summaryrefslogtreecommitdiffstats
path: root/arch/x86/mm
Commit message (Collapse)AuthorAgeFilesLines
* x86/mm: Use the correct function type for native_set_fixmap()Sami Tolvanen2019-12-311-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | [ Upstream commit f53e2cd0b8ab7d9e390414470bdbd830f660133f ] We call native_set_fixmap indirectly through the function pointer struct pv_mmu_ops::set_fixmap, which expects the first parameter to be 'unsigned' instead of 'enum fixed_addresses'. This patch changes the function type for native_set_fixmap to match the pointer, which fixes indirect call mismatches with Control-Flow Integrity (CFI) checking. Signed-off-by: Sami Tolvanen <samitolvanen@google.com> Reviewed-by: Kees Cook <keescook@chromium.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: H . Peter Anvin <hpa@zytor.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20190913211402.193018-1-samitolvanen@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
* x86/mm/32: Sync only to VMALLOC_END in vmalloc_sync_all()Joerg Roedel2019-12-131-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 9a62d20027da3164a22244d9f022c0c987261687 upstream. The job of vmalloc_sync_all() is to help the lazy freeing of vmalloc() ranges: before such vmap ranges are reused we make sure that they are unmapped from every task's page tables. This is really easy on pagetable setups where the kernel page tables are shared between all tasks - this is the case on 32-bit kernels with SHARED_KERNEL_PMD = 1. But on !SHARED_KERNEL_PMD 32-bit kernels this involves iterating over the pgd_list and clearing all pmd entries in the pgds that are cleared in the init_mm.pgd, which is the reference pagetable that the vmalloc() code uses. In that context the current practice of vmalloc_sync_all() iterating until FIX_ADDR_TOP is buggy: for (address = VMALLOC_START & PMD_MASK; address >= TASK_SIZE_MAX && address < FIXADDR_TOP; address += PMD_SIZE) { struct page *page; Because iterating up to FIXADDR_TOP will involve a lot of non-vmalloc address ranges: VMALLOC -> PKMAP -> LDT -> CPU_ENTRY_AREA -> FIX_ADDR This is mostly harmless for the FIX_ADDR and CPU_ENTRY_AREA ranges that don't clear their pmds, but it's lethal for the LDT range, which relies on having different mappings in different processes, and 'synchronizing' them in the vmalloc sense corrupts those pagetable entries (clearing them). This got particularly prominent with PTI, which turns SHARED_KERNEL_PMD off and makes this the dominant mapping mode on 32-bit. To make LDT working again vmalloc_sync_all() must only iterate over the volatile parts of the kernel address range that are identical between all processes. So the correct check in vmalloc_sync_all() is "address < VMALLOC_END" to make sure the VMALLOC areas are synchronized and the LDT mapping is not falsely overwritten. The CPU_ENTRY_AREA and the FIXMAP area are no longer synced either, but this is not really a proplem since their PMDs get established during bootup and never change. This change fixes the ldt_gdt selftest in my setup. [ mingo: Fixed up the changelog to explain the logic and modified the copying to only happen up until VMALLOC_END. ] Reported-by: Borislav Petkov <bp@suse.de> Tested-by: Borislav Petkov <bp@suse.de> Signed-off-by: Joerg Roedel <jroedel@suse.de> Cc: <stable@vger.kernel.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Joerg Roedel <joro@8bytes.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: hpa@zytor.com Fixes: 7757d607c6b3: ("x86/pti: Allow CONFIG_PAGE_TABLE_ISOLATION for x86_32") Link: https://lkml.kernel.org/r/20191126111119.GA110513@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/mm: Do not warn about PCI BIOS W+X mappingsThomas Gleixner2019-11-241-8/+27
| | | | | | | | | | | | | | | | | | | | | | | | | | [ Upstream commit c200dac78fec66d87ef262cac38cfe4feabdf737 ] PCI BIOS requires the BIOS area 0x0A0000-0x0FFFFFF to be mapped W+X for various legacy reasons. When CONFIG_DEBUG_WX is enabled, this triggers the WX warning, but this is misleading because the mapping is required and is not a result of an accidental oversight. Prevent the full warning when PCI BIOS is enabled and the detected WX mapping is in the BIOS area. Just emit a pr_warn() which denotes the fact. This is partially duplicating the info which the PCI BIOS code emits when it maps the area as executable, but that info is not in the context of the WX checking output. Remove the extra %p printout in the WARN_ONCE() while at it. %pS is enough. Reported-by: Paul Menzel <pmenzel@molgen.mpg.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Borislav Petkov <bp@suse.de> Cc: Joerg Roedel <joro@8bytes.org> Cc: Kees Cook <keescook@chromium.org> Cc: Bjorn Helgaas <bhelgaas@google.com> Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1810082151160.2455@nanos.tec.linutronix.de Signed-off-by: Sasha Levin <sashal@kernel.org>
* x86/mm/pti: Handle unaligned address gracefully in pti_clone_pagetable()Song Liu2019-10-051-2/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | [ Upstream commit 825d0b73cd7526b0bb186798583fae810091cbac ] pti_clone_pmds() assumes that the supplied address is either: - properly PUD/PMD aligned or - the address is actually mapped which means that independently of the mapping level (PUD/PMD/PTE) the next higher mapping exists. If that's not the case the unaligned address can be incremented by PUD or PMD size incorrectly. All callers supply mapped and/or aligned addresses, but for the sake of robustness it's better to handle that case properly and to emit a warning. [ tglx: Rewrote changelog and added WARN_ON_ONCE() ] Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1908282352470.1938@nanos.tec.linutronix.de Signed-off-by: Sasha Levin <sashal@kernel.org>
* x86/mm/pti: Do not invoke PTI functions when PTI is disabledThomas Gleixner2019-10-051-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | [ Upstream commit 990784b57731192b7d90c8d4049e6318d81e887d ] When PTI is disabled at boot time either because the CPU is not affected or PTI has been disabled on the command line, the boot code still calls into pti_finalize() which then unconditionally invokes: pti_clone_entry_text() pti_clone_kernel_text() pti_clone_kernel_text() was called unconditionally before the 32bit support was added and 32bit added the call to pti_clone_entry_text(). The call has no side effects as cloning the page tables into the available second one, which was allocated for PTI does not create damage. But it does not make sense either and in case that this functionality would be extended later this might actually lead to hard to diagnose issues. Neither function should be called when PTI is runtime disabled. Make the invocation conditional. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com> Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Song Liu <songliubraving@fb.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20190828143124.063353972@linutronix.de Signed-off-by: Sasha Levin <sashal@kernel.org>
* x86/mm: Sync also unmappings in vmalloc_sync_all()Joerg Roedel2019-08-161-8/+5
| | | | | | | | | | | | | | | | | | | | commit 8e998fc24de47c55b47a887f6c95ab91acd4a720 upstream. With huge-page ioremap areas the unmappings also need to be synced between all page-tables. Otherwise it can cause data corruption when a region is unmapped and later re-used. Make the vmalloc_sync_one() function ready to sync unmappings and make sure vmalloc_sync_all() iterates over all page-tables even when an unmapped PMD is found. Fixes: 5d72b4fba40ef ('x86, mm: support huge I/O mapping capability I/F') Signed-off-by: Joerg Roedel <jroedel@suse.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lkml.kernel.org/r/20190719184652.11391-3-joro@8bytes.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/mm: Check for pfn instead of page in vmalloc_sync_one()Joerg Roedel2019-08-161-1/+1
| | | | | | | | | | | | | | | | commit 51b75b5b563a2637f9d8dc5bd02a31b2ff9e5ea0 upstream. Do not require a struct page for the mapped memory location because it might not exist. This can happen when an ioremapped region is mapped with 2MB pages. Fixes: 5d72b4fba40ef ('x86, mm: support huge I/O mapping capability I/F') Signed-off-by: Joerg Roedel <jroedel@suse.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lkml.kernel.org/r/20190719184652.11391-2-joro@8bytes.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/mm/KASLR: Compute the size of the vmemmap section properlyBaoquan He2019-06-191-1/+10
