| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Since there can only be one active return_thunk, there only needs be
one (matching) untrain_ret. It fundamentally doesn't make sense to
allow multiple untrain_ret at the same time.
Fold all the 3 different untrain methods into a single (temporary)
helper stub.
Fixes: fb3bd914b3ec ("x86/srso: Add a Speculative RAS Overflow mitigation")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230814121149.042774962@infradead.org
|
|
|
|
|
|
|
|
|
|
| |
For a more consistent namespace.
[ bp: Fixup names in the doc too. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230814121148.976236447@infradead.org
|
|
|
|
|
|
|
|
|
|
|
|
| |
Rename the original retbleed return thunk and untrain_ret to
retbleed_return_thunk() and retbleed_untrain_ret().
No functional changes.
Suggested-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230814121148.909378169@infradead.org
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Use the existing configurable return thunk. There is absolute no
justification for having created this __x86_return_thunk alternative.
To clarify, the whole thing looks like:
Zen3/4 does:
srso_alias_untrain_ret:
nop2
lfence
jmp srso_alias_return_thunk
int3
srso_alias_safe_ret: // aliasses srso_alias_untrain_ret just so
add $8, %rsp
ret
int3
srso_alias_return_thunk:
call srso_alias_safe_ret
ud2
While Zen1/2 does:
srso_untrain_ret:
movabs $foo, %rax
lfence
call srso_safe_ret (jmp srso_return_thunk ?)
int3
srso_safe_ret: // embedded in movabs instruction
add $8,%rsp
ret
int3
srso_return_thunk:
call srso_safe_ret
ud2
While retbleed does:
zen_untrain_ret:
test $0xcc, %bl
lfence
jmp zen_return_thunk
int3
zen_return_thunk: // embedded in the test instruction
ret
int3
Where Zen1/2 flush the BTB entry using the instruction decoder trick
(test,movabs) Zen3/4 use BTB aliasing. SRSO adds a return sequence
(srso_safe_ret()) which forces the function return instruction to
speculate into a trap (UD2). This RET will then mispredict and
execution will continue at the return site read from the top of the
stack.
Pick one of three options at boot (evey function can only ever return
once).
[ bp: Fixup commit message uarch details and add them in a comment in
the code too. Add a comment about the srso_select_mitigation()
dependency on retbleed_select_mitigation(). Add moar ifdeffery for
32-bit builds. Add a dummy srso_untrain_ret_alias() definition for
32-bit alternatives needing the symbol. ]
Fixes: fb3bd914b3ec ("x86/srso: Add a Speculative RAS Overflow mitigation")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230814121148.842775684@infradead.org
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There is infrastructure to rewrite return thunks to point to any
random thunk one desires, unwrap that from CALL_THUNKS, which up to
now was the sole user of that.
[ bp: Make the thunks visible on 32-bit and add ifdeffery for the
32-bit builds. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230814121148.775293785@infradead.org
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
vmlinux.o: warning: objtool: srso_untrain_ret() falls through to next function __x86_return_skl()
vmlinux.o: warning: objtool: __x86_return_thunk() falls through to next function __x86_return_skl()
This is because these functions (can) end with CALL, which objtool
does not consider a terminating instruction. Therefore, replace the
INT3 instruction (which is a non-fatal trap) with UD2 (which is a
fatal-trap).
This indicates execution will not continue past this point.
Fixes: fb3bd914b3ec ("x86/srso: Add a Speculative RAS Overflow mitigation")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230814121148.637802730@infradead.org
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Commit
fb3bd914b3ec ("x86/srso: Add a Speculative RAS Overflow mitigation")
reimplemented __x86_return_thunk with a mix of SYM_FUNC_START and
SYM_CODE_END, this is not a sane combination.
Since nothing should ever actually 'CALL' this, make it consistently
CODE.
Fixes: fb3bd914b3ec ("x86/srso: Add a Speculative RAS Overflow mitigation")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230814121148.571027074@infradead.org
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
retpolines and IBT
The kprobes optimization check can_optimize() calls
insn_is_indirect_jump() to detect indirect jump instructions in
a target function. If any is found, creating an optprobe is disallowed
in the function because the jump could be from a jump table and could
potentially land in the middle of the target optprobe.
With retpolines, insn_is_indirect_jump() additionally looks for calls to
indirect thunks which the compiler potentially used to replace original
jumps. This extra check is however unnecessary because jump tables are
disabled when the kernel is built with retpolines. The same is currently
the case with IBT.
Based on this observation, remove the logic to look for calls to
indirect thunks and skip the check for indirect jumps altogether if the
kernel is built with retpolines or IBT. Remove subsequently the symbols
__indirect_thunk_start and __indirect_thunk_end which are no longer
needed.
Dropping this logic indirectly fixes a problem where the range
[__indirect_thunk_start, __indirect_thunk_end] wrongly included also the
return thunk. It caused that machines which used the return thunk as
a mitigation and didn't have it patched by any alternative ended up not
being able to use optprobes in any regular function.
