summaryrefslogtreecommitdiffstats
path: root/arch/x86
Commit message (Collapse)AuthorAgeFilesLines
* sched: Fix unreleased llc_shared_mask bit during CPU hotplugWanpeng Li2014-10-051-0/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 03bd4e1f7265548832a76e7919a81f3137c44fd1 upstream. The following bug can be triggered by hot adding and removing a large number of xen domain0's vcpus repeatedly: BUG: unable to handle kernel NULL pointer dereference at 0000000000000004 IP: [..] find_busiest_group PGD 5a9d5067 PUD 13067 PMD 0 Oops: 0000 [#3] SMP [...] Call Trace: load_balance ? _raw_spin_unlock_irqrestore idle_balance __schedule schedule schedule_timeout ? lock_timer_base schedule_timeout_uninterruptible msleep lock_device_hotplug_sysfs online_store dev_attr_store sysfs_write_file vfs_write SyS_write system_call_fastpath Last level cache shared mask is built during CPU up and the build_sched_domain() routine takes advantage of it to setup the sched domain CPU topology. However, llc_shared_mask is not released during CPU disable, which leads to an invalid sched domainCPU topology. This patch fix it by releasing the llc_shared_mask correctly during CPU disable. Yasuaki also reported that this can happen on real hardware: https://lkml.org/lkml/2014/7/22/1018 His case is here: == Here is an example on my system. My system has 4 sockets and each socket has 15 cores and HT is enabled. In this case, each core of sockes is numbered as follows: | CPU# Socket#0 | 0-14 , 60-74 Socket#1 | 15-29, 75-89 Socket#2 | 30-44, 90-104 Socket#3 | 45-59, 105-119 Then llc_shared_mask of CPU#30 has 0x3fff80000001fffc0000000. It means that last level cache of Socket#2 is shared with CPU#30-44 and 90-104. When hot-removing socket#2 and #3, each core of sockets is numbered as follows: | CPU# Socket#0 | 0-14 , 60-74 Socket#1 | 15-29, 75-89 But llc_shared_mask is not cleared. So llc_shared_mask of CPU#30 remains having 0x3fff80000001fffc0000000. After that, when hot-adding socket#2 and #3, each core of sockets is numbered as follows: | CPU# Socket#0 | 0-14 , 60-74 Socket#1 | 15-29, 75-89 Socket#2 | 30-59 Socket#3 | 90-119 Then llc_shared_mask of CPU#30 becomes 0x3fff8000fffffffc0000000. It means that last level cache of Socket#2 is shared with CPU#30-59 and 90-104. So the mask has the wrong value. Signed-off-by: Wanpeng Li <wanpeng.li@linux.intel.com> Tested-by: Linn Crosetto <linn@hp.com> Reviewed-by: Borislav Petkov <bp@suse.de> Reviewed-by: Toshi Kani <toshi.kani@hp.com> Reviewed-by: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Prarit Bhargava <prarit@redhat.com> Cc: Steven Rostedt <srostedt@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/1411547885-48165-1-git-send-email-wanpeng.li@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86 early_ioremap: Increase FIX_BTMAPS_SLOTS to 8Dave Young2014-10-051-3/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 3eddc69ffeba092d288c386646bfa5ec0fce25fd upstream. 3.16 kernel boot fail with earlyprintk=efi, it keeps scrolling at the bottom line of screen. Bisected, the first bad commit is below: commit 86dfc6f339886559d80ee0d4bd20fe5ee90450f0 Author: Lv Zheng <lv.zheng@intel.com> Date: Fri Apr 4 12:38:57 2014 +0800 ACPICA: Tables: Fix table checksums verification before installation. I did some debugging by enabling both serial and efi earlyprintk, below is some debug dmesg, seems early_ioremap fails in scroll up function due to no free slot, see below dmesg output: WARNING: CPU: 0 PID: 0 at mm/early_ioremap.c:116 __early_ioremap+0x90/0x1c4() __early_ioremap(ed00c800, 00000c80) not found slot Modules linked in: CPU: 0 PID: 0 Comm: swapper Not tainted 3.17.0-rc1+ #204 Hardware name: Hewlett-Packard HP Z420 Workstation/1589, BIOS J61 v03.15 05/09/2013 Call Trace: dump_stack+0x4e/0x7a warn_slowpath_common+0x75/0x8e ? __early_ioremap+0x90/0x1c4 warn_slowpath_fmt+0x47/0x49 __early_ioremap+0x90/0x1c4 ? sprintf+0x46/0x48 early_ioremap+0x13/0x15 early_efi_map+0x24/0x26 early_efi_scroll_up+0x6d/0xc0 early_efi_write+0x1b0/0x214 call_console_drivers.constprop.21+0x73/0x7e console_unlock+0x151/0x3b2 ? vprintk_emit+0x49f/0x532 vprintk_emit+0x521/0x532 ? console_unlock+0x383/0x3b2 printk+0x4f/0x51 acpi_os_vprintf+0x2b/0x2d acpi_os_printf+0x43/0x45 acpi_info+0x5c/0x63 ? __acpi_map_table+0x13/0x18 ? acpi_os_map_iomem+0x21/0x147 acpi_tb_print_table_header+0x177/0x186 acpi_tb_install_table_with_override+0x4b/0x62 acpi_tb_install_standard_table+0xd9/0x215 ? early_ioremap+0x13/0x15 ? __acpi_map_table+0x13/0x18 acpi_tb_parse_root_table+0x16e/0x1b4 acpi_initialize_tables+0x57/0x59 acpi_table_init+0x50/0xce acpi_boot_table_init+0x1e/0x85 setup_arch+0x9b7/0xcc4 start_kernel+0x94/0x42d ? early_idt_handlers+0x120/0x120 x86_64_start_reservations+0x2a/0x2c x86_64_start_kernel+0xf3/0x100 Quote reply from Lv.zheng about the early ioremap slot usage in this case: """ In early_efi_scroll_up(), 2 mapping entries will be used for the src/dst screen buffer. In drivers/acpi/acpica/tbutils.c, we've improved the early table loading code in acpi_tb_parse_root_table(). We now need 2 mapping entries: 1. One mapping entry is used for RSDT table mapping. Each RSDT entry contains an address for another ACPI table. 2. For each entry in RSDP, we need another mapping entry to map the table to perform necessary check/override before installing it. When acpi_tb_parse_root_table() prints something through EFI earlyprintk console, we'll have 4 mapping entries used. The current 4 slots setting of early_ioremap() seems to be too small for such a use case. """ Thus increase the slot to 8 in this patch to fix this issue. boot-time mappings become 512 page with this patch. Signed-off-by: Dave Young <dyoung@redhat.com> Signed-off-by: Matt Fleming <matt.fleming@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* KVM: x86: handle idiv overflow at kvm_write_tscMarcelo Tosatti2014-10-051-3/+20
| | | | | | | | | | | | | | | | | | | | commit 8915aa27d5efbb9185357175b0acf884325565f9 upstream. Its possible that idivl overflows (due to large delta stored in usdiff, valid scenario). Create an exception handler to catch the overflow exception (division by zero is protected by vcpu->arch.virtual_tsc_khz check), and interpret it accordingly (delta is larger than USEC_PER_SEC). Fixes https://bugzilla.redhat.com/show_bug.cgi?id=969644 Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: Gleb Natapov <gleb@redhat.com> Signed-off-by: Philipp Hahn <hahn@univention.de> Tested-by: Philipp Hahn <hahn@univention.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/efi: Enforce CONFIG_RELOCATABLE for EFI boot stubMatt Fleming2014-09-051-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 7b2a583afb4ab894f78bc0f8bd136e96b6499a7e upstream. Without CONFIG_RELOCATABLE the early boot code will decompress the kernel to LOAD_PHYSICAL_ADDR. While this may have been fine in the BIOS days, that isn't going to fly with UEFI since parts of the firmware code/data may be located at LOAD_PHYSICAL_ADDR. Straying outside of the bounds of the regions we've explicitly requested from the firmware will cause all sorts of trouble. Bruno reports that his machine resets while trying to decompress the kernel image. We already go to great pains to ensure the kernel is loaded into a suitably aligned buffer, it's just that the address isn't necessarily LOAD_PHYSICAL_ADDR, because we can't guarantee that address isn't in-use by the firmware. Explicitly enforce CONFIG_RELOCATABLE for the EFI boot stub, so that we can load the kernel at any address with the correct alignment. Reported-by: Bruno Prémont <bonbons@linux-vserver.org> Tested-by: Bruno Prémont <bonbons@linux-vserver.org> Cc: H. Peter Anvin <hpa@zytor.com> Signed-off-by: Matt Fleming <matt.fleming@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86_64/vsyscall: Fix warn_bad_vsyscall log outputAndy Lutomirski2014-09-051-4/+4