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 00e5a2bbcc31d5fea853f8daeba0f06c1c88c3ff upstream. The size of the vmemmap section is hardcoded to 1 TB to support the maximum amount of system RAM in 4-level paging mode - 64 TB. However, 1 TB is not enough for vmemmap in 5-level paging mode. Assuming the size of struct page is 64 Bytes, to support 4 PB system RAM in 5-level, 64 TB of vmemmap area is needed: 4 * 1000^5 PB / 4096 bytes page size * 64 bytes per page struct / 1000^4 TB = 62.5 TB. This hardcoding may cause vmemmap to corrupt the following cpu_entry_area section, if KASLR puts vmemmap very close to it and the actual vmemmap size is bigger than 1 TB. So calculate the actual size of the vmemmap region needed and then align it up to 1 TB boundary. In 4-level paging mode it is always 1 TB. In 5-level it's adjusted on demand. The current code reserves 0.5 PB for vmemmap on 5-level. With this change, the space can be saved and thus used to increase entropy for the randomization. [ bp: Spell out how the 64 TB needed for vmemmap is computed and massage commit message. ] Fixes: eedb92abb9bb ("x86/mm: Make virtual memory layout dynamic for CONFIG_X86_5LEVEL=y") Signed-off-by: Baoquan He <bhe@redhat.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Kees Cook <keescook@chromium.org> Acked-by: Kirill A. Shutemov <kirill@linux.intel.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: kirill.shutemov@linux.intel.com Cc: Peter Zijlstra <peterz@infradead.org> Cc: stable <stable@vger.kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/20190523025744.3756-1-bhe@redhat.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/kasan: Fix boot with 5-level paging and KASANAndrey Ryabinin2019-06-191-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit f3176ec9420de0c385023afa3e4970129444ac2f upstream. Since commit d52888aa2753 ("x86/mm: Move LDT remap out of KASLR region on 5-level paging") kernel doesn't boot with KASAN on 5-level paging machines. The bug is actually in early_p4d_offset() and introduced by commit 12a8cc7fcf54 ("x86/kasan: Use the same shadow offset for 4- and 5-level paging") early_p4d_offset() tries to convert pgd_val(*pgd) value to a physical address. This doesn't make sense because pgd_val() already contains the physical address. It did work prior to commit d52888aa2753 because the result of "__pa_nodebug(pgd_val(*pgd)) & PTE_PFN_MASK" was the same as "pgd_val(*pgd) & PTE_PFN_MASK". __pa_nodebug() just set some high bits which were masked out by applying PTE_PFN_MASK. After the change of the PAGE_OFFSET offset in commit d52888aa2753 __pa_nodebug(pgd_val(*pgd)) started to return a value with more high bits set and PTE_PFN_MASK wasn't enough to mask out all of them. So it returns a wrong not even canonical address and crashes on the attempt to dereference it. Switch back to pgd_val() & PTE_PFN_MASK to cure the issue. Fixes: 12a8cc7fcf54 ("x86/kasan: Use the same shadow offset for 4- and 5-level paging") Reported-by: Kirill A. Shutemov <kirill@shutemov.name> Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Alexander Potapenko <glider@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: kasan-dev@googlegroups.com Cc: stable@vger.kernel.org Cc: <stable@vger.kernel.org> Link: https://lkml.kernel.org/r/20190614143149.2227-1-aryabinin@virtuozzo.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/mm: Remove in_nmi() warning from 64-bit implementation of vmalloc_fault()Jiri Kosina2019-05-311-2/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | [ Upstream commit a65c88e16f32aa9ef2e8caa68ea5c29bd5eb0ff0 ] In-NMI warnings have been added to vmalloc_fault() via: ebc8827f75 ("x86: Barf when vmalloc and kmemcheck faults happen in NMI") back in the time when our NMI entry code could not cope with nested NMIs. These days, it's perfectly fine to take a fault in NMI context and we don't have to care about the fact that IRET from the fault handler might cause NMI nesting. This warning has already been removed from 32-bit implementation of vmalloc_fault() in: 6863ea0cda8 ("x86/mm: Remove in_nmi() warning from vmalloc_fault()") but the 64-bit version was omitted. Remove the bogus warning also from 64-bit implementation of vmalloc_fault(). Reported-by: Nicolai Stange <nstange@suse.de> Signed-off-by: Jiri Kosina <jkosina@suse.cz> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Fixes: 6863ea0cda8 ("x86/mm: Remove in_nmi() warning from vmalloc_fault()") Link: http://lkml.kernel.org/r/nycvar.YFH.7.76.1904240902280.9803@cbobk.fhfr.pm Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
* x86/speculation: Support 'mitigations=' cmdline optionJosh Poimboeuf2019-05-141-1/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit d68be4c4d31295ff6ae34a8ddfaa4c1a8ff42812 upstream Configure x86 runtime CPU speculation bug mitigations in accordance with the 'mitigations=' cmdline option. This affects Meltdown, Spectre v2, Speculative Store Bypass, and L1TF. The default behavior is unchanged. Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Jiri Kosina <jkosina@suse.cz> (on x86) Reviewed-by: Jiri Kosina <jkosina@suse.cz> Cc: Borislav Petkov <bp@alien8.de> Cc: "H . Peter Anvin" <hpa@zytor.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Jiri Kosina <jikos@kernel.org> Cc: Waiman Long <longman@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Jon Masters <jcm@redhat.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: linuxppc-dev@lists.ozlabs.org Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: linux-s390@vger.kernel.org Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-arm-kernel@lists.infradead.org Cc: linux-arch@vger.kernel.org Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Tyler Hicks <tyhicks@canonical.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Steven Price <steven.price@arm.com> Cc: Phil Auld <pauld@redhat.com> Link: https://lkml.kernel.org/r/6616d0ae169308516cfdf5216bedd169f8a8291b.1555085500.git.jpoimboe@redhat.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/mm/tlb: Revert "x86/mm: Align TLB invalidation info"Peter Zijlstra2019-05-081-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 780e0106d468a2962b16b52fdf42898f2639e0a0 upstream. Revert the following commit: 515ab7c41306: ("x86/mm: Align TLB invalidation info") I found out (the hard way) that under some .config options (notably L1_CACHE_SHIFT=7) and compiler combinations this on-stack alignment leads to a 320 byte stack usage, which then triggers a KASAN stack warning elsewhere. Using 320 bytes of stack space for a 40 byte structure is ludicrous and clearly not right. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Acked-by: Nadav Amit <namit@vmware.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Fixes: 515ab7c41306 ("x86/mm: Align TLB invalidation info") Link: http://lkml.kernel.org/r/20190416080335.GM7905@worktop.programming.kicks-ass.net [ Minor changelog edits. ] Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/mm: Fix a crash with kmemleak_scan()Qian Cai2019-05-081-0/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 0d02113b31b2017dd349ec9df2314e798a90fa6e upstream. The first kmemleak_scan() call after boot would trigger the crash below because this callpath: kernel_init free_initmem mem_encrypt_free_decrypted_mem free_init_pages unmaps memory inside the .bss when DEBUG_PAGEALLOC=y. kmemleak_init() will register the .data/.bss sections and then kmemleak_scan() will scan those addresses and dereference them looking for pointer references. If free_init_pages() frees and unmaps pages in those sections, kmemleak_scan() will crash if referencing one of those addresses: BUG: unable to handle kernel paging request at ffffffffbd402000 CPU: 12 PID: 325 Comm: kmemleak Not tainted 5.1.0-rc4+ #4 RIP: 0010:scan_block Call Trace: scan_gray_list kmemleak_scan kmemleak_scan_thread kthread ret_from_fork Since kmemleak_free_part() is tolerant to unknown objects (not tracked by kmemleak), it is fine to call it from free_init_pages() even if not all address ranges passed to this function are known to kmemleak. [ bp: Massage. ] Fixes: b3f0907c71e0 ("x86/mm: Add .bss..decrypted section to hold shared variables") Signed-off-by: Qian Cai <cai@lca.pw> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Brijesh Singh <brijesh.singh@amd.