Fixes: 0b53c374b9ef ("x86/retpoline: Use -mfunction-return")
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Suggested-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Petr Pavlu <petr.pavlu@suse.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Link: https://lore.kernel.org/r/20230711091952.27944-3-petr.pavlu@suse.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The linker script arch/x86/kernel/vmlinux.lds.S matches the thunk
sections ".text.__x86.*" from arch/x86/lib/retpoline.S as follows:
.text {
[...]
TEXT_TEXT
[...]
__indirect_thunk_start = .;
*(.text.__x86.*)
__indirect_thunk_end = .;
[...]
}
Macro TEXT_TEXT references TEXT_MAIN which normally expands to only
".text". However, with CONFIG_LTO_CLANG, TEXT_MAIN becomes
".text .text.[0-9a-zA-Z_]*" which wrongly matches also the thunk
sections. The output layout is then different than expected. For
instance, the currently defined range [__indirect_thunk_start,
__indirect_thunk_end] becomes empty.
Prevent the problem by using ".." as the first separator, for example,
".text..__x86.indirect_thunk". This pattern is utilized by other
explicit section names which start with one of the standard prefixes,
such as ".text" or ".data", and that need to be individually selected in
the linker script.
[ nathan: Fix conflicts with SRSO and fold in fix issue brought up by
Andrew Cooper in post-review:
https://lore.kernel.org/20230803230323.1478869-1-andrew.cooper3@citrix.com ]
Fixes: dc5723b02e52 ("kbuild: add support for Clang LTO")
Signed-off-by: Petr Pavlu <petr.pavlu@suse.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230711091952.27944-2-petr.pavlu@suse.com
|
|
|
|
|
|
|
|
|
|
| |
Skip the srso cmd line parsing which is not needed on Zen1/2 with SMT
disabled and with the proper microcode applied (latter should be the
case anyway) as those are not affected.
Fixes: 5a15d8348881 ("x86/srso: Tie SBPB bit setting to microcode patch detection")
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230813104517.3346-1-bp@alien8.de
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Initially, it was thought that doing an innocuous division in the #DE
handler would take care to prevent any leaking of old data from the
divider but by the time the fault is raised, the speculation has already
advanced too far and such data could already have been used by younger
operations.
Therefore, do the innocuous division on every exit to userspace so that
userspace doesn't see any potentially old data from integer divisions in
kernel space.
Do the same before VMRUN too, to protect host data from leaking into the
guest too.
Fixes: 77245f1c3c64 ("x86/CPU/AMD: Do not leak quotient data after a division by 0")
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: <stable@kernel.org>
Link: https://lore.kernel.org/r/20230811213824.10025-1-bp@alien8.de
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Use LEA instead of ADD when adjusting %rsp in srso_safe_ret{,_alias}()
so as to avoid clobbering flags. Drop one of the INT3 instructions to
account for the LEA consuming one more byte than the ADD.
KVM's emulator makes indirect calls into a jump table of sorts, where
the destination of each call is a small blob of code that performs fast
emulation by executing the target instruction with fixed operands.
E.g. to emulate ADC, fastop() invokes adcb_al_dl():
adcb_al_dl:
<+0>: adc %dl,%al
<+2>: jmp <__x86_return_thunk>
A major motivation for doing fast emulation is to leverage the CPU to
handle consumption and manipulation of arithmetic flags, i.e. RFLAGS is
both an input and output to the target of the call. fastop() collects
the RFLAGS result by pushing RFLAGS onto the stack and popping them back
into a variable (held in %rdi in this case):
asm("push %[flags]; popf; " CALL_NOSPEC " ; pushf; pop %[flags]\n"
<+71>: mov 0xc0(%r8),%rdx
<+78>: mov 0x100(%r8),%rcx
<+85>: push %rdi
<+86>: popf
<+87>: call *%rsi
<+89>: nop
<+90>: nop
<+91>: nop
<+92>: pushf
<+93>: pop %rdi
and then propagating the arithmetic flags into the vCPU's emulator state:
ctxt->eflags = (ctxt->eflags & ~EFLAGS_MASK) | (flags & EFLAGS_MASK);
<+64>: and $0xfffffffffffff72a,%r9
<+94>: and $0x8d5,%edi
<+109>: or %rdi,%r9
<+122>: mov %r9,0x10(%r8)
The failures can be most easily reproduced by running the "emulator"
test in KVM-Unit-Tests.
If you're feeling a bit of deja vu, see commit b63f20a778c8
("x86/retpoline: Don't clobber RFLAGS during CALL_NOSPEC on i386").
In addition, this breaks booting of clang-compiled guest on
a gcc-compiled host where the host contains the %rsp-modifying SRSO
mitigations.