| | | | | | | | | | | | | | | | | | | | | | | | | commit 53b884ac3745353de220d92ef792515c3ae692f0 upstream. This commit in Linux 3.6: commit c767a54ba0657e52e6edaa97cbe0b0a8bf1c1655 Author: Joe Perches <joe@perches.com> Date: Mon May 21 19:50:07 2012 -0700 x86/debug: Add KERN_<LEVEL> to bare printks, convert printks to pr_<level> caused warn_bad_vsyscall to output garbage in the middle of the line. Revert the bad part of it. The printk in question isn't actually bare; the level is "%s". The bug this fixes is purely cosmetic; backports are optional. Signed-off-by: Andy Lutomirski <luto@amacapital.net> Link: http://lkml.kernel.org/r/03eac1f24110bbe496ecc12a4df467e0d88466d4.1406330947.git.luto@amacapital.net Signed-off-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86: don't exclude low BIOS area when allocating address space for non-PCI cardsChristoph Schulz2014-09-052-3/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit cbace46a9710a480cae51e4611697df5de41713e upstream. Commit 30919b0bf356 ("x86: avoid low BIOS area when allocating address space") moved the test for resource allocations that fall within the first 1MB of address space from the PCI-specific path to a generic path, such that all resource allocations will avoid this area. However, this breaks ISA cards which need to allocate a memory region within the first 1MB. An example is the i82365 PCMCIA controller and derivatives like the Ricoh RF5C296/396 which map part of the PCMCIA socket memory address space into the first 1MB of system memory address space. They do not work anymore as no usable memory region exists due to this change: Intel ISA PCIC probe: Ricoh RF5C296/396 ISA-to-PCMCIA at port 0x3e0 ofs 0x00, 2 sockets host opts [0]: none host opts [1]: none ISA irqs (scanned) = 3,4,5,9,10 status change on irq 10 pcmcia_socket pcmcia_socket1: pccard: PCMCIA card inserted into slot 1 pcmcia_socket pcmcia_socket0: cs: IO port probe 0xc00-0xcff: excluding 0xcf8-0xcff pcmcia_socket pcmcia_socket0: cs: IO port probe 0xa00-0xaff: clean. pcmcia_socket pcmcia_socket0: cs: IO port probe 0x100-0x3ff: excluding 0x170-0x177 0x1f0-0x1f7 0x2f8-0x2ff 0x370-0x37f 0x3c0-0x3e7 0x3f0-0x3ff pcmcia_socket pcmcia_socket0: cs: memory probe 0x0a0000-0x0affff: excluding 0xa0000-0xaffff pcmcia_socket pcmcia_socket0: cs: memory probe 0x0b0000-0x0bffff: excluding 0xb0000-0xbffff pcmcia_socket pcmcia_socket0: cs: memory probe 0x0c0000-0x0cffff: excluding 0xc0000-0xcbfff pcmcia_socket pcmcia_socket0: cs: memory probe 0x0d0000-0x0dffff: clean. pcmcia_socket pcmcia_socket0: cs: memory probe 0x0e0000-0x0effff: clean. pcmcia_socket pcmcia_socket0: cs: memory probe 0x60000000-0x60ffffff: clean. pcmcia_socket pcmcia_socket0: cs: memory probe 0xa0000000-0xa0ffffff: clean. pcmcia_socket pcmcia_socket1: cs: IO port probe 0xc00-0xcff: excluding 0xcf8-0xcff pcmcia_socket pcmcia_socket1: cs: IO port probe 0xa00-0xaff: clean. pcmcia_socket pcmcia_socket1: cs: IO port probe 0x100-0x3ff: excluding 0x170-0x177 0x1f0-0x1f7 0x2f8-0x2ff 0x370-0x37f 0x3c0-0x3e7 0x3f0-0x3ff pcmcia_socket pcmcia_socket1: cs: memory probe 0x0a0000-0x0affff: excluding 0xa0000-0xaffff pcmcia_socket pcmcia_socket1: cs: memory probe 0x0b0000-0x0bffff: excluding 0xb0000-0xbffff pcmcia_socket pcmcia_socket1: cs: memory probe 0x0c0000-0x0cffff: excluding 0xc0000-0xcbfff pcmcia_socket pcmcia_socket1: cs: memory probe 0x0d0000-0x0dffff: clean. pcmcia_socket pcmcia_socket1: cs: memory probe 0x0e0000-0x0effff: clean. pcmcia_socket pcmcia_socket1: cs: memory probe 0x60000000-0x60ffffff: clean. pcmcia_socket pcmcia_socket1: cs: memory probe 0xa0000000-0xa0ffffff: clean. pcmcia_socket pcmcia_socket1: cs: memory probe 0x0cc000-0x0effff: excluding 0xe0000-0xeffff pcmcia_socket pcmcia_socket1: cs: unable to map card memory! If filtering out the first 1MB is reverted, everything works as expected. Tested-by: Robert Resch <fli4l@robert.reschpara.de> Signed-off-by: Christoph Schulz <develop@kristov.de> Signed-off-by: Bjorn Helgaas <bhelgaas@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* Revert "KVM: x86: Increase the number of fixed MTRR regs to 10"Paolo Bonzini2014-09-051-1/+1
| | | | | | | | | | | | | | | | commit 0d234daf7e0a3290a3a20c8087eefbd6335a5bd4 upstream. This reverts commit 682367c494869008eb89ef733f196e99415ae862, which causes 32-bit SMP Windows 7 guests to panic. SeaBIOS has a limit on the number of MTRRs that it can handle, and this patch exceeded the limit. Better revert it. Thanks to Nadav Amit for debugging the cause. Reported-by: Wanpeng Li <wanpeng.li@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* KVM: nVMX: fix "acknowledge interrupt on exit" when APICv is in useWanpeng Li2014-09-052-14/+40
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 56cc2406d68c0f09505c389e276f27a99f495cbd upstream. After commit 77b0f5d (KVM: nVMX: Ack and write vector info to intr_info if L1 asks us to), "Acknowledge interrupt on exit" behavior can be emulated. To do so, KVM will ask the APIC for the interrupt vector if during a nested vmexit if VM_EXIT_ACK_INTR_ON_EXIT is set. With APICv, kvm_get_apic_interrupt would return -1 and give the following WARNING: Call Trace: [<ffffffff81493563>] dump_stack+0x49/0x5e [<ffffffff8103f0eb>] warn_slowpath_common+0x7c/0x96 [<ffffffffa059709a>] ? nested_vmx_vmexit+0xa4/0x233 [kvm_intel] [<ffffffff8103f11a>] warn_slowpath_null+0x15/0x17 [<ffffffffa059709a>] nested_vmx_vmexit+0xa4/0x233 [kvm_intel] [<ffffffffa0594295>] ? nested_vmx_exit_handled+0x6a/0x39e [kvm_intel] [<ffffffffa0537931>] ? kvm_apic_has_interrupt+0x80/0xd5 [kvm] [<ffffffffa05972ec>] vmx_check_nested_events+0xc3/0xd3 [kvm_intel] [<ffffffffa051ebe9>] inject_pending_event+0xd0/0x16e [kvm] [<ffffffffa051efa0>] vcpu_enter_guest+0x319/0x704 [kvm] To fix this, we cannot rely on the processor's virtual interrupt delivery, because "acknowledge interrupt on exit" must only update the virtual ISR/PPR/IRR registers (and SVI, which is just a cache of the virtual ISR) but it should not deliver the interrupt through the IDT. Thus, KVM has to deliver the interrupt "by hand", similar to the treatment of EOI in commit fc57ac2c9ca8 (KVM: lapic: sync highest ISR to hardware apic on EOI, 2014-05-14). The patch modifies kvm_cpu_get_interrupt to always acknowledge an interrupt; there are only two callers, and the other is not affected because it is never reached with kvm_apic_vid_enabled() == true. Then it modifies apic_set_isr and apic_clear_irr to update SVI and RVI in addition to the registers. Suggested-by: Paolo Bonzini <pbonzini@redhat.com> Suggested-by: "Zhang, Yang Z" <yang.z.zhang@intel.com> Tested-by: Liu, RongrongX <rongrongx.liu@intel.com> Tested-by: Felipe Reyes <freyes@suse.com> Fixes: 77b0f5d67ff2781f36831cba79674c3e97bd7acf Signed-off-by: Wanpeng Li <wanpeng.li@linux.intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* KVM: x86: Inter-privilege level ret emulation is not implemenetedNadav Amit2014-09-051-0/+4