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: x86-ml <x86@kernel.org> Link: https://lkml.kernel.org/r/20190423165811.36699-1-cai@lca.pw Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/mm/KASLR: Fix the size of the direct mapping sectionBaoquan He2019-05-081-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit ec3937107ab43f3e8b2bc9dad95710043c462ff7 upstream. kernel_randomize_memory() uses __PHYSICAL_MASK_SHIFT to calculate the maximum amount of system RAM supported. The size of the direct mapping section is obtained from the smaller one of the below two values: (actual system RAM size + padding size) vs (max system RAM size supported) This calculation is wrong since commit b83ce5ee9147 ("x86/mm/64: Make __PHYSICAL_MASK_SHIFT always 52"). In it, __PHYSICAL_MASK_SHIFT was changed to be 52, regardless of whether the kernel is using 4-level or 5-level page tables. Thus, it will always use 4 PB as the maximum amount of system RAM, even in 4-level paging mode where it should actually be 64 TB. Thus, the size of the direct mapping section will always be the sum of the actual system RAM size plus the padding size. Even when the amount of system RAM is 64 TB, the following layout will still be used. Obviously KALSR will be weakened significantly. |____|_______actual RAM_______|_padding_|______the rest_______| 0 64TB ~120TB Instead, it should be like this: |____|_______actual RAM_______|_________the rest______________| 0 64TB ~120TB The size of padding region is controlled by CONFIG_RANDOMIZE_MEMORY_PHYSICAL_PADDING, which is 10 TB by default. The above issue only exists when CONFIG_RANDOMIZE_MEMORY_PHYSICAL_PADDING is set to a non-zero value, which is the case when CONFIG_MEMORY_HOTPLUG is enabled. Otherwise, using __PHYSICAL_MASK_SHIFT doesn't affect KASLR. Fix it by replacing __PHYSICAL_MASK_SHIFT with MAX_PHYSMEM_BITS. [ bp: Massage commit message. ] Fixes: b83ce5ee9147 ("x86/mm/64: Make __PHYSICAL_MASK_SHIFT always 52") Signed-off-by: Baoquan He <bhe@redhat.com> Signed-off-by: Borislav Petkov <bp@suse.de> Reviewed-by: Thomas Garnier <thgarnie@google.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Ingo Molnar <mingo@kernel.org> Cc: Kees Cook <keescook@chromium.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: frank.ramsay@hpe.com Cc: herbert@gondor.apana.org.au Cc: kirill@shutemov.name Cc: mike.travis@hpe.com Cc: thgarnie@google.com Cc: x86-ml <x86@kernel.org> Cc: yamada.masahiro@socionext.com Link: https://lkml.kernel.org/r/20190417083536.GE7065@MiWiFi-R3L-srv Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/mm: Don't exceed the valid physical address spaceRalph Campbell2019-05-041-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | [ Upstream commit 92c77f7c4d5dfaaf45b2ce19360e69977c264766 ] valid_phys_addr_range() is used to sanity check the physical address range of an operation, e.g., access to /dev/mem. It uses __pa(high_memory) internally. If memory is populated at the end of the physical address space, then __pa(high_memory) is outside of the physical address space because: high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1; For the comparison in valid_phys_addr_range() this is not an issue, but if CONFIG_DEBUG_VIRTUAL is enabled, __pa() maps to __phys_addr(), which verifies that the resulting physical address is within the valid physical address space of the CPU. So in the case that memory is populated at the end of the physical address space, this is not true and triggers a VIRTUAL_BUG_ON(). Use __pa(high_memory - 1) to prevent the conversion from going beyond the end of valid physical addresses. Fixes: be62a3204406 ("x86/mm: Limit mmap() of /dev/mem to valid physical addresses") Signed-off-by: Ralph Campbell <rcampbell@nvidia.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Craig Bergstrom <craigb@google.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Fengguang Wu <fengguang.wu@intel.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Hans Verkuil <hans.verkuil@cisco.com> Cc: Mauro Carvalho Chehab <mchehab@s-opensource.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sander Eikelenboom <linux@eikelenboom.it> Cc: Sean Young <sean@mess.org> Link: https://lkml.kernel.org/r/20190326001817.15413-2-rcampbell@nvidia.com Signed-off-by: Sasha Levin (Microsoft) <sashal@kernel.org>
* x86/mm/mem_encrypt: Fix erroneous sizeof()Peng Hao2019-03-051-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | [ Upstream commit bf7d28c53453ea904584960de55e33e03b9d93b1 ] Using sizeof(pointer) for determining the size of a memset() only works when the size of the pointer and the size of type to which it points are the same. For pte_t this is only true for 64bit and 32bit-NONPAE. On 32bit PAE systems this is wrong as the pointer size is 4 byte but the PTE entry is 8 bytes. It's actually not a real world issue as this code depends on 64bit, but it's wrong nevertheless. Use sizeof(*p) for correctness sake. Fixes: aad983913d77 ("x86/mm/encrypt: Simplify sme_populate_pgd() and sme_populate_pgd_large()") Signed-off-by: Peng Hao <peng.hao2@zte.com.cn> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: dave.hansen@linux.intel.com Cc: peterz@infradead.org Cc: luto@kernel.org Link: https://lkml.kernel.org/r/1546065252-97996-1-git-send-email-peng.hao2@zte.com.cn Signed-off-by: Sasha Levin <sashal@kernel.org>
* x86/dump_pagetables: Fix LDT remap address markerKirill A. Shutemov2019-01-131-5/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | [ Upstream commit 254eb5505ca0ca749d3a491fc6668b6c16647a99 ] The LDT remap placement has been changed. It's now placed before the direct mapping in the kernel virtual address space for both paging modes. Change address markers order accordingly. Fixes: d52888aa2753 ("x86/mm: Move LDT remap out of KASLR region on 5-level paging") Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: bp@alien8.de Cc: hpa@zytor.com Cc: dave.hansen@linux.intel.com Cc: luto@kernel.org Cc: peterz@infradead.org Cc: boris.ostrovsky@oracle.com Cc: jgross@suse.com Cc: bhe@redhat.com Cc: hans.van.kranenburg@mendix.com Cc: linux-mm@kvack.org Cc: xen-devel@lists.xenproject.org Link: https://lkml.kernel.org/r/20181130202328.65359-3-kirill.shutemov@linux.intel.com Signed-off-by: Sasha Levin <sashal@kernel.org>
* x86/mm: Fix guard hole handlingKirill A. Shutemov2019-01-131-4/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | [ Upstream commit 16877a5570e0c5f4270d5b17f9bab427bcae9514 ] There is a guard hole at the beginning of the kernel address space, also used by hypervisors. It occupies 16 PGD entries. This reserved range is not defined explicitely, it is calculated relative to other entities: direct mapping and user space ranges. The calculation got broken by recent changes of the kernel memory layout: LDT remap range is now mapped before direct mapping and makes the calculation invalid. The breakage leads to crash on Xen dom0 boot[1]. Define the reserved range explicitely. It's part of kernel ABI (hypervisors expect it to be stable) and must not depend on changes in the rest of kernel memory layout. [1] https://lists.xenproject.org/archives/html/xen-devel/2018-11/msg03313.html Fixes: d52888aa2753 ("x86/mm: Move LDT remap out of KASLR region on 5-level paging") Reported-by: Hans van Kranenburg <hans.van.kranenburg@mendix.com> Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Hans van Kranenburg <hans.van.kranenburg@mendix.com> Reviewed-by: Juergen Gross <jgross@suse.com> Cc: bp@alien8.de Cc: hpa@zytor.com Cc: dave.hansen@linux.intel.com Cc: luto@kernel.org Cc: peterz@infradead.org Cc: boris.ostrovsky@oracle.com Cc: bhe@redhat.com Cc: linux-mm@kvack.org Cc: xen-devel@lists.xenproject.org Link: https://lkml.kernel.org/r/20181130202328.65359-2-kirill.shutemov@linux.intel.com Signed-off-by: Sasha Levin <sashal@kernel.org>
* x86/mm: Drop usage of __flush_tlb_all() in kernel_physical_mapping_init()Dan Williams2019-01-091-6/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit ba6f508d0ec4adb09f0a939af6d5e19cdfa8667d upstream. Commit: f77084d96355 "x86/mm/pat: Disable preemption around __flush_tlb_all()" addressed a case where __flush_tlb_all() is called without preemption being disabled. It also left a warning to catch other cases where preemption is not disabled. That warning triggers for the memory hotplug path which is also used for persistent memory enabling: WARNING: CPU: 35 PID: 911 at ./arch/x86/include/asm/tlbflush.h:460 RIP: 0010:__flush_tlb_all+0x1b/0x3a [..] Call Trace: phys_pud_init+0x29c/0x2bb kernel_physical_mapping_init+0xfc/0x219 init_memory_mapping+0x1a5/0x3b0 arch_add_memory+0x2c/0x50 devm_memremap_pages+0x3aa/0x610 pmem_attach_disk+0x585/0x700 [nd_pmem] Andy wondered why a path that can sleep was using __flush_tlb_all() [1] and Dave confirmed the expectation for TLB flush is for modifying / invalidating existing PTE entries, but not initial population [2]. Drop the usage of __flush_tlb_all() in phys_{p4d,pud,pmd}_init() on the expectation that this path is only ever populating empty entries for the linear map. Note, at linear map teardown time there is a call to the all-cpu flush_tlb_all() to invalidate the removed mappings. [1]: https://lkml.kernel.org/r/9DFD717D-857D-493D-A606-B635D72BAC21@amacapital.net [2]: https://lkml.kernel.org/r/749919a4-cdb1-48a3-adb4-adb81a5fa0b5@intel.com [ mingo: Minor readability edits. ] Suggested-by: Dave Hansen <dave.hansen@linux.intel.com> Reported-by: Andy Lutomirski <luto@kernel.org> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: <stable@vger.kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@surriel.com> Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: dave.hansen@intel.com Fixes: f77084d96355 ("x86/mm/pat: Disable preemption around __flush_tlb_all()") Link: http://lkml.kernel.org/r/154395944713.32119.15611079023837132638.