[ bp: Massage commit message, extend, remove addresses. ]
Fixes: fb3bd914b3ec ("x86/srso: Add a Speculative RAS Overflow mitigation")
Closes: https://lore.kernel.org/all/de474347-122d-54cd-eabf-9dcc95ab9eae@amd.com
Reported-by: Srikanth Aithal <sraithal@amd.com>
Reported-by: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Nathan Chancellor <nathan@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/20230810013334.GA5354@dev-arch.thelio-3990X/
Link: https://lore.kernel.org/r/20230811155255.250835-1-seanjc@google.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The only remaining consumer is new_inode, where it showed up in 2001 as
commit c37fa164f793 ("v2.4.9.9 -> v2.4.9.10") in a historical repo [1]
with a changelog which does not mention it.
Since then the line got only touched up to keep compiling.
While it may have been of benefit back in the day, it is guaranteed to
at best not get in the way in the multicore setting -- as the code
performs *a lot* of work between the prefetch and actual lock acquire,
any contention means the cacheline is already invalid by the time the
routine calls spin_lock(). It adds spurious traffic, for short.
On top of it prefetch is notoriously tricky to use for single-threaded
purposes, making it questionable from the get go.
As such, remove it.
I admit upfront I did not see value in benchmarking this change, but I
can do it if that is deemed appropriate.
Removal from new_inode and of the entire thing are in the same patch as
requested by Linus, so whatever weird looks can be directed at that guy.
Link: https://git.kernel.org/pub/scm/linux/kernel/git/tglx/history.git/commit/fs/inode.c?id=c37fa164f793735b32aa3f53154ff1a7659e6442 [1]
Signed-off-by: Mateusz Guzik <mjguzik@gmail.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Borislav Petkov:
- Do not parse the confidential computing blob on non-AMD hardware as
it leads to an EFI config table ending up unmapped
- Use the correct segment selector in the 32-bit version of getcpu() in
the vDSO
- Make sure vDSO and VVAR regions are placed in the 47-bit VA range
even on 5-level paging systems
- Add models 0x90-0x91 to the range of AMD Zenbleed-affected CPUs
* tag 'x86_urgent_for_v6.5_rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/cpu/amd: Enable Zenbleed fix for AMD Custom APU 0405
x86/mm: Fix VDSO and VVAR placement on 5-level paging machines
x86/linkage: Fix typo of BUILD_VDSO in asm/linkage.h
x86/vdso: Choose the right GDT_ENTRY_CPUNODE for 32-bit getcpu() on 64-bit kernel
x86/sev: Do not try to parse for the CC blob on non-AMD hardware
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Commit
522b1d69219d ("x86/cpu/amd: Add a Zenbleed fix")
provided a fix for the Zen2 VZEROUPPER data corruption bug affecting
a range of CPU models, but the AMD Custom APU 0405 found on SteamDeck
was not listed, although it is clearly affected by the vulnerability.
Add this CPU variant to the Zenbleed erratum list, in order to
unconditionally enable the fallback fix until a proper microcode update
is available.
Fixes: 522b1d69219d ("x86/cpu/amd: Add a Zenbleed fix")
Signed-off-by: Cristian Ciocaltea <cristian.ciocaltea@collabora.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20230811203705.1699914-1-cristian.ciocaltea@collabora.com
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Yingcong has noticed that on the 5-level paging machine, VDSO and VVAR
VMAs are placed above the 47-bit border:
8000001a9000-8000001ad000 r--p 00000000 00:00 0 [vvar]
8000001ad000-8000001af000 r-xp 00000000 00:00 0 [vdso]
This might confuse users who are not aware of 5-level paging and expect
all userspace addresses to be under the 47-bit border.
So far problem has only been triggered with ASLR disabled, although it
may also occur with ASLR enabled if the layout is randomized in a just
right way.
The problem happens due to custom placement for the VMAs in the VDSO
code: vdso_addr() tries to place them above the stack and checks the
result against TASK_SIZE_MAX, which is wrong. TASK_SIZE_MAX is set to
the 56-bit border on 5-level paging machines. Use DEFAULT_MAP_WINDOW
instead.
Fixes: b569bab78d8d ("x86/mm: Prepare to expose larger address space to userspace")
Reported-by: Yingcong Wu <yingcong.wu@intel.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/all/20230803151609.22141-1-kirill.shutemov%40linux.intel.com
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The BUILD_VDSO macro was incorrectly spelled as BULID_VDSO in
asm/linkage.h. This causes the !defined(BULID_VDSO) directive to always
evaluate to true.
Correct the spelling to BUILD_VDSO.
Fixes: bea75b33895f ("x86/Kconfig: Introduce function padding")
Signed-off-by: Jinghao Jia <jinghao@linux.ibm.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Randy Dunlap <rdunlap@infradead.org>
Cc: <stable@kernel.org>
Link: https://lore.kernel.org/r/20230808182353.76218-1-jinghao@linux.ibm.com
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
kernel
The vDSO getcpu() reads CPU ID from the GDT_ENTRY_CPUNODE entry when the RDPID
instruction is not available. And GDT_ENTRY_CPUNODE is defined as 28 on 32-bit
Linux kernel and 15 on 64-bit. But the 32-bit getcpu() on 64-bit Linux kernel
is compiled with 32-bit Linux kernel GDT_ENTRY_CPUNODE, i.e., 28, beyond the
64-bit Linux kernel GDT limit. Thus, it just fails _silently_.