| | | | | | | | | | | | | commit 9e8919ae793f4edfaa29694a70f71a515ae9942a upstream. Return unhandlable error on inter-privilege level ret instruction. This is since the current emulation does not check the privilege level correctly when loading the CS, and does not pop RSP/SS as needed. Signed-off-by: Nadav Amit <namit@cs.technion.ac.il> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/espfix/xen: Fix allocation of pages for paravirt page tablesBoris Ostrovsky2014-08-071-3/+2
| | | | | | | | | | | | | | | | | | | | | | commit 8762e5092828c4dc0f49da5a47a644c670df77f3 upstream. init_espfix_ap() is currently off by one level when informing hypervisor that allocated pages will be used for ministacks' page tables. The most immediate effect of this on a PV guest is that if 'stack_page = __get_free_page()' returns a non-zeroed-out page the hypervisor will refuse to use it for a page table (which it shouldn't be anyway). This will result in warnings by both Xen and Linux. More importantly, a subsequent write to that page (again, by a PV guest) is likely to result in fatal page fault. Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> Link: http://lkml.kernel.org/r/1404926298-5565-1-git-send-email-boris.ostrovsky@oracle.com Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86_64/entry/xen: Do not invoke espfix64 on XenAndy Lutomirski2014-08-073-21/+11
| | | | | | | | | | | | | | | | | | | | | commit 7209a75d2009dbf7745e2fd354abf25c3deb3ca3 upstream. This moves the espfix64 logic into native_iret. To make this work, it gets rid of the native patch for INTERRUPT_RETURN: INTERRUPT_RETURN on native kernels is now 'jmp native_iret'. This changes the 16-bit SS behavior on Xen from OOPSing to leaking some bits of the Xen hypervisor's RSP (I think). [ hpa: this is a nonzero cost on native, but probably not enough to measure. Xen needs to fix this in their own code, probably doing something equivalent to espfix64. ] Signed-off-by: Andy Lutomirski <luto@amacapital.net> Link: http://lkml.kernel.org/r/7b8f1d8ef6597cb16ae004a43c56980a7de3cf94.1406129132.git.luto@amacapital.net Signed-off-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86, espfix: Make it possible to disable 16-bit supportH. Peter Anvin2014-08-074-5/+43
| | | | | | | | | | | | | | commit 34273f41d57ee8d854dcd2a1d754cbb546cb548f upstream. Embedded systems, which may be very memory-size-sensitive, are extremely unlikely to ever encounter any 16-bit software, so make it a CONFIG_EXPERT option to turn off support for any 16-bit software whatsoever. Signed-off-by: H. Peter Anvin <hpa@zytor.com> Link: http://lkml.kernel.org/r/1398816946-3351-1-git-send-email-hpa@linux.intel.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86, espfix: Make espfix64 a Kconfig option, fix UMLH. Peter Anvin2014-08-073-2/+6
| | | | | | | | | | | | | | | | | | | | commit 197725de65477bc8509b41388157c1a2283542bb upstream. Make espfix64 a hidden Kconfig option. This fixes the x86-64 UML build which had broken due to the non-existence of init_espfix_bsp() in UML: since UML uses its own Kconfig, this option does not appear in the UML build. This also makes it possible to make support for 16-bit segments a configuration option, for the people who want to minimize the size of the kernel. Reported-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: H. Peter Anvin <hpa@zytor.com> Cc: Richard Weinberger <richard@nod.at> Link: http://lkml.kernel.org/r/1398816946-3351-1-git-send-email-hpa@linux.intel.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86, espfix: Fix broken header guardH. Peter Anvin2014-08-071-1/+1
| | | | | | | | | | | commit 20b68535cd27183ebd3651ff313afb2b97dac941 upstream. Header guard is #ifndef, not #ifdef... Reported-by: Fengguang Wu <fengguang.wu@intel.com> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86, espfix: Move espfix definitions into a separate header fileH. Peter Anvin2014-08-073-3/+19
| | | | | | | | | | | | | commit e1fe9ed8d2a4937510d0d60e20705035c2609aea upstream. Sparse warns that the percpu variables aren't declared before they are defined. Rather than hacking around it, move espfix definitions into a proper header file. Reported-by: Fengguang Wu <fengguang.wu@intel.com> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86-64, espfix: Don't leak bits 31:16 of %esp returning to 16-bit stackH. Peter Anvin2014-08-078-26/+318
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 3891a04aafd668686239349ea58f3314ea2af86b upstream. The IRET instruction, when returning to a 16-bit segment, only restores the bottom 16 bits of the user space stack pointer. This causes some 16-bit software to break, but it also leaks kernel state to user space. We have a software workaround for that ("espfix") for the 32-bit kernel, but it relies on a nonzero stack segment base which is not available in 64-bit mode. In checkin: b3b42ac2cbae x86-64, modify_ldt: Ban 16-bit segments on 64-bit kernels we "solved" this by forbidding 16-bit segments on 64-bit kernels, with the logic that 16-bit support is crippled on 64-bit kernels anyway (no V86 support), but it turns out that people are doing stuff like running old Win16 binaries under Wine and expect it to work. This works around this by creating percpu "ministacks", each of which is mapped 2^16 times 64K apart. When we detect that the return SS is on the LDT, we copy the IRET frame to the ministack and use the relevant alias to return to userspace. The ministacks are mapped readonly, so if IRET faults we promote #GP to #DF which is an IST vector and thus has its own stack; we then do the fixup in the #DF handler. (Making #GP an IST exception would make the msr_safe functions unsafe in NMI/MC context, and quite possibly have other effects.) Special thanks to: - Andy Lutomirski, for the suggestion of using very small stack slots and copy (as opposed to map) the IRET frame there, and for the suggestion to mark them readonly and let the fault promote to #DF. - Konrad Wilk for paravirt fixup and testing. - Borislav Petkov for testing help and useful comments. Reported-by: Brian Gerst <brgerst@gmail.com> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com> Link: http://lkml.kernel.org/r/1398816946-3351-1-git-send-email-hpa@linux.intel.com Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Andrew Lutomriski <amluto@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Dirk Hohndel <dirk@hohndel.org> Cc: Arjan van de Ven <arjan.van.de.ven@intel.com> Cc: comex <comexk@gmail.com> Cc: Alexander van Heukelum <heukelum@fastmail.fm> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* Revert "x86-64, modify_ldt: Make support for 16-bit segments a runtime option"H. Peter Anvin2014-08-072-11/+1
| | | | | | | | | | | commit 7ed6fb9b5a5510e4ef78ab27419184741169978a upstream. This reverts commit fa81511bb0bbb2b1aace3695ce869da9762624ff in preparation of merging in the proper fix (espfix64). Signed-off-by: H. Peter Anvin <hpa@zytor.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/efi: Include a .bss section within the PE/COFF headersMichael Brown2014-07-312-11/+52
