | KVM: nVMX: Split off helper for emulating VMCLEAR on Hyper-V eVMCSVitaly Kuznetsov2023-12-071-14/+24
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | To avoid overloading handle_vmclear() with Hyper-V specific details and to prepare the code to making Hyper-V emulation optional, create a dedicated nested_evmcs_handle_vmclear() helper. No functional change intended. Suggested-by: Sean Christopherson <seanjc@google.com> Tested-by: Jeremi Piotrowski <jpiotrowski@linux.microsoft.com> Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Link: https://lore.kernel.org/r/20231205103630.1391318-9-vkuznets@redhat.com Signed-off-by: Sean Christopherson <seanjc@google.com>
| * | KVM: x86: Introduce helper to handle Hyper-V paravirt TLB flush requestsVitaly Kuznetsov2023-12-071-8/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | As a preparation to making Hyper-V emulation optional, introduce a helper to handle pending KVM_REQ_HV_TLB_FLUSH requests. No functional change intended. Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Tested-by: Jeremi Piotrowski <jpiotrowski@linux.microsoft.com> Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Link: https://lore.kernel.org/r/20231205103630.1391318-8-vkuznets@redhat.com Signed-off-by: Sean Christopherson <seanjc@google.com>
| * | KVM: VMX: Split off hyperv_evmcs.{ch}Vitaly Kuznetsov2023-12-076-471/+485
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Some Enlightened VMCS related code is needed both by Hyper-V on KVM and KVM on Hyper-V. As a preparation to making Hyper-V emulation optional, create dedicated 'hyperv_evmcs.{ch}' files which are used by both. No functional change intended. Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Tested-by: Jeremi Piotrowski <jpiotrowski@linux.microsoft.com> Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Link: https://lore.kernel.org/r/20231205103630.1391318-7-vkuznets@redhat.com Signed-off-by: Sean Christopherson <seanjc@google.com>
| * | KVM: VMX: Split off vmx_onhyperv.{ch} from hyperv.{ch}Vitaly Kuznetsov2023-12-076-252/+267
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | hyperv.{ch} is currently a mix of stuff which is needed by both Hyper-V on KVM and KVM on Hyper-V. As a preparation to making Hyper-V emulation optional, put KVM-on-Hyper-V specific code into dedicated files. No functional change intended. Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Tested-by: Jeremi Piotrowski <jpiotrowski@linux.microsoft.com> Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Link: https://lore.kernel.org/r/20231205103630.1391318-4-vkuznets@redhat.com Signed-off-by: Sean Christopherson <seanjc@google.com>
| * | KVM: x86: Move Hyper-V partition assist page out of Hyper-V emulation contextVitaly Kuznetsov2023-12-071-11/+3
| |/ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Hyper-V partition assist page is used when KVM runs on top of Hyper-V and is not used for Windows/Hyper-V guests on KVM, this means that 'hv_pa_pg' placement in 'struct kvm_hv' is unfortunate. As a preparation to making Hyper-V emulation optional, move 'hv_pa_pg' to 'struct kvm_arch' and put it under CONFIG_HYPERV. While on it, introduce hv_get_partition_assist_page() helper to allocate partition assist page. Move the comment explaining why we use a single page for all vCPUs from VMX and expand it a bit. No functional change intended. Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com> Tested-by: Jeremi Piotrowski <jpiotrowski@linux.microsoft.com> Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Link: https://lore.kernel.org/r/20231205103630.1391318-3-vkuznets@redhat.com Signed-off-by: Sean Christopherson <seanjc@google.com>
| * KVM: Use gfn instead of hva for mmu_notifier_retryChao Peng2023-11-131-6/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently in mmu_notifier invalidate path, hva range is recorded and then checked against by mmu_invalidate_retry_hva() in the page fault handling path. However, for the soon-to-be-introduced private memory, a page fault may not have a hva associated, checking gfn(gpa) makes more sense. For existing hva based shared memory, gfn is expected to also work. The only downside is when aliasing multiple gfns to a single hva, the current algorithm of checking multiple ranges could result in a much larger range being rejected. Such aliasing should be uncommon, so the impact is expected small. Suggested-by: Sean Christopherson <seanjc@google.com> Cc: Xu Yilun <yilun.xu@intel.com> Signed-off-by: Chao Peng <chao.p.peng@linux.intel.com> Reviewed-by: Fuad Tabba <tabba@google.com> Tested-by: Fuad Tabba <tabba@google.com> [sean: convert vmx_set_apic_access_page_addr() to gfn-based API] Signed-off-by: Sean Christopherson <seanjc@google.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Reviewed-by: Xu Yilun <yilun.xu@linux.intel.com> Message-Id: <20231027182217.3615211-4-seanjc@google.com> Reviewed-by: Kai Huang <kai.huang@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* | arch/x86: Fix typosBjorn Helgaas2024-01-032-2/+2
|/ | | | | | | | | | Fix typos, most reported by "codespell arch/x86". Only touches comments, no code changes. Signed-off-by: Bjorn Helgaas <bhelgaas@google.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Reviewed-by: Randy Dunlap <rdunlap@infradead.org> Link: https://lore.kernel.org/r/20240103004011.1758650-1-helgaas@kernel.org
* Merge tag 'kvm-x86-svm-6.7' of https://github.com/kvm-x86/linux into HEADPaolo Bonzini2023-10-311-6/+6
|\ | | | | | | | | | | | | | | | | | | | | | | KVM SVM changes for 6.7: - Report KVM_EXIT_SHUTDOWN instead of EINVAL if KVM intercepts SHUTDOWN while running an SEV-ES guest. - Clean up handling "failures" when KVM detects it can't emulate the "skip" action for an instruction that has already been partially emulated. Drop a hack in the SVM code that was fudging around the emulator code not giving SVM enough information to do the right thing.
| * KVM: x86: Refactor can_emulate_instruction() return to be more expressiveSean Christopherson2023-10-041-6/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | Refactor and rename can_emulate_instruction() to allow vendor code to return more than true/false, e.g. to explicitly differentiate between "retry", "fault", and "unhandleable". For now, just do the plumbing, a future patch will expand SVM's implementation to signal outright failure if KVM attempts EMULTYPE_SKIP on an SEV guest. No functional change intended (or rather, none that are visible to the guest or userspace). Link: https://lore.kernel.org/r/20230825013621.2845700-4-seanjc@google.com Signed-off-by: Sean Christopherson <seanjc@google.com>