When BUILD_VDSO32_64 is defined, choose the 64-bit Linux kernel GDT definitions
to compile the 32-bit getcpu().
Fixes: 877cff5296faa6e ("x86/vdso: Fake 32bit VDSO build on 64bit compile for vgetcpu")
Reported-by: kernel test robot <yujie.liu@intel.com>
Reported-by: Shan Kang <shan.kang@intel.com>
Signed-off-by: Xin Li <xin3.li@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20230322061758.10639-1-xin3.li@intel.com
Link: https://lore.kernel.org/oe-lkp/202303020903.b01fd1de-yujie.liu@intel.com
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Tao Liu reported a boot hang on an Intel Atom machine due to an unmapped
EFI config table. The reason being that the CC blob which contains the
CPUID page for AMD SNP guests is parsed for before even checking
whether the machine runs on AMD hardware.
Usually that's not a problem on !AMD hw - it simply won't find the CC
blob's GUID and return. However, if any parts of the config table
pointers array is not mapped, the kernel will #PF very early in the
decompressor stage without any opportunity to recover.
Therefore, do a superficial CPUID check before poking for the CC blob.
This will fix the current issue on real hardware. It would also work as
a guest on a non-lying hypervisor.
For the lying hypervisor, the check is done again, *after* parsing the
CC blob as the real CPUID page will be present then.
Clear the #VC handler in case SEV-{ES,SNP} hasn't been detected, as
a precaution.
Fixes: c01fce9cef84 ("x86/compressed: Add SEV-SNP feature detection/setup")
Reported-by: Tao Liu <ltao@redhat.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Tom Lendacky <thomas.lendacky@amd.com>
Tested-by: Tao Liu <ltao@redhat.com>
Cc: <stable@kernel.org>
Link: https://lore.kernel.org/r/20230601072043.24439-1-ltao@redhat.com
|
|\ \
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 mitigation fixes from Borislav Petkov:
"The first set of fallout fixes after the embargo madness. There will
be another set next week too.
- A first series of cleanups/unifications and documentation
improvements to the SRSO and GDS mitigations code which got
postponed to after the embargo date
- Fix the SRSO aliasing addresses assertion so that the LLVM linker
can parse it too"
* tag 'x86_bugs_for_v6.5_rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
driver core: cpu: Fix the fallback cpu_show_gds() name
x86: Move gds_ucode_mitigated() declaration to header
x86/speculation: Add cpu_show_gds() prototype
driver core: cpu: Make cpu_show_not_affected() static
x86/srso: Fix build breakage with the LLVM linker
Documentation/srso: Document IBPB aspect and fix formatting
driver core: cpu: Unify redundant silly stubs
Documentation/hw-vuln: Unify filename specification in index
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
The declaration got placed in the .c file of the caller, but that
causes a warning for the definition:
arch/x86/kernel/cpu/bugs.c:682:6: error: no previous prototype for 'gds_ucode_mitigated' [-Werror=missing-prototypes]
Move it to a header where both sides can observe it instead.
Fixes: 81ac7e5d74174 ("KVM: Add GDS_NO support to KVM")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Tested-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Cc: stable@kernel.org
Link: https://lore.kernel.org/all/20230809130530.1913368-2-arnd%40kernel.org
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
The assertion added to verify the difference in bits set of the
addresses of srso_untrain_ret_alias() and srso_safe_ret_alias() would fail
to link in LLVM's ld.lld linker with the following error:
ld.lld: error: ./arch/x86/kernel/vmlinux.lds:210: at least one side of
the expression must be absolute
ld.lld: error: ./arch/x86/kernel/vmlinux.lds:211: at least one side of
the expression must be absolute
Use ABSOLUTE to evaluate the expression referring to at least one of the
symbols so that LLD can evaluate the linker script.
Also, add linker version info to the comment about XOR being unsupported
in either ld.bfd or ld.lld until somewhat recently.
Fixes: fb3bd914b3ec ("x86/srso: Add a Speculative RAS Overflow mitigation")
Closes: https://lore.kernel.org/llvm/CA+G9fYsdUeNu-gwbs0+T6XHi4hYYk=Y9725-wFhZ7gJMspLDRA@mail.gmail.com/
Reported-by: Nathan Chancellor <nathan@kernel.org>
Reported-by: Daniel Kolesa <daniel@octaforge.org>
Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Suggested-by: Sven Volkinsfeld <thyrc@gmx.net>
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://github.com/ClangBuiltLinux/linux/issues/1907
Link: https://lore.kernel.org/r/20230809-gds-v1-1-eaac90b0cbcc@google.com
|
|\ \ \
| |/ /
|/| |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull ACPI fixes from Rafael Wysocki:
"Rework the handling of interrupt overrides on AMD Zen-based machines
to avoid recently introduced regressions (Hans de Goede).