| | | | | | | | | | | | | | | | | | | commit c7fb93ec51d462ec3540a729ba446663c26a0505 upstream. The PE/COFF headers currently describe only the initialised-data portions of the image, and result in no space being allocated for the uninitialised-data portions. Consequently, the EFI boot stub will end up overwriting unexpected areas of memory, with unpredictable results. Fix by including a .bss section in the PE/COFF headers (functionally equivalent to the init_size field in the bzImage header). Signed-off-by: Michael Brown <mbrown@fensystems.co.uk> Cc: Thomas Bächler <thomas@archlinux.org> Cc: Josh Boyer <jwboyer@fedoraproject.org> Signed-off-by: Matt Fleming <matt.fleming@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86_32, entry: Store badsys error code in %eaxSven Wegener2014-07-311-4/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 8142b215501f8b291a108a202b3a053a265b03dd upstream. Commit 554086d ("x86_32, entry: Do syscall exit work on badsys (CVE-2014-4508)") introduced a regression in the x86_32 syscall entry code, resulting in syscall() not returning proper errors for undefined syscalls on CPUs supporting the sysenter feature. The following code: > int result = syscall(666); > printf("result=%d errno=%d error=%s\n", result, errno, strerror(errno)); results in: > result=666 errno=0 error=Success Obviously, the syscall return value is the called syscall number, but it should have been an ENOSYS error. When run under ptrace it behaves correctly, which makes it hard to debug in the wild: > result=-1 errno=38 error=Function not implemented The %eax register is the return value register. For debugging via ptrace the syscall entry code stores the complete register context on the stack. The badsys handlers only store the ENOSYS error code in the ptrace register set and do not set %eax like a regular syscall handler would. The old resume_userspace call chain contains code that clobbers %eax and it restores %eax from the ptrace registers afterwards. The same goes for the ptrace-enabled call chain. When ptrace is not used, the syscall return value is the passed-in syscall number from the untouched %eax register. Use %eax as the return value register in syscall_badsys and sysenter_badsys, like a real syscall handler does, and have the caller push the value onto the stack for ptrace access. Signed-off-by: Sven Wegener <sven.wegener@stealer.net> Link: http://lkml.kernel.org/r/alpine.LNX.2.11.1407221022380.31021@titan.int.lan.stealer.net Reviewed-and-tested-by: Andy Lutomirski <luto@amacapital.net> Signed-off-by: H. Peter Anvin <hpa@zytor.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* locking/mutex: Disable optimistic spinning on some architecturesPeter Zijlstra2014-07-281-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 4badad352a6bb202ec68afa7a574c0bb961e5ebc upstream. The optimistic spin code assumes regular stores and cmpxchg() play nice; this is found to not be true for at least: parisc, sparc32, tile32, metag-lock1, arc-!llsc and hexagon. There is further wreckage, but this in particular seemed easy to trigger, so blacklist this. Opt in for known good archs. Signed-off-by: Peter Zijlstra <peterz@infradead.org> Reported-by: Mikulas Patocka <mpatocka@redhat.com> Cc: David Miller <davem@davemloft.net> Cc: Chris Metcalf <cmetcalf@tilera.com> Cc: James Bottomley <James.Bottomley@hansenpartnership.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: Jason Low <jason.low2@hp.com> Cc: Waiman Long <waiman.long@hp.com> Cc: "James E.J. Bottomley" <jejb@parisc-linux.org> Cc: Paul McKenney <paulmck@linux.vnet.ibm.com> Cc: John David Anglin <dave.anglin@bell.net> Cc: James Hogan <james.hogan@imgtec.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Davidlohr Bueso <davidlohr@hp.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Russell King <linux@arm.linux.org.uk> Cc: Will Deacon <will.deacon@arm.com> Cc: linux-arm-kernel@lists.infradead.org Cc: linux-kernel@vger.kernel.org Cc: linuxppc-dev@lists.ozlabs.org Cc: sparclinux@vger.kernel.org Link: http://lkml.kernel.org/r/20140606175316.GV13930@laptop.programming.kicks-ass.net Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* perf/x86/intel: ignore CondChgd bit to avoid false NMI handlingHATAYAMA Daisuke2014-07-281-0/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit b292d7a10487aee6e74b1c18b8d95b92f40d4a4f upstream. Currently, any NMI is falsely handled by a NMI handler of NMI watchdog if CondChgd bit in MSR_CORE_PERF_GLOBAL_STATUS MSR is set. For example, we use external NMI to make system panic to get crash dump, but in this case, the external NMI is falsely handled do to the issue. This commit deals with the issue simply by ignoring CondChgd bit. Here is explanation in detail. On x86 NMI watchdog uses performance monitoring feature to periodically signal NMI each time performance counter gets overflowed. intel_pmu_handle_irq() is called as a NMI_LOCAL handler from a NMI handler of NMI watchdog, perf_event_nmi_handler(). It identifies an owner of a given NMI by looking at overflow status bits in MSR_CORE_PERF_GLOBAL_STATUS MSR. If some of the bits are set, then it handles the given NMI as its own NMI. The problem is that the intel_pmu_handle_irq() doesn't distinguish CondChgd bit from other bits. Unlike the other status bits, CondChgd bit doesn't represent overflow status for performance counters. Thus, CondChgd bit cannot be thought of as a mark indicating a given NMI is NMI watchdog's. As a result, if CondChgd bit is set, any NMI is falsely handled by the NMI handler of NMI watchdog. Also, if type of the falsely handled NMI is either NMI_UNKNOWN, NMI_SERR or NMI_IO_CHECK, the corresponding action is never performed until CondChgd bit is cleared. I noticed this behavior on systems with Ivy Bridge processors: Intel Xeon CPU E5-2630 v2 and Intel Xeon CPU E7-8890 v2. On both systems, CondChgd bit in MSR_CORE_PERF_GLOBAL_STATUS MSR has already been set in the beginning at boot. Then the CondChgd bit is immediately cleared by next wrmsr to MSR_CORE_PERF_GLOBAL_CTRL MSR and appears to remain 0. On the other hand, on older processors such as Nehalem, Xeon E7540, CondChgd bit is not set in the beginning at boot. I'm not sure about exact behavior of CondChgd bit, in particular when this bit is set. Although I read Intel System Programmer's Manual to figure out that, the descriptions I found are: In 18.9.1: "The MSR_PERF_GLOBAL_STATUS MSR also provides a ¡sticky bit¢ to indicate changes to the state of performancmonitoring hardware" In Table 35-2 IA-32 Architectural MSRs 63 CondChg: status bits of this register has changed. These are different from the bahviour I see on the actual system as I explained above. At least, I think ignoring CondChgd bit should be enough for NMI watchdog perspective. Signed-off-by: HATAYAMA Daisuke <d.hatayama@jp.fujitsu.com> Acked-by: Don Zickus <dzickus@redhat.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/20140625.103503.409316067.d.hatayama@jp.fujitsu.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86, ioremap: Speed up check for RAM pagesRoland Dreier2014-07-171-7/+19