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/speculation/l1tf: Drop the swap storage limit restriction when l1tf=offMichal Hocko2019-01-091-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 5b5e4d623ec8a34689df98e42d038a3b594d2ff9 upstream. Swap storage is restricted to max_swapfile_size (~16TB on x86_64) whenever the system is deemed affected by L1TF vulnerability. Even though the limit is quite high for most deployments it seems to be too restrictive for deployments which are willing to live with the mitigation disabled. We have a customer to deploy 8x 6,4TB PCIe/NVMe SSD swap devices which is clearly out of the limit. Drop the swap restriction when l1tf=off is specified. It also doesn't make much sense to warn about too much memory for the l1tf mitigation when it is forcefully disabled by the administrator. [ tglx: Folded the documentation delta change ] Fixes: 377eeaa8e11f ("x86/speculation/l1tf: Limit swap file size to MAX_PA/2") Signed-off-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Pavel Tatashin <pasha.tatashin@soleen.com> Reviewed-by: Andi Kleen <ak@linux.intel.com> Acked-by: Jiri Kosina <jkosina@suse.cz> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Borislav Petkov <bp@suse.de> Cc: <linux-mm@kvack.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20181113184910.26697-1-mhocko@kernel.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/mm: Fix decoy address handling vs 32-bit buildsDan Williams2018-12-291-2/+11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 51c3fbd89d7554caa3290837604309f8d8669d99 upstream. A decoy address is used by set_mce_nospec() to update the cache attributes for a page that may contain poison (multi-bit ECC error) while attempting to minimize the possibility of triggering a speculative access to that page. When reserve_memtype() is handling a decoy address it needs to convert it to its real physical alias. The conversion, AND'ing with __PHYSICAL_MASK, is broken for a 32-bit physical mask and reserve_memtype() is passed the last physical page. Gert reports triggering the: BUG_ON(start >= end); ...assertion when running a 32-bit non-PAE build on a platform that has a driver resource at the top of physical memory: BIOS-e820: [mem 0x00000000fff00000-0x00000000ffffffff] reserved Given that the decoy address scheme is only targeted at 64-bit builds and assumes that the top of physical address space is free for use as a decoy address range, simply bypass address sanitization in the 32-bit case. Lastly, there was no need to crash the system when this failure occurred, and no need to crash future systems if the assumptions of decoy addresses are ever violated. Change the BUG_ON() to a WARN() with an error return. Fixes: 510ee090abc3 ("x86/mm/pat: Prepare {reserve, free}_memtype() for...") Reported-by: Gert Robben <t2@gert.gr> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Gert Robben <t2@gert.gr> Cc: stable@vger.kernel.org Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: platform-driver-x86@vger.kernel.org Cc: <stable@vger.kernel.org> Link: https://lkml.kernel.org/r/154454337985.789277.12133288391664677775.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/speculation: Prepare for conditional IBPB in switch_mm()Thomas Gleixner2018-12-051-28/+86
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 4c71a2b6fd7e42814aa68a6dec88abf3b42ea573 upstream The IBPB speculation barrier is issued from switch_mm() when the kernel switches to a user space task with a different mm than the user space task which ran last on the same CPU. An additional optimization is to avoid IBPB when the incoming task can be ptraced by the outgoing task. This optimization only works when switching directly between two user space tasks. When switching from a kernel task to a user space task the optimization fails because the previous task cannot be accessed anymore. So for quite some scenarios the optimization is just adding overhead. The upcoming conditional IBPB support will issue IBPB only for user space tasks which have the TIF_SPEC_IB bit set. This requires to handle the following cases: 1) Switch from a user space task (potential attacker) which has TIF_SPEC_IB set to a user space task (potential victim) which has TIF_SPEC_IB not set. 2) Switch from a user space task (potential attacker) which has TIF_SPEC_IB not set to a user space task (potential victim) which has TIF_SPEC_IB set. This needs to be optimized for the case where the IBPB can be avoided when only kernel threads ran in between user space tasks which belong to the same process. The current check whether two tasks belong to the same context is using the tasks context id. While correct, it's simpler to use the mm pointer because it allows to mangle the TIF_SPEC_IB bit into it. The context id based mechanism requires extra storage, which creates worse code. When a task is scheduled out its TIF_SPEC_IB bit is mangled as bit 0 into the per CPU storage which is used to track the last user space mm which was running on a CPU. This bit can be used together with the TIF_SPEC_IB bit of the incoming task to make the decision whether IBPB needs to be issued or not to cover the two cases above. As conditional IBPB is going to be the default, remove the dubious ptrace check for the IBPB always case and simply issue IBPB always when the process changes. Move the storage to a different place in the struct as the original one created a hole. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Casey Schaufler <casey.schaufler@intel.com> Cc: Asit Mallick <asit.k.mallick@intel.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Jon Masters <jcm@redhat.com> Cc: Waiman Long <longman9394@gmail.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Dave Stewart <david.c.stewart@intel.com> Cc: Kees Cook <keescook@chromium.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20181125185005.466447057@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/speculation: Apply IBPB more strictly to avoid cross-process data leakJiri Kosina2018-12-051-11/+20
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit dbfe2953f63c640463c630746cd5d9de8b2f63ae upstream Currently, IBPB is only issued in cases when switching into a non-dumpable process, the rationale being to protect such 'important and security sensitive' processess (such as GPG) from data leaking into a different userspace process via spectre v2. This is however completely insufficient to provide proper userspace-to-userpace spectrev2 protection, as any process can poison branch buffers before being scheduled out, and the newly scheduled process immediately becomes spectrev2 victim. In order to minimize the performance impact (for usecases that do require spectrev2 protection), issue the barrier only in cases when switching between processess where the victim can't be ptraced by the potential attacker (as in such cases, the attacker doesn't have to bother with branch buffers at all). [ tglx: Split up PTRACE_MODE_NOACCESS_CHK into PTRACE_MODE_SCHED and PTRACE_MODE_IBPB to be able to do ptrace() context tracking reasonably fine-grained ] Fixes: 18bf3c3ea8 ("x86/speculation: Use Indirect Branch Prediction Barrier in context switch") Originally-by: Tim Chen <tim.c.chen@linux.intel.com> Signed-off-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "WoodhouseDavid" <dwmw@amazon.co.uk> Cc: Andi Kleen <ak@linux.intel.com> Cc: "SchauflerCasey" <casey.schaufler@intel.com> Link: https://lkml.kernel.org/r/nycvar.YFH.7.76.1809251437340.15880@cbobk.fhfr.pm Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/numa_emulation: Fix uniform-split numa emulationDave Jiang2018-11-131-2/+10