Note that this is intended as a short-term mitigation for 6.5 and the
long-term approach will be to attempt to use the configuration left by
the BIOS, but it requires more investigation"
* tag 'acpi-6.5-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm:
ACPI: resource: Add IRQ override quirk for PCSpecialist Elimina Pro 16 M
ACPI: resource: Honor MADT INT_SRC_OVR settings for IRQ1 on AMD Zen
ACPI: resource: Always use MADT override IRQ settings for all legacy non i8042 IRQs
ACPI: resource: revert "Remove "Zen" specific match and quirks"
|
| |/
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
On AMD Zen acpi_dev_irq_override() by default prefers the DSDT IRQ 1
settings over the MADT settings.
This causes the keyboard to malfunction on some laptop models
(see Links), all models from the Links have an INT_SRC_OVR MADT entry
for IRQ 1.
Fixes: a9c4a912b7dc ("ACPI: resource: Remove "Zen" specific match and quirks")
Link: https://bugzilla.kernel.org/show_bug.cgi?id=217336
Link: https://bugzilla.kernel.org/show_bug.cgi?id=217394
Link: https://bugzilla.kernel.org/show_bug.cgi?id=217406
Cc: All applicable <stable@vger.kernel.org>
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Under certain circumstances, an integer division by 0 which faults, can
leave stale quotient data from a previous division operation on Zen1
microarchitectures.
Do a dummy division 0/1 before returning from the #DE exception handler
in order to avoid any leaks of potentially sensitive data.
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: <stable@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|\ \
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86/gds fixes from Dave Hansen:
"Mitigate Gather Data Sampling issue:
- Add Base GDS mitigation
- Support GDS_NO under KVM
- Fix a documentation typo"
* tag 'gds-for-linus-2023-08-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
Documentation/x86: Fix backwards on/off logic about YMM support
KVM: Add GDS_NO support to KVM
x86/speculation: Add Kconfig option for GDS
x86/speculation: Add force option to GDS mitigation
x86/speculation: Add Gather Data Sampling mitigation
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Gather Data Sampling (GDS) is a transient execution attack using
gather instructions from the AVX2 and AVX512 extensions. This attack
allows malicious code to infer data that was previously stored in
vector registers. Systems that are not vulnerable to GDS will set the
GDS_NO bit of the IA32_ARCH_CAPABILITIES MSR. This is useful for VM
guests that may think they are on vulnerable systems that are, in
fact, not affected. Guests that are running on affected hosts where
the mitigation is enabled are protected as if they were running
on an unaffected system.
On all hosts that are not affected or that are mitigated, set the
GDS_NO bit.
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Gather Data Sampling (GDS) is mitigated in microcode. However, on
systems that haven't received the updated microcode, disabling AVX
can act as a mitigation. Add a Kconfig option that uses the microcode
mitigation if available and disables AVX otherwise. Setting this
option has no effect on systems not affected by GDS. This is the
equivalent of setting gather_data_sampling=force.
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
The Gather Data Sampling (GDS) vulnerability allows malicious software
to infer stale data previously stored in vector registers. This may
include sensitive data such as cryptographic keys. GDS is mitigated in
microcode, and systems with up-to-date microcode are protected by
default. However, any affected system that is running with older
microcode will still be vulnerable to GDS attacks.
Since the gather instructions used by the attacker are part of the
AVX2 and AVX512 extensions, disabling these extensions prevents gather
instructions from being executed, thereby mitigating the system from
GDS. Disabling AVX2 is sufficient, but we don't have the granularity
to do this. The XCR0[2] disables AVX, with no option to just disable
AVX2.
Add a kernel parameter gather_data_sampling=force that will enable the
microcode mitigation if available, otherwise it will disable AVX on
affected systems.
This option will be ignored if cmdline mitigations=off.
This is a *big* hammer. It is known to break buggy userspace that
uses incomplete, buggy AVX enumeration. Unfortunately, such userspace
does exist in the wild:
https://www.mail-archive.com/bug-coreutils@gnu.org/msg33046.html
[ dhansen: add some more ominous warnings about disabling AVX ]
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Gather Data Sampling (GDS) is a hardware vulnerability which allows
unprivileged speculative access to data which was previously stored in
vector registers.
Intel processors that support AVX2 and AVX512 have gather instructions
that fetch non-contiguous data elements from memory. On vulnerable
hardware, when a gather instruction is transiently executed and
encounters a fault, stale data from architectural or internal vector
registers may get transiently stored to the destination vector
register allowing an attacker to infer the stale data using typical
side channel techniques like cache timing attacks.
This mitigation is different from many earlier ones for two reasons.
First, it is enabled by default and a bit must be set to *DISABLE* it.
This is the opposite of normal mitigation polarity. This means GDS can
be mitigated simply by updating microcode and leaving the new control
bit alone.
Second, GDS has a "lock" bit. This lock bit is there because the
mitigation affects the hardware security features KeyLocker and SGX.
It needs to be enabled and *STAY* enabled for these features to be
mitigated against GDS.