| | | | | | | | | | | | | | | | | | | | | | | | | commit c81c8a1eeede61e92a15103748c23d100880cc8a upstream. In __ioremap_caller() (the guts of ioremap), we loop over the range of pfns being remapped and checks each one individually with page_is_ram(). For large ioremaps, this can be very slow. For example, we have a device with a 256 GiB PCI BAR, and ioremapping this BAR can take 20+ seconds -- sometimes long enough to trigger the soft lockup detector! Internally, page_is_ram() calls walk_system_ram_range() on a single page. Instead, we can make a single call to walk_system_ram_range() from __ioremap_caller(), and do our further checks only for any RAM pages that we find. For the common case of MMIO, this saves an enormous amount of work, since the range being ioremapped doesn't intersect system RAM at all. With this change, ioremap on our 256 GiB BAR takes less than 1 second. Signed-off-by: Roland Dreier <roland@purestorage.com> Link: http://lkml.kernel.org/r/1399054721-1331-1-git-send-email-roland@kernel.org Signed-off-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* crypto: sha512_ssse3 - fix byte count to bit count conversionJussi Kivilinna2014-07-171-1/+1
| | | | | | | | | | | | | | | | | | | commit cfe82d4f45c7cc39332a2be7c4c1d3bf279bbd3d upstream. Byte-to-bit-count computation is only partly converted to big-endian and is mixing in CPU-endian values. Problem was noticed by sparce with warning: CHECK arch/x86/crypto/sha512_ssse3_glue.c arch/x86/crypto/sha512_ssse3_glue.c:144:19: warning: restricted __be64 degrades to integer arch/x86/crypto/sha512_ssse3_glue.c:144:17: warning: incorrect type in assignment (different base types) arch/x86/crypto/sha512_ssse3_glue.c:144:17: expected restricted __be64 <noident> arch/x86/crypto/sha512_ssse3_glue.c:144:17: got unsigned long long Signed-off-by: Jussi Kivilinna <jussi.kivilinna@iki.fi> Acked-by: Tim Chen <tim.c.chen@linux.intel.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* KVM: x86: preserve the high 32-bits of the PAT registerPaolo Bonzini2014-07-091-1/+1
| | | | | | | | | | | | | commit 7cb060a91c0efc5ff94f83c6df3ed705e143cdb9 upstream. KVM does not really do much with the PAT, so this went unnoticed for a long time. It is exposed however if you try to do rdmsr on the PAT register. Reported-by: Valentine Sinitsyn <valentine.sinitsyn@gmail.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* KVM: x86: Increase the number of fixed MTRR regs to 10Nadav Amit2014-07-091-1/+1
| | | | | | | | | | | | | | commit 682367c494869008eb89ef733f196e99415ae862 upstream. Recent Intel CPUs have 10 variable range MTRRs. Since operating systems sometime make assumptions on CPUs while they ignore capability MSRs, it is better for KVM to be consistent with recent CPUs. Reporting more MTRRs than actually supported has no functional implications. Signed-off-by: Nadav Amit <namit@cs.technion.ac.il> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* ptrace,x86: force IRET path after a ptrace_stop()Tejun Heo2014-07-061-0/+16
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit b9cd18de4db3c9ffa7e17b0dc0ca99ed5aa4d43a upstream. The 'sysret' fastpath does not correctly restore even all regular registers, much less any segment registers or reflags values. That is very much part of why it's faster than 'iret'. Normally that isn't a problem, because the normal ptrace() interface catches the process using the signal handler infrastructure, which always returns with an iret. However, some paths can get caught using ptrace_event() instead of the signal path, and for those we need to make sure that we aren't going to return to user space using 'sysret'. Otherwise the modifications that may have been done to the register set by the tracer wouldn't necessarily take effect. Fix it by forcing IRET path by setting TIF_NOTIFY_RESUME from arch_ptrace_stop_needed() which is invoked from ptrace_stop(). Signed-off-by: Tejun Heo <tj@kernel.org> Reported-by: Andy Lutomirski <luto@amacapital.net> Acked-by: Oleg Nesterov <oleg@redhat.com> Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86_32, entry: Do syscall exit work on badsys (CVE-2014-4508)Andy Lutomirski2014-06-301-2/+8
| | | | | | | | | | | | | | | | | | | | | | commit 554086d85e71f30abe46fc014fea31929a7c6a8a upstream. The bad syscall nr paths are their own incomprehensible route through the entry control flow. Rearrange them to work just like syscalls that return -ENOSYS. This fixes an OOPS in the audit code when fast-path auditing is enabled and sysenter gets a bad syscall nr (CVE-2014-4508). This has probably been broken since Linux 2.6.27: af0575bba0 i386 syscall audit fast-path Cc: Roland McGrath <roland@redhat.com> Reported-by: Toralf Förster <toralf.foerster@gmx.de> Signed-off-by: Andy Lutomirski <luto@amacapital.net> Link: http://lkml.kernel.org/r/e09c499eade6fc321266dd6b54da7beb28d6991c.1403558229.git.luto@amacapital.net Signed-off-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86, x32: Use compat shims for io_{setup,submit}Mike Frysinger2014-06-301-2/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 7fd44dacdd803c0bbf38bf478d51d280902bb0f1 upstream. The io_setup takes a pointer to a context id of type aio_context_t. This in turn is typed to a __kernel_ulong_t. We could tweak the exported headers to define this as a 64bit quantity for specific ABIs, but since we already have a 32bit compat shim for the x86 ABI, let's just re-use that logic. The libaio package is also written to expect this as a pointer type, so a compat shim would simplify that. The io_submit func operates on an array of pointers to iocb structs. Padding out the array to be 64bit aligned is a huge pain, so convert it over to the existing compat shim too. We don't convert io_getevents to the compat func as its only purpose is to handle the timespec struct, and the x32 ABI uses 64bit times. With this change, the libaio package can now pass its testsuite when built for the x32 ABI. Signed-off-by: Mike Frysinger <vapier@gentoo.org> Link: http://lkml.kernel.org/r/1399250595-5005-1-git-send-email-vapier@gentoo.org Cc: H.J. Lu <hjl.tools@gmail.com> Signed-off-by: H. Peter Anvin <hpa@zytor.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86-32, espfix: Remove filter for espfix32 due to raceH. Peter Anvin2014-06-301-5/+0
| | | | | | | | | | | | | | | commit 246f2d2ee1d715e1077fc47d61c394569c8ee692 upstream. It is not safe to use LAR to filter when to go down the espfix path, because the LDT is per-process (rather than per-thread) and another thread might change the descriptors behind our back. Fortunately it is always *safe* (if a bit slow) to go down the espfix path, and a 32-bit LDT stack segment is extremely rare. Signed-off-by: H. Peter Anvin <hpa@linux.intel.com> Link: http://lkml.kernel.org/r/1398816946-3351-1-git-send-email-hpa@linux.intel.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* KVM: lapic: sync highest ISR to hardware apic on EOIPaolo Bonzini2014-06-261-19/+43