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit c6ee7a548e2c291398b4f32c1f741c66b9f98e1c upstream. The numa_emulation() routine in the 'uniform' case walks through all the physical 'memblk' instances and divides them into N emulated nodes with split_nodes_size_interleave_uniform(). As each physical node is consumed it is removed from the physical memblk array in the numa_remove_memblk_from() helper. Since split_nodes_size_interleave_uniform() handles advancing the array as the 'memblk' is consumed it is expected that the base of the array is always specified as the argument. Otherwise, on multi-socket (> 2) configurations the uniform-split capability can generate an invalid numa configuration leading to boot failures with signatures like the following: rcu: INFO: rcu_sched detected stalls on CPUs/tasks: Sending NMI from CPU 0 to CPUs 2: NMI backtrace for cpu 2 CPU: 2 PID: 1332 Comm: pgdatinit0 Not tainted 4.19.0-rc8-next-20181019-baseline #59 RIP: 0010:__init_single_page.isra.74+0x81/0x90 [..] Call Trace: deferred_init_pages+0xaa/0xe3 deferred_init_memmap+0x18f/0x318 kthread+0xf8/0x130 ? deferred_free_pages.isra.105+0xc9/0xc9 ? kthread_stop+0x110/0x110 ret_from_fork+0x35/0x40 Fixes: 1f6a2c6d9f121 ("x86/numa_emulation: Introduce uniform split capability") Signed-off-by: Dave Jiang <dave.jiang@intel.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Alexander Duyck <alexander.h.duyck@linux.intel.com> Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/154049911459.2685845.9210186007479774286.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/mm/pat: Disable preemption around __flush_tlb_all()Sebastian Andrzej Siewior2018-11-131-1/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit f77084d96355f5fba8e2c1fb3a51a393b1570de7 upstream. The WARN_ON_ONCE(__read_cr3() != build_cr3()) in switch_mm_irqs_off() triggers every once in a while during a snapshotted system upgrade. The warning triggers since commit decab0888e6e ("x86/mm: Remove preempt_disable/enable() from __native_flush_tlb()"). The callchain is: get_page_from_freelist() -> post_alloc_hook() -> __kernel_map_pages() with CONFIG_DEBUG_PAGEALLOC enabled. Disable preemption during CR3 reset / __flush_tlb_all() and add a comment why preemption has to be disabled so it won't be removed accidentaly. Add another preemptible() check in __flush_tlb_all() to catch callers with enabled preemption when PGE is enabled, because PGE enabled does not trigger the warning in __native_flush_tlb(). Suggested by Andy Lutomirski. Fixes: decab0888e6e ("x86/mm: Remove preempt_disable/enable() from __native_flush_tlb()") Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Borislav Petkov <bp@alien8.de> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20181017103432.zgv46nlu3hc7k4rq@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/mm: Avoid VLA in pgd_alloc()Kees Cook2018-10-091-2/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Arnd Bergmann reported that turning on -Wvla found a new (unintended) VLA usage: arch/x86/mm/pgtable.c: In function 'pgd_alloc': include/linux/build_bug.h:29:45: error: ISO C90 forbids variable length array 'u_pmds' [-Werror=vla] arch/x86/mm/pgtable.c:190:34: note: in expansion of macro 'static_cpu_has' #define PREALLOCATED_USER_PMDS (static_cpu_has(X86_FEATURE_PTI) ? \ ^~~~~~~~~~~~~~ arch/x86/mm/pgtable.c:431:16: note: in expansion of macro 'PREALLOCATED_USER_PMDS' pmd_t *u_pmds[PREALLOCATED_USER_PMDS]; ^~~~~~~~~~~~~~~~~~~~~~ Use the actual size of the array that is used for X86_FEATURE_PTI, which is known at build time, instead of the variable size. [ mingo: Squashed original fix with followup fix to avoid bisection breakage, wrote new changelog. ] Reported-by: Arnd Bergmann <arnd@arndb.de> Original-written-by: Arnd Bergmann <arnd@arndb.de> Reported-by: Borislav Petkov <bp@alien8.de> Signed-off-by: Kees Cook <keescook@chromium.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Joerg Roedel <jroedel@suse.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Toshi Kani <toshi.kani@hpe.com> Fixes: 1be3f247c288 ("x86/mm: Avoid VLA in pgd_alloc()") Link: http://lkml.kernel.org/r/20181008235434.GA35035@beast Signed-off-by: Ingo Molnar <mingo@kernel.org>
* x86/mm: Expand static page table for fixmap spaceFeng Tang2018-09-201-0/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | We met a kernel panic when enabling earlycon, which is due to the fixmap address of earlycon is not statically setup. Currently the static fixmap setup in head_64.S only covers 2M virtual address space, while it actually could be in 4M space with different kernel configurations, e.g. when VSYSCALL emulation is disabled. So increase the static space to 4M for now by defining FIXMAP_PMD_NUM to 2, and add a build time check to ensure that the fixmap is covered by the initial static page tables. Fixes: 1ad83c858c7d ("x86_64,vsyscall: Make vsyscall emulation configurable") Suggested-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Feng Tang <feng.tang@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: kernel test robot <rong.a.chen@intel.com> Reviewed-by: Juergen Gross <jgross@suse.com> (Xen parts) Cc: H Peter Anvin <hpa@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andy Lutomirsky <luto@kernel.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20180920025828.23699-1-feng.tang@intel.com
* x86/mm: Add .bss..decrypted section to hold shared variablesBrijesh Singh2018-09-152-0/+28
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | kvmclock defines few static variables which are shared with the hypervisor during the kvmclock initialization. When SEV is active, memory is encrypted with a guest-specific key, and if the guest OS wants to share the memory region with the hypervisor then it must clear the C-bit before sharing it. Currently, we use kernel_physical_mapping_init() to split large pages before clearing the C-bit on shared pages. But it fails when called from the kvmclock initialization (mainly because the memblock allocator is not ready that early during boot). Add a __bss_decrypted section attribute which can be used when defining such shared variable. The so-defined variables will be placed in the .bss..decrypted section. This section will be mapped with C=0 early during boot. The .bss..decrypted section has a big chunk of memory that may be unused when memory encryption is not active, free it when memory encryption is not active. Suggested-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Brijesh Singh <brijesh.singh@amd.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Borislav Petkov <bp@suse.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Sean Christopherson <sean.j.christopherson@intel.com> Cc: Radim Krčmář<rkrcmar@redhat.com> Cc: kvm@vger.kernel.org Link: https://lkml.kernel.org/r/1536932759-12905-2-git-send-email-brijesh.singh@amd.com
* x86/mm: Use WRITE_ONCE() when setting PTEsNadav Amit2018-09-081-4/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When page-table entries are set, the compiler might optimize their assignment by using multiple instructions to set the PTE. This might turn into a security hazard if the user somehow manages to use the interim PTE. L1TF does not make our lives easier, making even an interim non-present PTE a security hazard. Using WRITE_ONCE() to set PTEs and friends should prevent this potential security hazard. I skimmed the differences in the binary with and without this patch. The differences are (obviously) greater when CONFIG_PARAVIRT=n as more code optimizations are possible. For better and worse, the impact on the binary with this patch is pretty small. Skimming the code did not cause anything to jump out as a security hazard, but it seems that at least move_soft_dirty_pte() caused set_pte_at() to use multiple writes. Signed-off-by: Nadav Amit <namit@vmware.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Sean Christopherson <sean.j.christopherson@intel.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20180902181451.80520-1-namit@vmware.com
* x86/pti: Fix section mismatch warning/errorRandy Dunlap2018-09-021-1/+1
| | | | | | | | | | | | | | | | | | | | Fix the section mismatch warning in arch/x86/mm/pti.c: WARNING: vmlinux.o(.text+0x6972a): Section mismatch in reference from the function pti_clone_pgtable() to the function .init.text:pti_user_pagetable_walk_pte() The function pti_clone_pgtable() references the function __init pti_user_pagetable_walk_pte(). This is often because pti_clone_pgtable lacks a __init annotation or the annotation of pti_user_pagetable_walk_pte is wrong. FATAL: modpost: Section mismatches detected. Fixes: 85900ea51577 ("x86/pti: Map the vsyscall page if needed") Reported-by: kbuild test robot <lkp@intel.com> Signed-off-by: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andy Lutomirski <luto@kernel.org> Link: https://lkml.kernel.org/r/43a6d6a3-d69d-5eda-da09-0b1c88215a2a@infradead.org
* x86/mce: Fix set_mce_nospec() to avoid #GP faultLuckTony2018-09-011-1/+24