The mitigation is enabled in the microcode by default. Disable it by
setting gather_data_sampling=off or by disabling all mitigations with
mitigations=off. The mitigation status can be checked by reading:
/sys/devices/system/cpu/vulnerabilities/gather_data_sampling
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
|
|\ \ \
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86/srso fixes from Borislav Petkov:
"Add a mitigation for the speculative RAS (Return Address Stack)
overflow vulnerability on AMD processors.
In short, this is yet another issue where userspace poisons a
microarchitectural structure which can then be used to leak privileged
information through a side channel"
* tag 'x86_bugs_srso' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/srso: Tie SBPB bit setting to microcode patch detection
x86/srso: Add a forgotten NOENDBR annotation
x86/srso: Fix return thunks in generated code
x86/srso: Add IBPB on VMEXIT
x86/srso: Add IBPB
x86/srso: Add SRSO_NO support
x86/srso: Add IBPB_BRTYPE support
x86/srso: Add a Speculative RAS Overflow mitigation
x86/bugs: Increase the x86 bugs vector size to two u32s
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
The SBPB bit in MSR_IA32_PRED_CMD is supported only after a microcode
patch has been applied so set X86_FEATURE_SBPB only then. Otherwise,
guests would attempt to set that bit and #GP on the MSR write.
While at it, make SMT detection more robust as some guests - depending
on how and what CPUID leafs their report - lead to cpu_smt_control
getting set to CPU_SMT_NOT_SUPPORTED but SRSO_NO should be set for any
guest incarnation where one simply cannot do SMT, for whatever reason.
Fixes: fb3bd914b3ec ("x86/srso: Add a Speculative RAS Overflow mitigation")
Reported-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Reported-by: Salvatore Bonaccorso <carnil@debian.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Fix:
vmlinux.o: warning: objtool: .export_symbol+0x29e40: data relocation to !ENDBR: srso_untrain_ret_alias+0x0
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Set X86_FEATURE_RETHUNK when enabling the SRSO mitigation so that
generated code (e.g., ftrace, static call, eBPF) generates "jmp
__x86_return_thunk" instead of RET.
[ bp: Add a comment. ]
Fixes: fb3bd914b3ec ("x86/srso: Add a Speculative RAS Overflow mitigation")
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Add the option to flush IBPB only on VMEXIT in order to protect from
malicious guests but one otherwise trusts the software that runs on the
hypervisor.
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Add the option to mitigate using IBPB on a kernel entry. Pull in the
Retbleed alternative so that the IBPB call from there can be used. Also,
if Retbleed mitigation is done using IBPB, the same mitigation can and
must be used here.
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Add support for the CPUID flag which denotes that the CPU is not
affected by SRSO.
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Add support for the synthetic CPUID flag which "if this bit is 1,
it indicates that MSR 49h (PRED_CMD) bit 0 (IBPB) flushes all branch
type predictions from the CPU branch predictor."
This flag is there so that this capability in guests can be detected
easily (otherwise one would have to track microcode revisions which is
impossible for guests).
It is also needed only for Zen3 and -4. The other two (Zen1 and -2)
always flush branch type predictions by default.
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Add a mitigation for the speculative return address stack overflow
vulnerability found on AMD processors.
The mitigation works by ensuring all RET instructions speculate to
a controlled location, similar to how speculation is controlled in the
retpoline sequence. To accomplish this, the __x86_return_thunk forces
the CPU to mispredict every function return using a 'safe return'
sequence.
To ensure the safety of this mitigation, the kernel must ensure that the
safe return sequence is itself free from attacker interference. In Zen3
and Zen4, this is accomplished by creating a BTB alias between the
untraining function srso_untrain_ret_alias() and the safe return
function srso_safe_ret_alias() which results in evicting a potentially
poisoned BTB entry and using that safe one for all function returns.
In older Zen1 and Zen2, this is accomplished using a reinterpretation
technique similar to Retbleed one: srso_untrain_ret() and
srso_safe_ret().
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
|
| |/ /
| | |
| | |
| | |
| | |
| | |
| | | |
There was never a doubt in my mind that they would not fit into a single
u32 eventually.