| | | | | | | | | | | | | | | | | | | | | | commit fc57ac2c9ca8109ea97fcc594f4be436944230cc upstream. When Hyper-V enlightenments are in effect, Windows prefers to issue an Hyper-V MSR write to issue an EOI rather than an x2apic MSR write. The Hyper-V MSR write is not handled by the processor, and besides being slower, this also causes bugs with APIC virtualization. The reason is that on EOI the processor will modify the highest in-service interrupt (SVI) field of the VMCS, as explained in section 29.1.4 of the SDM; every other step in EOI virtualization is already done by apic_send_eoi or on VM entry, but this one is missing. We need to do the same, and be careful not to muck with the isr_count and highest_isr_cache fields that are unused when virtual interrupt delivery is enabled. Reviewed-by: Yang Zhang <yang.z.zhang@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* perf: Drop sample rate when sampling is too slowDave Hansen2014-06-111-1/+11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 14c63f17b1fde5a575a28e96547a22b451c71fb5 upstream. This patch keeps track of how long perf's NMI handler is taking, and also calculates how many samples perf can take a second. If the sample length times the expected max number of samples exceeds a configurable threshold, it drops the sample rate. This way, we don't have a runaway sampling process eating up the CPU. This patch can tend to drop the sample rate down to level where perf doesn't work very well. *BUT* the alternative is that my system hangs because it spends all of its time handling NMIs. I'll take a busted performance tool over an entire system that's busted and undebuggable any day. BTW, my suspicion is that there's still an underlying bug here. Using the HPET instead of the TSC is definitely a contributing factor, but I suspect there are some other things going on. But, I can't go dig down on a bug like that with my machine hanging all the time. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: paulus@samba.org Cc: acme@ghostprotocols.net Cc: Dave Hansen <dave@sr71.net> [ Prettified it a bit. ] Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: Weng Meiling <wengmeiling.weng@huawei.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86-64, modify_ldt: Make support for 16-bit segments a runtime optionLinus Torvalds2014-06-072-1/+11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit fa81511bb0bbb2b1aace3695ce869da9762624ff upstream. Checkin: b3b42ac2cbae x86-64, modify_ldt: Ban 16-bit segments on 64-bit kernels disabled 16-bit segments on 64-bit kernels due to an information leak. However, it does seem that people are genuinely using Wine to run old 16-bit Windows programs on Linux. A proper fix for this ("espfix64") is coming in the upcoming merge window, but as a temporary fix, create a sysctl to allow the administrator to re-enable support for 16-bit segments. It adds a "/proc/sys/abi/ldt16" sysctl that defaults to zero (off). If you hit this issue and care about your old Windows program more than you care about a kernel stack address information leak, you can do echo 1 > /proc/sys/abi/ldt16 as root (add it to your startup scripts), and you should be ok. The sysctl table is only added if you have COMPAT support enabled on x86-64, but I assume anybody who runs old windows binaries very much does that ;) Signed-off-by: H. Peter Anvin <hpa@linux.intel.com> Link: http://lkml.kernel.org/r/CA%2B55aFw9BPoD10U1LfHbOMpHWZkvJTkMcfCs9s3urPr1YyWBxw@mail.gmail.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86, mm, hugetlb: Add missing TLB page invalidation for hugetlb_cow()Anthony Iliopoulos2014-06-071-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | commit 9844f5462392b53824e8b86726e7c33b5ecbb676 upstream. The invalidation is required in order to maintain proper semantics under CoW conditions. In scenarios where a process clones several threads, a thread operating on a core whose DTLB entry for a particular hugepage has not been invalidated, will be reading from the hugepage that belongs to the forked child process, even after hugetlb_cow(). The thread will not see the updated page as long as the stale DTLB entry remains cached, the thread attempts to write into the page, the child process exits, or the thread gets migrated to a different processor. Signed-off-by: Anthony Iliopoulos <anthony.iliopoulos@huawei.com> Link: http://lkml.kernel.org/r/20140514092948.GA17391@server-36.huawei.corp Suggested-by: Shay Goikhman <shay.goikhman@huawei.com> Acked-by: Dave Hansen <dave.hansen@intel.com> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/efi: Correct EFI boot stub use of code32_startMatt Fleming2014-05-063-14/+14
| | | | | | | | | | | | | | | | | | commit 7e8213c1f3acc064aef37813a39f13cbfe7c3ce7 upstream. code32_start should point at the start of the protected mode code, and *not* at the beginning of the bzImage. This is much easier to do in assembly so document that callers of make_boot_params() need to fill out code32_start. The fallout from this bug is that we would end up relocating the image but copying the image at some offset, resulting in what appeared to be memory corruption. Reported-by: Thomas Bächler <thomas@archlinux.org> Signed-off-by: Matt Fleming <matt.fleming@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86-64, modify_ldt: Ban 16-bit segments on 64-bit kernelsH. Peter Anvin2014-05-061-0/+11
| | | | | | | | | | | | | | | | | | | | | | commit b3b42ac2cbae1f3cecbb6229964a4d48af31d382 upstream. The IRET instruction, when returning to a 16-bit segment, only restores the bottom 16 bits of the user space stack pointer. We have a software workaround for that ("espfix") for the 32-bit kernel, but it relies on a nonzero stack segment base which is not available in 32-bit mode. Since 16-bit support is somewhat crippled anyway on a 64-bit kernel (no V86 mode), and most (if not quite all) 64-bit processors support virtualization for the users who really need it, simply reject attempts at creating a 16-bit segment when running on top of a 64-bit kernel. Cc: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com> Link: http://lkml.kernel.org/n/tip-kicdm89kzw9lldryb1br9od0@git.kernel.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* ftrace/x86: One more missing sync after fixup of function modification failurePetr Mladek2014-05-061-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 12729f14d8357fb845d75155228b21e76360272d upstream. If a failure occurs while modifying ftrace function, it bails out and will remove the tracepoints to be back to what the code originally was. There is missing the final sync run across the CPUs after the fix up is done and before the ftrace int3 handler flag is reset. Here's the description of the problem: CPU0 CPU1 ---- ---- remove_breakpoint(); modifying_ftrace_code = 0; [still sees breakpoint] <takes trap> [sees modifying_ftrace_code as zero] [no breakpoint handler] [goto failed case] [trap exception - kernel breakpoint, no handler] BUG() Link: http://lkml.kernel.org/r/1393258342-29978-2-git-send-email-pmladek@suse.cz Fixes: 8a4d0a687a5 "ftrace: Use breakpoint method to update ftrace caller" Acked-by: Frederic Weisbecker <fweisbec@gmail.com> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Petr Mladek <pmladek@suse.cz> Signed-off-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86: Adjust irq remapping quirk for older revisions of 5500/5520 chipsetsNeil Horman2014-04-261-9/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 6f8a1b335fde143b7407036e2368d3cd6eb55674 upstream. Commit 03bbcb2e7e2 (iommu/vt-d: add quirk for broken interrupt remapping on 55XX chipsets) properly disables irq remapping on the 5500/5520 chipsets that don't correctly perform that feature. However, when I wrote it, I followed the errata sheet linked in that commit too closely, and explicitly tied the activation of the quirk to revision 0x13 of the chip, under the assumption that earlier revisions were not in the field. Recently a system was reported to be suffering from this remap bug and the quirk hadn't triggered, because the revision id register read at a lower value that 0x13, so the quirk test failed improperly. Given this, it seems only prudent to adjust this quirk so that any revision less than 0x13 has the quirk asserted. [ tglx: Removed the 0x12 comparison of pci id 3405 as this is covered by the <= 0x13 check already ] Signed-off-by: Neil Horman <nhorman@tuxdriver.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Link: http://lkml.kernel.org/r/1394649873-14913-1-git-send-email-nhorman@tuxdriver.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* crypto: ghash-clmulni-intel - use C implementation for setkey()Ard Biesheuvel2014-04-142-32/+11