| | | | | | | | | | | | | | | | | | | | | | | | | | | | The trick with flipping bit 63 to avoid loading the address of the 1:1 mapping of the poisoned page while the 1:1 map is updated used to work when unmapping the page. But it falls down horribly when attempting to directly set the page as uncacheable. The problem is that when the cache mode is changed to uncachable, the pages needs to be flushed from the cache first. But the decoy address is non-canonical due to bit 63 flipped, and the CLFLUSH instruction throws a #GP fault. Add code to change_page_attr_set_clr() to fix the address before calling flush. Fixes: 284ce4011ba6 ("x86/memory_failure: Introduce {set, clear}_mce_nospec()") Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Tony Luck <tony.luck@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Anvin <hpa@zytor.com> Cc: Borislav Petkov <bp@alien8.de> Cc: linux-edac <linux-edac@vger.kernel.org> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Jiang <dave.jiang@intel.com> Link: https://lkml.kernel.org/r/20180831165506.GA9605@agluck-desk
* x86/nmi: Fix NMI uaccess race against CR3 switchingAndy Lutomirski2018-08-311-0/+7
| | | | | | | | | | | | | | | | | | | | | | A NMI can hit in the middle of context switching or in the middle of switch_mm_irqs_off(). In either case, CR3 might not match current->mm, which could cause copy_from_user_nmi() and friends to read the wrong memory. Fix it by adding a new nmi_uaccess_okay() helper and checking it in copy_from_user_nmi() and in __copy_from_user_nmi()'s callers. Signed-off-by: Andy Lutomirski <luto@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Rik van Riel <riel@surriel.com> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Jann Horn <jannh@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/dd956eba16646fd0b15c3c0741269dfd84452dac.1535557289.git.luto@kernel.org
* x86/dumpstack: Don't dump kernel memory based on usermode RIPJann Horn2018-08-311-1/+1
| | | | | | | | | | | | | | | | | | | | | show_opcodes() is used both for dumping kernel instructions and for dumping user instructions. If userspace causes #PF by jumping to a kernel address, show_opcodes() can be reached with regs->ip controlled by the user, pointing to kernel code. Make sure that userspace can't trick us into dumping kernel memory into dmesg. Fixes: 7cccf0725cf7 ("x86/dumpstack: Add a show_ip() function") Signed-off-by: Jann Horn <jannh@google.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Borislav Petkov <bp@suse.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: security@kernel.org Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20180828154901.112726-1-jannh@google.com
* Merge branch 'perf-urgent-for-linus' of ↵Linus Torvalds2018-08-261-0/+33
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull perf updates from Thomas Gleixner: "Kernel: - Improve kallsyms coverage - Add x86 entry trampolines to kcore - Fix ARM SPE handling - Correct PPC event post processing Tools: - Make the build system more robust - Small fixes and enhancements all over the place - Update kernel ABI header copies - Preparatory work for converting libtraceevnt to a shared library - License cleanups" * 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (100 commits) tools arch: Update arch/x86/lib/memcpy_64.S copy used in 'perf bench mem memcpy' tools arch x86: Update tools's copy of cpufeatures.h perf python: Fix pyrf_evlist__read_on_cpu() interface perf mmap: Store real cpu number in 'struct perf_mmap' perf tools: Remove ext from struct kmod_path perf tools: Add gzip_is_compressed function perf tools: Add lzma_is_compressed function perf tools: Add is_compressed callback to compressions array perf tools: Move the temp file processing into decompress_kmodule perf tools: Use compression id in decompress_kmodule() perf tools: Store compression id into struct dso perf tools: Add compression id into 'struct kmod_path' perf tools: Make is_supported_compression() static perf tools: Make decompress_to_file() function static perf tools: Get rid of dso__needs_decompress() call in __open_dso() perf tools: Get rid of dso__needs_decompress() call in symbol__disassemble() perf tools: Get rid of dso__needs_decompress() call in read_object_code() tools lib traceevent: Change to SPDX License format perf llvm: Allow passing options to llc in addition to clang perf parser: Improve error message for PMU address filters ...
| * Merge tag 'perf-core-for-mingo-4.19-20180815' of ↵Ingo Molnar2018-08-181-0/+33
| |\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/acme/linux into perf/urgent Pull perf/core improvements and fixes from Arnaldo Carvalho de Melo: kernel: - kallsyms, x86: Export addresses of PTI entry trampolines (Alexander Shishkin) - kallsyms: Simplify update_iter_mod() (Adrian Hunter) - x86: Add entry trampolines to kcore (Adrian Hunter) Hardware tracing: - Fix auxtrace queue resize (Adrian Hunter) Arch specific: - Fix uninitialized ARM SPE record error variable (Kim Phillips) - Fix trace event post-processing in powerpc (Sandipan Das) Build: - Fix check-headers.sh AND list path of execution (Alexander Kapshuk) - Remove -mcet and -fcf-protection when building the python binding with older clang versions (Arnaldo Carvalho de Melo) - Make check-headers.sh check based on kernel dir (Jiri Olsa) - Move syscall_64.tbl check into check-headers.sh (Jiri Olsa) Infrastructure: - Check for null when copying nsinfo. (Benno Evers) Libraries: - Rename libtraceevent prefixes, prep work for making it a shared library generaly available (Tzvetomir Stoyanov (VMware)) Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
| | * x86: Add entry trampolines to kcoreAdrian Hunter2018-08-141-0/+10
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Without program headers for PTI entry trampoline pages, the trampoline virtual addresses do not map to anything. Example before: sudo gdb --quiet vmlinux /proc/kcore Reading symbols from vmlinux...done. [New process 1] Core was generated by `BOOT_IMAGE=/boot/vmlinuz-4.16.0 root=UUID=a6096b83-b763-4101-807e-f33daff63233'. #0 0x0000000000000000 in irq_stack_union () (gdb) x /21ib 0xfffffe0000006000 0xfffffe0000006000: Cannot access memory at address 0xfffffe0000006000 (gdb) quit After: sudo gdb --quiet vmlinux /proc/kcore [sudo] password for ahunter: Reading symbols from vmlinux...done. [New process 1] Core was generated by `BOOT_IMAGE=/boot/vmlinuz-4.16.0-fix-4-00005-gd6e65a8b4072 root=UUID=a6096b83-b7'. #0 0x0000000000000000 in irq_stack_union () (gdb) x /21ib 0xfffffe0000006000 0xfffffe0000006000: swapgs 0xfffffe0000006003: mov %rsp,-0x3e12(%rip) # 0xfffffe00000021f8 0xfffffe000000600a: xchg %ax,%ax 0xfffffe000000600c: mov %cr3,%rsp 0xfffffe000000600f: bts $0x3f,%rsp 0xfffffe0000006014: and $0xffffffffffffe7ff,%rsp 0xfffffe000000601b: mov %rsp,%cr3 0xfffffe000000601e: mov -0x3019(%rip),%rsp # 0xfffffe000000300c 0xfffffe0000006025: pushq $0x2b 0xfffffe0000006027: pushq -0x3e35(%rip) # 0xfffffe00000021f8 0xfffffe000000602d: push %r11 0xfffffe000000602f: pushq $0x33 0xfffffe0000006031: push %rcx 0xfffffe0000006032: push %rdi 0xfffffe0000006033: mov $0xffffffff91a00010,%rdi 0xfffffe000000603a: callq 0xfffffe0000006046 0xfffffe000000603f: pause 0xfffffe0000006041: lfence 0xfffffe0000006044: jmp 0xfffffe000000603f 0xfffffe0000006046: mov %rdi,(%rsp) 0xfffffe000000604a: retq (gdb) quit In addition, entry trampolines all map to the same page. Represent that by giving the corresponding program headers in kcore the same offset. This has the benefit that, when perf tools uses /proc/kcore as a source for kernel object code, samples from different CPU trampolines are aggregated together. Note, such aggregation is normal for profiling i.e. people want to profile the object code, not every different virtual address the object code might be mapped to (across different processes for example). Notes by PeterZ: This also adds the KCORE_REMAP functionality. Signed-off-by: Adrian Hunter <adrian.hunter@intel.com> Acked-by: Andi Kleen <ak@linux.intel.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Joerg Roedel <joro@8bytes.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: x86@kernel.org Link: http://lkml.kernel.org/r/1528289651-4113-4-git-send-email-adrian.hunter@intel.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
| | * kallsyms, x86: Export addresses of PTI entry trampolinesAlexander Shishkin2018-08-141-0/+23
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently, the addresses of PTI entry trampolines are not exported to user space. Kernel profiling tools need these addresses to identify the kernel code, so add a symbol and address for each CPU's PTI entry trampoline. Signed-off-by: Alexander Shishkin <alexander.shishkin@linux.intel.com> Acked-by: Andi Kleen <ak@linux.intel.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Joerg Roedel <joro@8bytes.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: x86@kernel.org Link: http://lkml.kernel.org/r/1528289651-4113-3-git-send-email-adrian.hunter@intel.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com>
* | | Merge branch 'x86-urgent-for-linus' of ↵Linus Torvalds2018-08-262-3/+3
