| Commit message (Collapse) | Author | Age | Files | Lines |
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Borislav Petkov:
- Prepare for and clear .brk early in order to address XenPV guests
failures where the hypervisor verifies page tables and uninitialized
data in that range leads to bogus failures in those checks
- Add any potential setup_data entries supplied at boot to the identity
pagetable mappings to prevent kexec kernel boot failures. Usually,
this is not a problem for the normal kernel as those mappings are
part of the initially mapped 2M pages but if kexec gets to allocate
the second kernel somewhere else, those setup_data entries need to be
mapped there too.
- Fix objtool not to discard text references from the __tracepoints
section so that ENDBR validation still works
- Correct the setup_data types limit as it is user-visible, before 5.19
releases
* tag 'x86_urgent_for_v5.19_rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/boot: Fix the setup data types max limit
x86/ibt, objtool: Don't discard text references from tracepoint section
x86/compressed/64: Add identity mappings for setup_data entries
x86: Fix .brk attribute in linker script
x86: Clear .brk area at early boot
x86/xen: Use clear_bss() for Xen PV guests
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Commit in Fixes forgot to change the SETUP_TYPE_MAX definition which
contains the highest valid setup data type.
Correct that.
Fixes: 5ea98e01ab52 ("x86/boot: Add Confidential Computing type to setup_data")
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/ddba81dd-cc92-699c-5274-785396a17fb5@zytor.com
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The decompressed kernel initially relies on the identity map set up by
the boot/compressed kernel for accessing things like boot_params. With
the recent introduction of SEV-SNP support, the decompressed kernel
also needs to access the setup_data entries pointed to by
boot_params->hdr.setup_data.
This can lead to a crash in the kexec kernel during early boot due to
these entries not currently being included in the initial identity map,
see thread at Link below.
Include mappings for the setup_data entries in the initial identity map.
[ bp: Massage commit message and use a helper var for better readability. ]
Fixes: b190a043c49a ("x86/sev: Add SEV-SNP feature detection/setup")
Reported-by: Jun'ichi Nomura <junichi.nomura@nec.com>
Signed-off-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/TYCPR01MB694815CD815E98945F63C99183B49@TYCPR01MB6948.jpnprd01.prod.outlook.com
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Commit in Fixes added the "NOLOAD" attribute to the .brk section as a
"failsafe" measure.
Unfortunately, this leads to the linker no longer covering the .brk
section in a program header, resulting in the kernel loader not knowing
that the memory for the .brk section must be reserved.
This has led to crashes when loading the kernel as PV dom0 under Xen,
but other scenarios could be hit by the same problem (e.g. in case an
uncompressed kernel is used and the initrd is placed directly behind
it).
So drop the "NOLOAD" attribute. This has been verified to correctly
cover the .brk section by a program header of the resulting ELF file.
Fixes: e32683c6f7d2 ("x86/mm: Fix RESERVE_BRK() for older binutils")
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Link: https://lore.kernel.org/r/20220630071441.28576-4-jgross@suse.com
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The .brk section has the same properties as .bss: it is an alloc-only
section and should be cleared before being used.
Not doing so is especially a problem for Xen PV guests, as the
hypervisor will validate page tables (check for writable page tables
and hypervisor private bits) before accepting them to be used.
Make sure .brk is initially zero by letting clear_bss() clear the brk
area, too.
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20220630071441.28576-3-jgross@suse.com
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Instead of clearing the bss area in assembly code, use the clear_bss()
function.
This requires to pass the start_info address as parameter to
xen_start_kernel() in order to avoid the xen_start_info being zeroed
again.
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Jan Beulich <jbeulich@suse.com>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Link: https://lore.kernel.org/r/20220630071441.28576-2-jgross@suse.com
|
|/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 72f2ecb7ece7 ("ACPI: bus: Set CPPC _OSC bits for all and
when CPPC_LIB is supported") added support for claiming to
support CPPC in _OSC on non-Intel platforms.
This unfortunately caused a regression on a vartiety of AMD
platforms in the field because a number of AMD platforms don't set
the `_OSC` bit 5 or 6 to indicate CPPC or CPPC v2 support.