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
|
|\ \ \
| |_|/
|/| |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Pull kvm fixes from Paolo Bonzini:
"x86:
- Fix SEV race condition
ARM:
- Fixes for the configuration of SVE/SME traps when hVHE mode is in
use
- Allow use of pKVM on systems with FF-A implementations that are
v1.0 compatible
- Request/release percpu IRQs (arch timer, vGIC maintenance)
correctly when pKVM is in use
- Fix function prototype after __kvm_host_psci_cpu_entry() rename
- Skip to the next instruction when emulating writes to TCR_EL1 on
AmpereOne systems
Selftests:
- Fix missing include"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
selftests/rseq: Fix build with undefined __weak
KVM: SEV: remove ghcb variable declarations
KVM: SEV: only access GHCB fields once
KVM: SEV: snapshot the GHCB before accessing it
KVM: arm64: Skip instruction after emulating write to TCR_EL1
KVM: arm64: fix __kvm_host_psci_cpu_entry() prototype
KVM: arm64: Fix resetting SME trap values on reset for (h)VHE
KVM: arm64: Fix resetting SVE trap values on reset for hVHE
KVM: arm64: Use the appropriate feature trap register when activating traps
KVM: arm64: Helper to write to appropriate feature trap register based on mode
KVM: arm64: Disable SME traps for (h)VHE at setup
KVM: arm64: Use the appropriate feature trap register for SVE at EL2 setup
KVM: arm64: Factor out code for checking (h)VHE mode into a macro
KVM: arm64: Rephrase percpu enable/disable tracking in terms of hyp
KVM: arm64: Fix hardware enable/disable flows for pKVM
KVM: arm64: Allow pKVM on v1.0 compatible FF-A implementations
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
To avoid possible time-of-check/time-of-use issues, the GHCB should
almost never be accessed outside dump_ghcb, sev_es_sync_to_ghcb
and sev_es_sync_from_ghcb. The only legitimate uses are to set the
exitinfo fields and to find the address of the scratch area embedded
in the ghcb. Accessing ghcb_usage also goes through svm->sev_es.ghcb
in sev_es_validate_vmgexit(), but that is because anyway the value is
not used.
Removing a shortcut variable that contains the value of svm->sev_es.ghcb
makes these cases a bit more verbose, but it limits the chance of someone
reading the ghcb by mistake.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
A KVM guest using SEV-ES or SEV-SNP with multiple vCPUs can trigger
a double fetch race condition vulnerability and invoke the VMGEXIT
handler recursively.
sev_handle_vmgexit() maps the GHCB page using kvm_vcpu_map() and then
fetches the exit code using ghcb_get_sw_exit_code(). Soon after,
sev_es_validate_vmgexit() fetches the exit code again. Since the GHCB
page is shared with the guest, the guest is able to quickly swap the
values with another vCPU and hence bypass the validation. One vmexit code
that can be rejected by sev_es_validate_vmgexit() is SVM_EXIT_VMGEXIT;
if sev_handle_vmgexit() observes it in the second fetch, the call
to svm_invoke_exit_handler() will invoke sev_handle_vmgexit() again
recursively.
To avoid the race, always fetch the GHCB data from the places where
sev_es_sync_from_ghcb stores it.
Exploiting recursions on linux kernel has been proven feasible
in the past, but the impact is mitigated by stack guard pages
(CONFIG_VMAP_STACK). Still, if an attacker manages to call the handler
multiple times, they can theoretically trigger a stack overflow and
cause a denial-of-service, or potentially guest-to-host escape in kernel
configurations without stack guard pages.
Note that winning the race reliably in every iteration is very tricky
due to the very tight window of the fetches; depending on the compiler
settings, they are often consecutive because of optimization and inlining.
Tested by booting an SEV-ES RHEL9 guest.
Fixes: CVE-2023-4155
Fixes: 291bd20d5d88 ("KVM: SVM: Add initial support for a VMGEXIT VMEXIT")
Cc: stable@vger.kernel.org
Reported-by: Andy Nguyen <theflow@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Validation of the GHCB is susceptible to time-of-check/time-of-use vulnerabilities.
To avoid them, we would like to always snapshot the fields that are read in
sev_es_validate_vmgexit(), and not use the GHCB anymore after it returns.
This means:
- invoking sev_es_sync_from_ghcb() before any GHCB access, including before
sev_es_validate_vmgexit()
- snapshotting all fields including the valid bitmap and the sw_scratch field,
which are currently not caching anywhere.
The valid bitmap is the first thing to be copied out of the GHCB; then,
further accesses will use the copy in svm->sev_es.
Fixes: 291bd20d5d88 ("KVM: SVM: Add initial support for a VMGEXIT VMEXIT")
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|\ \ \
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/hyperv/linux
Pull hyperv fixes from Wei Liu:
- Fix a bug in a python script for Hyper-V (Ani Sinha)
- Workaround a bug in Hyper-V when IBT is enabled (Michael Kelley)
- Fix an issue parsing MP table when Linux runs in VTL2 (Saurabh
Sengar)
- Several cleanup patches (Nischala Yelchuri, Kameron Carr, YueHaibing,
ZhiHu)
* tag 'hyperv-fixes-signed-20230804' of git://git.kernel.org/pub/scm/linux/kernel/git/hyperv/linux:
Drivers: hv: vmbus: Remove unused extern declaration vmbus_ontimer()
x86/hyperv: add noop functions to x86_init mpparse functions
vmbus_testing: fix wrong python syntax for integer value comparison
x86/hyperv: fix a warning in mshyperv.h
x86/hyperv: Disable IBT when hypercall page lacks ENDBR instruction
x86/hyperv: Improve code for referencing hyperv_pcpu_input_arg
Drivers: hv: Change hv_free_hyperv_page() to take void * argument
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Hyper-V can run VMs at different privilege "levels" known as Virtual
Trust Levels (VTL). Sometimes, it chooses to run two different VMs
at different levels but they share some of their address space. In
such setups VTL2 (higher level VM) has visibility of all of the
VTL0 (level 0) memory space.