| | | | | | | | | | | | | | | | | | | commit 8ceee72808d1ae3fb191284afc2257a2be964725 upstream. The GHASH setkey() function uses SSE registers but fails to call kernel_fpu_begin()/kernel_fpu_end(). Instead of adding these calls, and then having to deal with the restriction that they cannot be called from interrupt context, move the setkey() implementation to the C domain. Note that setkey() does not use any particular SSE features and is not expected to become a performance bottleneck. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: H. Peter Anvin <hpa@linux.intel.com> Fixes: 0e1227d356e9b (crypto: ghash - Add PCLMULQDQ accelerated implementation) Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86: fix boot on uniprocessor systemsArtem Fetishev2014-04-031-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | commit 825600c0f20e595daaa7a6dd8970f84fa2a2ee57 upstream. On x86 uniprocessor systems topology_physical_package_id() returns -1 which causes rapl_cpu_prepare() to leave rapl_pmu variable uninitialized which leads to GPF in rapl_pmu_init(). See arch/x86/kernel/cpu/perf_event_intel_rapl.c. It turns out that physical_package_id and core_id can actually be retreived for uniprocessor systems too. Enabling them also fixes rapl_pmu code. Signed-off-by: Artem Fetishev <artem_fetishev@epam.com> Cc: Stephane Eranian <eranian@google.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* KVM: VMX: fix use after free of vmx->loaded_vmcsMarcelo Tosatti2014-03-311-1/+1
| | | | | | | | | | | | | | | | | | | commit 26a865f4aa8e66a6d94958de7656f7f1b03c6c56 upstream. After free_loaded_vmcs executes, the "loaded_vmcs" structure is kfreed, and now vmx->loaded_vmcs points to a kfreed area. Subsequent free_loaded_vmcs then attempts to manipulate vmx->loaded_vmcs. Switch the order to avoid the problem. https://bugzilla.redhat.com/show_bug.cgi?id=1047892 Reviewed-by: Jan Kiszka <jan.kiszka@siemens.com> Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com> Cc: Josh Boyer <jwboyer@fedoraproject.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* KVM: x86: handle invalid root_hpa everywhereMarcelo Tosatti2014-03-312-0/+17
| | | | | | | | | | | | commit 37f6a4e237303549c8676dfe1fd1991ceab512eb upstream. Rom Freiman <rom@stratoscale.com> notes other code paths vulnerable to bug fixed by 989c6b34f6a9480e397b. Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com> Cc: Josh Boyer <jwboyer@fedoraproject.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* KVM: MMU: handle invalid root_hpa at __direct_mapMarcelo Tosatti2014-03-311-0/+3
| | | | | | | | | | | | | | | | | | | | | | | commit 989c6b34f6a9480e397b170cc62237e89bf4fdb9 upstream. It is possible for __direct_map to be called on invalid root_hpa (-1), two examples: 1) try_async_pf -> can_do_async_pf -> vmx_interrupt_allowed -> nested_vmx_vmexit 2) vmx_handle_exit -> vmx_interrupt_allowed -> nested_vmx_vmexit Then to load_vmcs12_host_state and kvm_mmu_reset_context. Check for this possibility, let fault exception be regenerated. BZ: https://bugzilla.redhat.com/show_bug.cgi?id=924916 Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Cc: Josh Boyer <jwboyer@fedoraproject.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86: bpf_jit: support negative offsetsAlexei Starovoitov2014-03-311-1/+1
| | | | | | | | | | | | | | | | | | | | | commit fdfaf64e75397567257e1051931f9a3377360665 upstream. Commit a998d4342337 claimed to introduce negative offset support to x86 jit, but it couldn't be working, since at the time of the execution of LD+ABS or LD+IND instructions via call into bpf_internal_load_pointer_neg_helper() the %edx (3rd argument of this func) had junk value instead of access size in bytes (1 or 2 or 4). Store size into %edx instead of %ecx (what original commit intended to do) Fixes: a998d4342337 ("bpf jit: Let the x86 jit handle negative offsets") Signed-off-by: Alexei Starovoitov <ast@plumgrid.com> Cc: Jan Seiffert <kaffeemonster@googlemail.com> Cc: Eric Dumazet <edumazet@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86, fpu: Check tsk_used_math() in kernel_fpu_end() for eager FPUSuresh Siddha2014-03-231-3/+12
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 731bd6a93a6e9172094a2322bd0ee964bb1f4d63 upstream. For non-eager fpu mode, thread's fpu state is allocated during the first fpu usage (in the context of device not available exception). This (math_state_restore()) can be a blocking call and hence we enable interrupts (which were originally disabled when the exception happened), allocate memory and disable interrupts etc. But the eager-fpu mode, call's the same math_state_restore() from kernel_fpu_end(). The assumption being that tsk_used_math() is always set for the eager-fpu mode and thus avoid the code path of enabling interrupts, allocating fpu state using blocking call and disable interrupts etc. But the below issue was noticed by Maarten Baert, Nate Eldredge and few others: If a user process dumps core on an ecrypt fs while aesni-intel is loaded, we get a BUG() in __find_get_block() complaining that it was called with interrupts disabled; then all further accesses to our ecrypt fs hang and we have to reboot. The aesni-intel code (encrypting the core file that we are writing) needs the FPU and quite properly wraps its code in kernel_fpu_{begin,end}(), the latter of which calls math_state_restore(). So after kernel_fpu_end(), interrupts may be disabled, which nobody seems to expect, and they stay that way until we eventually get to __find_get_block() which barfs. For eager fpu, most the time, tsk_used_math() is true. At few instances during thread exit, signal return handling etc, tsk_used_math() might be false. In kernel_fpu_end(), for eager-fpu, call math_state_restore() only if tsk_used_math() is set. Otherwise, don't bother. Kernel code path which cleared tsk_used_math() knows what needs to be done with the fpu state. Reported-by: Maarten Baert <maarten-baert@hotmail.com> Reported-by: Nate Eldredge <nate@thatsmathematics.com> Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Suresh Siddha <sbsiddha@gmail.com> Link: http://lkml.kernel.org/r/1391410583.3801.6.camel@europa Cc: George Spelvin <linux@horizon.com> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* KVM: SVM: fix cr8 intercept windowRadim Krčmář2014-03-231-3/+3
| | | | | | | | | | | | | | | | | | commit 596f3142d2b7be307a1652d59e7b93adab918437 upstream. We always disable cr8 intercept in its handler, but only re-enable it if handling KVM_REQ_EVENT, so there can be a window where we do not intercept cr8 writes, which allows an interrupt to disrupt a higher priority task. Fix this by disabling intercepts in the same function that re-enables them when needed. This fixes BSOD in Windows 2008. Signed-off-by: Radim Krčmář <rkrcmar@redhat.com> Reviewed-by: Marcelo Tosatti <mtosatti@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86/amd/numa: Fix northbridge quirk to assign correct NUMA nodeDaniel J Blueman2014-03-231-1/+1