As these AMD platforms already claim CPPC support via a dedicated
MSR from `X86_FEATURE_CPPC`, use this enable this feature rather
than requiring the `_OSC` on platforms with a dedicated MSR.
If there is additional breakage on the shared memory designs also
missing this _OSC, additional follow up changes may be needed.
Fixes: 72f2ecb7ece7 ("Set CPPC _OSC bits for all and when CPPC_LIB is supported")
Reported-by: Perry Yuan <perry.yuan@amd.com>
Signed-off-by: Mario Limonciello <mario.limonciello@amd.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Pull kvm fixes from Paolo Bonzini:
"ARM64:
- Fix a regression with pKVM when kmemleak is enabled
- Add Oliver Upton as an official KVM/arm64 reviewer
selftests:
- deal with compiler optimizations around hypervisor exits
x86:
- MAINTAINERS reorganization
- Two SEV fixes"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: SEV: Init target VMCBs in sev_migrate_from
KVM: x86/svm: add __GFP_ACCOUNT to __sev_dbg_{en,de}crypt_user()
MAINTAINERS: Reorganize KVM/x86 maintainership
selftests: KVM: Handle compiler optimizations in ucall
KVM: arm64: Add Oliver as a reviewer
KVM: arm64: Prevent kmemleak from accessing pKVM memory
tools/kvm_stat: fix display of error when multiple processes are found
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The target VMCBs during an intra-host migration need to correctly setup
for running SEV and SEV-ES guests. Add sev_init_vmcb() function and make
sev_es_init_vmcb() static. sev_init_vmcb() uses the now private function
to init SEV-ES guests VMCBs when needed.
Fixes: 0b020f5af092 ("KVM: SEV: Add support for SEV-ES intra host migration")
Fixes: b56639318bb2 ("KVM: SEV: Add support for SEV intra host migration")
Signed-off-by: Peter Gonda <pgonda@google.com>
Cc: Marc Orr <marcorr@google.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Message-Id: <20220623173406.744645-1-pgonda@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Adding the accounting flag when allocating pages within the SEV function,
since these memory pages should belong to individual VM.
No functional change intended.
Signed-off-by: Mingwei Zhang <mizhang@google.com>
Message-Id: <20220623171858.2083637-1-mizhang@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
|\ \
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
Pull networking fixes from Paolo Abeni:
"Including fixes from bpf and netfilter.
Current release - regressions:
- netfilter: cttimeout: fix slab-out-of-bounds read in
cttimeout_net_exit
Current release - new code bugs:
- bpf: ftrace: keep address offset in ftrace_lookup_symbols
- bpf: force cookies array to follow symbols sorting
Previous releases - regressions:
- ipv4: ping: fix bind address validity check
- tipc: fix use-after-free read in tipc_named_reinit
- eth: veth: add updating of trans_start
Previous releases - always broken:
- sock: redo the psock vs ULP protection check
- netfilter: nf_dup_netdev: fix skb_under_panic
- bpf: fix request_sock leak in sk lookup helpers
- eth: igb: fix a use-after-free issue in igb_clean_tx_ring
- eth: ice: prohibit improper channel config for DCB
- eth: at803x: fix null pointer dereference on AR9331 phy
- eth: virtio_net: fix xdp_rxq_info bug after suspend/resume
Misc:
- eth: hinic: replace memcpy() with direct assignment"
* tag 'net-5.19-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net: (47 commits)
net: openvswitch: fix parsing of nw_proto for IPv6 fragments
sock: redo the psock vs ULP protection check
Revert "net/tls: fix tls_sk_proto_close executed repeatedly"
virtio_net: fix xdp_rxq_info bug after suspend/resume
igb: Make DMA faster when CPU is active on the PCIe link
net: dsa: qca8k: reduce mgmt ethernet timeout
net: dsa: qca8k: reset cpu port on MTU change
MAINTAINERS: Add a maintainer for OCP Time Card
hinic: Replace memcpy() with direct assignment
Revert "drivers/net/ethernet/neterion/vxge: Fix a use-after-free bug in vxge-main.c"
net: phy: smsc: Disable Energy Detect Power-Down in interrupt mode
ice: ethtool: Prohibit improper channel config for DCB
ice: ethtool: advertise 1000M speeds properly
ice: Fix switchdev rules book keeping
ice: ignore protocol field in GTP offload
netfilter: nf_dup_netdev: add and use recursion counter
netfilter: nf_dup_netdev: do not push mac header a second time
selftests: netfilter: correct PKTGEN_SCRIPT_PATHS in nft_concat_range.sh
net/tls: fix tls_sk_proto_close executed repeatedly
erspan: do not assume transport header is always set
...