When the CONFIG_X86_MPPARSE is enabled for VTL2, the VTL2 kernel
performs a search within the low memory to locate MP tables. However,
in systems where VTL0 manages the low memory and may contain valid
tables, this scanning can result in incorrect MP table information
being provided to the VTL2 kernel, mistakenly considering VTL0's MP
table as its own
Add noop functions to avoid MP parse scan by VTL2.
Signed-off-by: Saurabh Sengar <ssengar@linux.microsoft.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lore.kernel.org/r/1687537688-5397-1-git-send-email-ssengar@linux.microsoft.com
Signed-off-by: Wei Liu <wei.liu@kernel.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
The following checkpatch warning is removed:
WARNING: Use #include <linux/io.h> instead of <asm/io.h>
Signed-off-by: ZhiHu <huzhi001@208suo.com>
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Signed-off-by: Wei Liu <wei.liu@kernel.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
On hardware that supports Indirect Branch Tracking (IBT), Hyper-V VMs
with ConfigVersion 9.3 or later support IBT in the guest. However,
current versions of Hyper-V have a bug in that there's not an ENDBR64
instruction at the beginning of the hypercall page. Since hypercalls are
made with an indirect call to the hypercall page, all hypercall attempts
fail with an exception and Linux panics.
A Hyper-V fix is in progress to add ENDBR64. But guard against the Linux
panic by clearing X86_FEATURE_IBT if the hypercall page doesn't start
with ENDBR. The VM will boot and run without IBT.
If future Linux 32-bit kernels were to support IBT, additional hypercall
page hackery would be needed to make IBT work for such kernels in a
Hyper-V VM.
Cc: stable@vger.kernel.org
Signed-off-by: Michael Kelley <mikelley@microsoft.com>
Link: https://lore.kernel.org/r/1690001476-98594-1-git-send-email-mikelley@microsoft.com
Signed-off-by: Wei Liu <wei.liu@kernel.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Several places in code for Hyper-V reference the
per-CPU variable hyperv_pcpu_input_arg. Older code uses a multi-line
sequence to reference the variable, and usually includes a cast.
Newer code does a much simpler direct assignment. The latter is
preferable as the complexity of the older code is unnecessary.
Update older code to use the simpler direct assignment.
Signed-off-by: Nischala Yelchuri <niyelchu@linux.microsoft.com>
Link: https://lore.kernel.org/r/1687286438-9421-1-git-send-email-niyelchu@linux.microsoft.com
Signed-off-by: Wei Liu <wei.liu@kernel.org>
|
|\ \ \ \
| | |/ /
| |/| |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Pull kvm fixes from Paolo Bonzini:
"x86:
- Do not register IRQ bypass consumer if posted interrupts not
supported
- Fix missed device interrupt due to non-atomic update of IRR
- Use GFP_KERNEL_ACCOUNT for pid_table in ipiv
- Make VMREAD error path play nice with noinstr
- x86: Acquire SRCU read lock when handling fastpath MSR writes
- Support linking rseq tests statically against glibc 2.35+
- Fix reference count for stats file descriptors
- Detect userspace setting invalid CR0
Non-KVM:
- Remove coccinelle script that has caused multiple confusion
("debugfs, coccinelle: check for obsolete DEFINE_SIMPLE_ATTRIBUTE()
usage", acked by Greg)"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (21 commits)
KVM: selftests: Expand x86's sregs test to cover illegal CR0 values
KVM: VMX: Don't fudge CR0 and CR4 for restricted L2 guest
KVM: x86: Disallow KVM_SET_SREGS{2} if incoming CR0 is invalid
Revert "debugfs, coccinelle: check for obsolete DEFINE_SIMPLE_ATTRIBUTE() usage"
KVM: selftests: Verify stats fd is usable after VM fd has been closed
KVM: selftests: Verify stats fd can be dup()'d and read
KVM: selftests: Verify userspace can create "redundant" binary stats files
KVM: selftests: Explicitly free vcpus array in binary stats test
KVM: selftests: Clean up stats fd in common stats_test() helper
KVM: selftests: Use pread() to read binary stats header
KVM: Grab a reference to KVM for VM and vCPU stats file descriptors
selftests/rseq: Play nice with binaries statically linked against glibc 2.35+
Revert "KVM: SVM: Skip WRMSR fastpath on VM-Exit if next RIP isn't valid"
KVM: x86: Acquire SRCU read lock when handling fastpath MSR writes
KVM: VMX: Use vmread_error() to report VM-Fail in "goto" path
KVM: VMX: Make VMREAD error path play nice with noinstr
KVM: x86/irq: Conditionally register IRQ bypass consumer again
KVM: X86: Use GFP_KERNEL_ACCOUNT for pid_table in ipiv
KVM: x86: check the kvm_cpu_get_interrupt result before using it
KVM: x86: VMX: set irr_pending in kvm_apic_update_irr
...
|