|\ \ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 fixes from Thomas Gleixner: - Correct the L1TF fallout on 32bit and the off by one in the 'too much RAM for protection' calculation. - Add a helpful kernel message for the 'too much RAM' case - Unbreak the VDSO in case that the compiler desides to use indirect jumps/calls and emits retpolines which cannot be resolved because the kernel uses its own thunks, which does not work for the VDSO. Make it use the builtin thunks. - Re-export start_thread() which was unexported when the 32/64bit implementation was unified. start_thread() is required by modular binfmt handlers. - Trivial cleanups * 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/speculation/l1tf: Suggest what to do on systems with too much RAM x86/speculation/l1tf: Fix off-by-one error when warning that system has too much RAM x86/kvm/vmx: Remove duplicate l1d flush definitions x86/speculation/l1tf: Fix overflow in l1tf_pfn_limit() on 32bit x86/process: Re-export start_thread() x86/mce: Add notifier_block forward declaration x86/vdso: Fix vDSO build if a retpoline is emitted
| * | | x86/speculation/l1tf: Fix off-by-one error when warning that system has too ↵Vlastimil Babka2018-08-242-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | much RAM Two users have reported [1] that they have an "extremely unlikely" system with more than MAX_PA/2 memory and L1TF mitigation is not effective. In fact it's a CPU with 36bits phys limit (64GB) and 32GB memory, but due to holes in the e820 map, the main region is almost 500MB over the 32GB limit: [ 0.000000] BIOS-e820: [mem 0x0000000100000000-0x000000081effffff] usable Suggestions to use 'mem=32G' to enable the L1TF mitigation while losing the 500MB revealed, that there's an off-by-one error in the check in l1tf_select_mitigation(). l1tf_pfn_limit() returns the last usable pfn (inclusive) and the range check in the mitigation path does not take this into account. Instead of amending the range check, make l1tf_pfn_limit() return the first PFN which is over the limit which is less error prone. Adjust the other users accordingly. [1] https://bugzilla.suse.com/show_bug.cgi?id=1105536 Fixes: 17dbca119312 ("x86/speculation/l1tf: Add sysfs reporting for l1tf") Reported-by: George Anchev <studio@anchev.net> Reported-by: Christopher Snowhill <kode54@gmail.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: "H . Peter Anvin" <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20180823134418.17008-1-vbabka@suse.cz
| * | | x86/speculation/l1tf: Fix overflow in l1tf_pfn_limit() on 32bitVlastimil Babka2018-08-201-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | On 32bit PAE kernels on 64bit hardware with enough physical bits, l1tf_pfn_limit() will overflow unsigned long. This in turn affects max_swapfile_size() and can lead to swapon returning -EINVAL. This has been observed in a 32bit guest with 42 bits physical address size, where max_swapfile_size() overflows exactly to 1 << 32, thus zero, and produces the following warning to dmesg: [ 6.396845] Truncating oversized swap area, only using 0k out of 2047996k Fix this by using unsigned long long instead. Fixes: 17dbca119312 ("x86/speculation/l1tf: Add sysfs reporting for l1tf") Fixes: 377eeaa8e11f ("x86/speculation/l1tf: Limit swap file size to MAX_PA/2") Reported-by: Dominique Leuenberger <dimstar@suse.de> Reported-by: Adrian Schroeter <adrian@suse.de> Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Andi Kleen <ak@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: "H . Peter Anvin" <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20180820095835.5298-1-vbabka@suse.cz
* | | | Merge tag 'libnvdimm-for-4.19_dax-memory-failure' of ↵Linus Torvalds2018-08-251-0/+16
|\ \ \ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | gitolite.kernel.org:pub/scm/linux/kernel/git/nvdimm/nvdimm Pull libnvdimm memory-failure update from Dave Jiang: "As it stands, memory_failure() gets thoroughly confused by dev_pagemap backed mappings. The recovery code has specific enabling for several possible page states and needs new enabling to handle poison in dax mappings. In order to support reliable reverse mapping of user space addresses: 1/ Add new locking in the memory_failure() rmap path to prevent races that would typically be handled by the page lock. 2/ Since dev_pagemap pages are hidden from the page allocator and the "compound page" accounting machinery, add a mechanism to determine the size of the mapping that encompasses a given poisoned pfn. 3/ Given pmem errors can be repaired, change the speculatively accessed poison protection, mce_unmap_kpfn(), to be reversible and otherwise allow ongoing access from the kernel. A side effect of this enabling is that MADV_HWPOISON becomes usable for dax mappings, however the primary motivation is to allow the system to survive userspace consumption of hardware-poison via dax. Specifically the current behavior is: mce: Uncorrected hardware memory error in user-access at af34214200 {1}[Hardware Error]: It has been corrected by h/w and requires no further action mce: [Hardware Error]: Machine check events logged {1}[Hardware Error]: event severity: corrected Memory failure: 0xaf34214: reserved kernel page still referenced by 1 users [..] Memory failure: 0xaf34214: recovery action for reserved kernel page: Failed mce: Memory error not recovered <reboot> ...and with these changes: Injecting memory failure for pfn 0x20cb00 at process virtual address 0x7f763dd00000 Memory failure: 0x20cb00: Killing dax-pmd:5421 due to hardware memory corruption Memory failure: 0x20cb00: recovery action for dax page: Recovered Given all the cross dependencies I propose taking this through nvdimm.git with acks from Naoya, x86/core, x86/RAS, and of course dax folks" * tag 'libnvdimm-for-4.19_dax-memory-failure' of gitolite.kernel.org:pub/scm/linux/kernel/git/nvdimm/nvdimm: libnvdimm, pmem: Restore page attributes when clearing errors x86/memory_failure: Introduce {set, clear}_mce_nospec() x86/mm/pat: Prepare {reserve, free}_memtype() for "decoy" addresses mm, memory_failure: Teach memory_failure() about dev_pagemap pages filesystem-dax: Introduce dax_lock_mapping_entry() mm, memory_failure: Collect mapping size in collect_procs() mm, madvise_inject_error: Let memory_failure() optionally take a page reference mm, dev_pagemap: Do not clear ->mapping on final put mm, madvise_inject_error: Disable MADV_SOFT_OFFLINE for ZONE_DEVICE pages filesystem-dax: Set page->index device-dax: Set page->index device-dax: Enable page_mapping() device-dax: Convert to vmf_insert_mixed and vm_fault_t
| * | | | x86/mm/pat: Prepare {reserve, free}_memtype() for "decoy" addressesDan Williams2018-08-201-0/+16
| | |_|/ | |/| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In preparation for using set_memory_uc() instead set_memory_np() for isolating poison from speculation, teach the memtype code to sanitize physical addresses vs __PHYSICAL_MASK. The motivation for using set_memory_uc() for this case is to allow ongoing access to persistent memory pages via the pmem-driver + memcpy_mcsafe() until the poison is repaired. Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Borislav Petkov <bp@alien8.de> Cc: <linux-edac@vger.kernel.org> Cc: <x86@kernel.org> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-by: Ingo Molnar <mingo@redhat.com> Signed-off-by: Dave Jiang <dave.jiang@intel.com>
* | | | Merge branch 'tlb-fixes'Linus Torvalds2018-08-232-156/+57
|\ \ \ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Merge fixes for missing TLB shootdowns. This fixes a couple of cases that involved us possibly freeing page table structures before the required TLB shootdown had been done. There are a few cleanup patches to make the code easier to follow, and to avoid some of the more problematic cases entirely when not necessary. To make this easier for backports, it undoes the recent lazy TLB patches, because the cleanups and fixes are more important, and Rik is ok with re-doing them later when things have calmed down. The missing TLB flush was only delayed, and the wrong ordering only happened under memory pressure (and in theory under a couple of other fairly theoretical situations), so this may have been all very unlikely to have hit people in practice. But getting the TLB shootdown wrong is _so_ hard to debug and see that I consider this a crticial fix. Many thanks to Jann Horn for having debugged this. * tlb-fixes: x86/mm: Only use tlb_remove_table() for paravirt mm: mmu_notifier fix for tlb_end_vma mm/tlb, x86/mm: Support invalidating TLB caches for RCU_TABLE_FREE mm/tlb: Remove tlb_remove_table() non-concurrent condition mm: move tlb_table_flush to tlb_flush_mmu_free x86/mm/tlb: Revert the recent lazy TLB patches