| | | | | | | | | | | | | | | | | | | | | | commit 847d7970defb45540735b3fb4e88471c27cacd85 upstream. For systems with multiple servers and routed fabric, all northbridges get assigned to the first server. Fix this by also using the node reported from the PCI bus. For single-fabric systems, the northbriges are on PCI bus 0 by definition, which are on NUMA node 0 by definition, so this is invarient on most systems. Tested on fam10h and fam15h single and multi-fabric systems and candidate for stable. Signed-off-by: Daniel J Blueman <daniel@numascale.com> Acked-by: Steffen Persvold <sp@numascale.com> Acked-by: Borislav Petkov <bp@suse.de> Link: http://lkml.kernel.org/r/1394710981-3596-1-git-send-email-daniel@numascale.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86: fix compile error due to X86_TRAP_NMI use in asm filesLinus Torvalds2014-03-232-2/+2
| | | | | | | | | | | | | | | | | | | | commit b01d4e68933ec23e43b1046fa35d593cefcf37d1 upstream. It's an enum, not a #define, you can't use it in asm files. Introduced in commit 5fa10196bdb5 ("x86: Ignore NMIs that come in during early boot"), and sadly I didn't compile-test things like I should have before pushing out. My weak excuse is that the x86 tree generally doesn't introduce stupid things like this (and the ARM pull afterwards doesn't cause me to do a compile-test either, since I don't cross-compile). Cc: Don Zickus <dzickus@redhat.com> Cc: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86: Ignore NMIs that come in during early bootH. Peter Anvin2014-03-232-2/+11
| | | | | | | | | | | | | | | | | | | | | | | | | | | commit 5fa10196bdb5f190f595ebd048490ee52dddea0f upstream. Don Zickus reports: A customer generated an external NMI using their iLO to test kdump worked. Unfortunately, the machine hung. Disabling the nmi_watchdog made things work. I speculated the external NMI fired, caused the machine to panic (as expected) and the perf NMI from the watchdog came in and was latched. My guess was this somehow caused the hang. ---- It appears that the latched NMI stays latched until the early page table generation on 64 bits, which causes exceptions to happen which end in IRET, which re-enable NMI. Therefore, ignore NMIs that come in during early execution, until we have proper exception handling. Reported-and-tested-by: Don Zickus <dzickus@redhat.com> Link: http://lkml.kernel.org/r/1394221143-29713-1-git-send-email-dzickus@redhat.com Signed-off-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* perf/x86: Fix event schedulingPeter Zijlstra2014-03-061-0/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 26e61e8939b1fe8729572dabe9a9e97d930dd4f6 upstream. Vince "Super Tester" Weaver reported a new round of syscall fuzzing (Trinity) failures, with perf WARN_ON()s triggering. He also provided traces of the failures. This is I think the relevant bit: > pec_1076_warn-2804 [000] d... 147.926153: x86_pmu_disable: x86_pmu_disable > pec_1076_warn-2804 [000] d... 147.926153: x86_pmu_state: Events: { > pec_1076_warn-2804 [000] d... 147.926156: x86_pmu_state: 0: state: .R config: ffffffffffffffff ( (null)) > pec_1076_warn-2804 [000] d... 147.926158: x86_pmu_state: 33: state: AR config: 0 (ffff88011ac99800) > pec_1076_warn-2804 [000] d... 147.926159: x86_pmu_state: } > pec_1076_warn-2804 [000] d... 147.926160: x86_pmu_state: n_events: 1, n_added: 0, n_txn: 1 > pec_1076_warn-2804 [000] d... 147.926161: x86_pmu_state: Assignment: { > pec_1076_warn-2804 [000] d... 147.926162: x86_pmu_state: 0->33 tag: 1 config: 0 (ffff88011ac99800) > pec_1076_warn-2804 [000] d... 147.926163: x86_pmu_state: } > pec_1076_warn-2804 [000] d... 147.926166: collect_events: Adding event: 1 (ffff880119ec8800) So we add the insn:p event (fd[23]). At this point we should have: n_events = 2, n_added = 1, n_txn = 1 > pec_1076_warn-2804 [000] d... 147.926170: collect_events: Adding event: 0 (ffff8800c9e01800) > pec_1076_warn-2804 [000] d... 147.926172: collect_events: Adding event: 4 (ffff8800cbab2c00) We try and add the {BP,cycles,br_insn} group (fd[3], fd[4], fd[15]). These events are 0:cycles and 4:br_insn, the BP event isn't x86_pmu so that's not visible. group_sched_in() pmu->start_txn() /* nop - BP pmu */ event_sched_in() event->pmu->add() So here we should end up with: 0: n_events = 3, n_added = 2, n_txn = 2 4: n_events = 4, n_added = 3, n_txn = 3 But seeing the below state on x86_pmu_enable(), the must have failed, because the 0 and 4 events aren't there anymore. Looking at group_sched_in(), since the BP is the leader, its event_sched_in() must have succeeded, for otherwise we would not have seen the sibling adds. But since neither 0 or 4 are in the below state; their event_sched_in() must have failed; but I don't see why, the complete state: 0,0,1:p,4 fits perfectly fine on a core2. However, since we try and schedule 4 it means the 0 event must have succeeded! Therefore the 4 event must have failed, its failure will have put group_sched_in() into the fail path, which will call: event_sched_out() event->pmu->del() on 0 and the BP event. Now x86_pmu_del() will reduce n_events; but it will not reduce n_added; giving what we see below: n_event = 2, n_added = 2, n_txn = 2 > pec_1076_warn-2804 [000] d... 147.926177: x86_pmu_enable: x86_pmu_enable > pec_1076_warn-2804 [000] d... 147.926177: x86_pmu_state: Events: { > pec_1076_warn-2804 [000] d... 147.926179: x86_pmu_state: 0: state: .R config: ffffffffffffffff ( (null)) > pec_1076_warn-2804 [000] d... 147.926181: x86_pmu_state: 33: state: AR config: 0 (ffff88011ac99800) > pec_1076_warn-2804 [000] d... 147.926182: x86_pmu_state: } > pec_1076_warn-2804 [000] d... 147.926184: x86_pmu_state: n_events: 2, n_added: 2, n_txn: 2 > pec_1076_warn-2804 [000] d... 147.926184: x86_pmu_state: Assignment: { > pec_1076_warn-2804 [000] d... 147.926186: x86_pmu_state: 0->33 tag: 1 config: 0 (ffff88011ac99800) > pec_1076_warn-2804 [000] d... 147.926188: x86_pmu_state: 1->0 tag: 1 config: 1 (ffff880119ec8800) > pec_1076_warn-2804 [000] d... 147.926188: x86_pmu_state: } > pec_1076_warn-2804 [000] d... 147.926190: x86_pmu_enable: S0: hwc->idx: 33, hwc->last_cpu: 0, hwc->last_tag: 1 hwc->state: 0 So the problem is that x86_pmu_del(), when called from a group_sched_in() that fails (for whatever reason), and without x86_pmu TXN support (because the leader is !x86_pmu), will corrupt the n_added state. Reported-and-Tested-by: Vince Weaver <vincent.weaver@maine.edu> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Stephane Eranian <eranian@google.com> Cc: Dave Jones <davej@redhat.com> Link: http://lkml.kernel.org/r/20140221150312.GF3104@twins.programming.kicks-ass.net Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* x86: dma-mapping: fix GFP_ATOMIC macro usageMarek Szyprowski2014-03-061-1/+3
| | | | | | | | | | | | | commit c091c71ad2218fc50a07b3d1dab85783f3b77efd upstream. GFP_ATOMIC is not a single gfp flag, but a macro which expands to the other flags, where meaningful is the LACK of __GFP_WAIT flag. To check if caller wants to perform an atomic allocation, the code must test for a lack of the __GFP_WAIT flag. This patch fixes the issue introduced in v3.5-rc1. Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>