|
| |\ \
| | |/
| |/|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Daniel Borkmann says:
====================
pull-request: bpf 2022-06-17
We've added 12 non-merge commits during the last 4 day(s) which contain
a total of 14 files changed, 305 insertions(+), 107 deletions(-).
The main changes are:
1) Fix x86 JIT tailcall count offset on BPF-2-BPF call, from Jakub Sitnicki.
2) Fix a kprobe_multi link bug which misplaces BPF cookies, from Jiri Olsa.
3) Fix an infinite loop when processing a module's BTF, from Kumar Kartikeya Dwivedi.
4) Fix getting a rethook only in RCU available context, from Masami Hiramatsu.
5) Fix request socket refcount leak in sk lookup helpers, from Jon Maxwell.
6) Fix xsk xmit behavior which wrongly adds skb to already full cq, from Ciara Loftus.
* https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf:
rethook: Reject getting a rethook if RCU is not watching
fprobe, samples: Add use_trace option and show hit/missed counter
bpf, docs: Update some of the JIT/maintenance entries
selftest/bpf: Fix kprobe_multi bench test
bpf: Force cookies array to follow symbols sorting
ftrace: Keep address offset in ftrace_lookup_symbols
selftests/bpf: Shuffle cookies symbols in kprobe multi test
selftests/bpf: Test tail call counting with bpf2bpf and data on stack
bpf, x86: Fix tail call count offset calculation on bpf2bpf call
bpf: Limit maximum modifier chain length in btf_check_type_tags
bpf: Fix request_sock leak in sk lookup helpers
xsk: Fix generic transmit when completion queue reservation fails
====================
Link: https://lore.kernel.org/r/20220617202119.2421-1-daniel@iogearbox.net
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
On x86-64 the tail call count is passed from one BPF function to another
through %rax. Additionally, on function entry, the tail call count value
is stored on stack right after the BPF program stack, due to register
shortage.
The stored count is later loaded from stack either when performing a tail
call - to check if we have not reached the tail call limit - or before
calling another BPF function call in order to pass it via %rax.
In the latter case, we miscalculate the offset at which the tail call count
was stored on function entry. The JIT does not take into account that the
allocated BPF program stack is always a multiple of 8 on x86, while the
actual stack depth does not have to be.
This leads to a load from an offset that belongs to the BPF stack, as shown
in the example below:
SEC("tc")
int entry(struct __sk_buff *skb)
{
/* Have data on stack which size is not a multiple of 8 */
volatile char arr[1] = {};
return subprog_tail(skb);
}
int entry(struct __sk_buff * skb):
0: (b4) w2 = 0
1: (73) *(u8 *)(r10 -1) = r2
2: (85) call pc+1#bpf_prog_ce2f79bb5f3e06dd_F
3: (95) exit
int entry(struct __sk_buff * skb):
0xffffffffa0201788: nop DWORD PTR [rax+rax*1+0x0]
0xffffffffa020178d: xor eax,eax
0xffffffffa020178f: push rbp
0xffffffffa0201790: mov rbp,rsp
0xffffffffa0201793: sub rsp,0x8
0xffffffffa020179a: push rax
0xffffffffa020179b: xor esi,esi
0xffffffffa020179d: mov BYTE PTR [rbp-0x1],sil
0xffffffffa02017a1: mov rax,QWORD PTR [rbp-0x9] !!! tail call count
0xffffffffa02017a8: call 0xffffffffa02017d8 !!! is at rbp-0x10
0xffffffffa02017ad: leave
0xffffffffa02017ae: ret
Fix it by rounding up the BPF stack depth to a multiple of 8, when
calculating the tail call count offset on stack.