| * | | | x86/mm: Only use tlb_remove_table() for paravirtPeter Zijlstra2018-08-231-4/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | If we don't use paravirt; don't play unnecessary and complicated games to free page-tables. Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Rik van Riel <riel@surriel.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
| * | | | x86/mm/tlb: Revert the recent lazy TLB patchesPeter Zijlstra2018-08-221-152/+53
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Revert commits: 95b0e6357d3e x86/mm/tlb: Always use lazy TLB mode 64482aafe55f x86/mm/tlb: Only send page table free TLB flush to lazy TLB CPUs ac0315896970 x86/mm/tlb: Make lazy TLB mode lazier 61d0beb5796a x86/mm/tlb: Restructure switch_mm_irqs_off() 2ff6ddf19c0e x86/mm/tlb: Leave lazy TLB mode at page table free time In order to simplify the TLB invalidate fixes for x86 and unify the parts that need backporting. We'll try again later. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Rik van Riel <riel@surriel.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | | | | x86/xen: enable early use of set_fixmap in 32-bit Xen PV guestJuergen Gross2018-08-201-5/+12
|/ / / / | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Commit 7b25b9cb0dad83 ("x86/xen/time: Initialize pv xen time in init_hypervisor_platform()") moved the mapping of the shared info area before pagetable_init(). This breaks booting as 32-bit PV guest as the use of set_fixmap isn't possible at this time on 32-bit. This can be worked around by populating the needed PMD on 32-bit kernel earlier. In order not to reimplement populate_extra_pte() using extend_brk() for allocating new page tables extend alloc_low_pages() to do that in case the early page table pool is not yet available. Fixes: 7b25b9cb0dad83 ("x86/xen/time: Initialize pv xen time in init_hypervisor_platform()") Signed-off-by: Juergen Gross <jgross@suse.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
* | / / mm: convert return type of handle_mm_fault() caller to vm_fault_tSouptick Joarder2018-08-171-2/+3
| |/ / |/| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Use new return type vm_fault_t for fault handler. For now, this is just documenting that the function returns a VM_FAULT value rather than an errno. Once all instances are converted, vm_fault_t will become a distinct type. Ref-> commit 1c8f422059ae ("mm: change return type to vm_fault_t") In this patch all the caller of handle_mm_fault() are changed to return vm_fault_t type. Link: http://lkml.kernel.org/r/20180617084810.GA6730@jordon-HP-15-Notebook-PC Signed-off-by: Souptick Joarder <jrdr.linux@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Richard Henderson <rth@twiddle.net> Cc: Tony Luck <tony.luck@intel.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Russell King <linux@armlinux.org.uk> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Richard Kuo <rkuo@codeaurora.org> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Michal Simek <monstr@monstr.eu> Cc: James Hogan <jhogan@kernel.org> Cc: Ley Foon Tan <lftan@altera.com> Cc: Jonas Bonn <jonas@southpole.se> Cc: James E.J. Bottomley <jejb@parisc-linux.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Palmer Dabbelt <palmer@sifive.com> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: David S. Miller <davem@davemloft.net> Cc: Richard Weinberger <richard@nod.at> Cc: Guan Xuetao <gxt@pku.edu.cn> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: "Levin, Alexander (Sasha Levin)" <alexander.levin@verizon.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | | x86/init: fix build with CONFIG_SWAP=nVlastimil Babka2018-08-141-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The introduction of generic_max_swapfile_size and arch-specific versions has broken linking on x86 with CONFIG_SWAP=n due to undefined reference to 'generic_max_swapfile_size'. Fix it by compiling the x86-specific max_swapfile_size() only with CONFIG_SWAP=y. Reported-by: Tomas Pruzina <pruzinat@gmail.com> Fixes: 377eeaa8e11f ("x86/speculation/l1tf: Limit swap file size to MAX_PA/2") Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Cc: stable@vger.kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | | Merge branch 'l1tf-final' of ↵Linus Torvalds2018-08-145-14/+64
|\ \ \ | |_|/ |/| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Merge L1 Terminal Fault fixes from Thomas Gleixner: "L1TF, aka L1 Terminal Fault, is yet another speculative hardware engineering trainwreck. It's a hardware vulnerability which allows unprivileged speculative access to data which is available in the Level 1 Data Cache when the page table entry controlling the virtual address, which is used for the access, has the Present bit cleared or other reserved bits set. If an instruction accesses a virtual address for which the relevant page table entry (PTE) has the Present bit cleared or other reserved bits set, then speculative execution ignores the invalid PTE and loads the referenced data if it is present in the Level 1 Data Cache, as if the page referenced by the address bits in the PTE was still present and accessible. While this is a purely speculative mechanism and the instruction will raise a page fault when it is retired eventually, the pure act of loading the data and making it available to other speculative instructions opens up the opportunity for side channel attacks to unprivileged malicious code, similar to the Meltdown attack. While Meltdown breaks the user space to kernel space protection, L1TF allows to attack any physical memory address in the system and the attack works across all protection domains. It allows an attack of SGX and also works from inside virtual machines because the speculation bypasses the extended page table (EPT) protection mechanism. The assoicated CVEs are: CVE-2018-3615, CVE-2018-3620, CVE-2018-3646 The mitigations provided by this pull request include: - Host side protection by inverting the upper address bits of a non present page table entry so the entry points to uncacheable memory. - Hypervisor protection by flushing L1 Data Cache on VMENTER. - SMT (HyperThreading) control knobs, which allow to 'turn off' SMT by offlining the sibling CPU threads. The knobs are available on the kernel command line and at runtime via sysfs - Control knobs for the hypervisor mitigation, related to L1D flush and SMT control. The knobs are available on the kernel command line and at runtime via sysfs - Extensive documentation about L1TF including various degrees of mitigations. Thanks to all people who have contributed to this in various ways - patches, review, testing, backporting - and the fruitful, sometimes heated, but at the end constructive discussions. There is work in progress to provide other forms of mitigations, which might be less horrible performance wise for a particular kind of workloads, but this is not yet ready for consumption due to their complexity and limitations" * 'l1tf-final' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (75 commits) x86/microcode: Allow late microcode loading with SMT disabled tools headers: Synchronise x86 cpufeatures.h for L1TF additions x86/mm/kmmio: Make the tracer robust against L1TF x86/mm/pat: Make set_memory_np() L1TF safe x86/speculation/l1tf: Make pmd/pud_mknotpresent() invert x86/speculation/l1tf: Invert all not present mappings cpu/hotplug: Fix SMT supported evaluation KVM: VMX: Tell the nested hypervisor to skip L1D flush on vmentry x86/speculation: Use ARCH_CAPABILITIES to skip L1D flush on vmentry x86/speculation: Simplify sysfs report of VMX L1TF vulnerability Documentation/l1tf: Remove Yonah processors from not vulnerable list x86/KVM/VMX: Don't set l1tf_flush_l1d from vmx_handle_external_intr() x86/irq: Let interrupt handlers set kvm_cpu_l1tf_flush_l1d x86: Don't include linux/irq.h from asm/hardirq.h x86/KVM/VMX: Introduce per-host-cpu analogue of l1tf_flush_l1d x86/irq: Demote irq_cpustat_t::__softirq_pending to u16 x86/KVM/VMX: Move the l1tf_flush_l1d test to vmx_l1d_flush() x86/KVM/VMX: Replace 'vmx_l1d_flush_always' with 'vmx_l1d_flush_cond' x86/KVM/VMX: Don't set l1tf_flush_l1d to true from vmx_l1d_flush() cpu/hotplug: detect SMT disabled by BIOS ...
| * | x86/mm/kmmio: Make the tracer robust against L1TFAndi Kleen2018-08-081-10/+15
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The mmio tracer sets io mapping PTEs and PMDs to non present when enabled without inverting the address bits, which makes the PTE entry vulnerable for L1TF. Make it use the right low level macros to actually invert the address bits to protect against L1TF. In principle this could be avoided because MMIO tracing is not likely to be enabled on production machines, but the fix is straigt forward and for consistency sake it's better to get rid of the open coded PTE manipulation. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>