Fixes: ebf7d1f508a7 ("bpf, x64: rework pro/epilogue and tailcall handling in JIT")
Signed-off-by: Jakub Sitnicki <jakub@cloudflare.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20220616162037.535469-2-jakub@cloudflare.com
|
|\ \ \
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi
Pull EFI fixes from Ard Biesheuvel:
- remove pointless include of asm/efi.h, which does not exist on ia64
- fix DXE service marshalling prototype for mixed mode
* tag 'efi-urgent-for-v5.19-1' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi:
efi/x86: libstub: Fix typo in __efi64_argmap* name
efi: sysfb_efi: remove unnecessary <asm/efi.h> include
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
The actual name of the DXE services function used
is set_memory_space_attributes(), not set_memory_space_descriptor().
Change EFI mixed mode helper macro name to match the function name.
Fixes: 31f1a0edff78 ("efi/x86: libstub: Make DXE calls mixed mode safe")
Signed-off-by: Evgeniy Baskov <baskov@ispras.ru>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
|
|\ \ \ \
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Thomas Gleixner:
- Make RESERVE_BRK() work again with older binutils. The recent
'simplification' broke that.
- Make early #VE handling increment RIP when successful.
- Make the #VE code consistent vs. the RIP adjustments and add
comments.
- Handle load_unaligned_zeropad() across page boundaries correctly in
#VE when the second page is shared.
* tag 'x86-urgent-2022-06-19' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/tdx: Handle load_unaligned_zeropad() page-cross to a shared page
x86/tdx: Clarify RIP adjustments in #VE handler
x86/tdx: Fix early #VE handling
x86/mm: Fix RESERVE_BRK() for older binutils
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
load_unaligned_zeropad() can lead to unwanted loads across page boundaries.
The unwanted loads are typically harmless. But, they might be made to
totally unrelated or even unmapped memory. load_unaligned_zeropad()
relies on exception fixup (#PF, #GP and now #VE) to recover from these
unwanted loads.
In TDX guests, the second page can be shared page and a VMM may configure
it to trigger #VE.
The kernel assumes that #VE on a shared page is an MMIO access and tries to
decode instruction to handle it. In case of load_unaligned_zeropad() it
may result in confusion as it is not MMIO access.
Fix it by detecting split page MMIO accesses and failing them.
load_unaligned_zeropad() will recover using exception fixups.
The issue was discovered by analysis and reproduced artificially. It was
not triggered during testing.
[ dhansen: fix up changelogs and comments for grammar and clarity,
plus incorporate Kirill's off-by-one fix]
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lkml.kernel.org/r/20220614120135.14812-4-kirill.shutemov@linux.intel.com
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
After successful #VE handling, tdx_handle_virt_exception() has to move
RIP to the next instruction. The handler needs to know the length of the
instruction.
If the #VE happened due to instruction execution, the GET_VEINFO TDX
module call provides info on the instruction in R10, including its length.
For #VE due to EPT violation, the info in R10 is not populand and the
kernel must decode the instruction manually to find out its length.
Restructure the code to make it explicit that the instruction length
depends on the type of #VE. Make individual #VE handlers return
the instruction length on success or -errno on failure.
[ dhansen: fix up changelog and comments ]
Suggested-by: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lkml.kernel.org/r/20220614120135.14812-3-kirill.shutemov@linux.intel.com
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
tdx_early_handle_ve() does not increment RIP after successfully
handling the exception. That leads to infinite loop of exceptions.
Move RIP when exceptions are successfully handled.
[ dhansen: make problem statement more clear ]
Fixes: 32e72854fa5f ("x86/tdx: Port I/O: Add early boot support")
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com>
Link: https://lkml.kernel.org/r/20220614120135.14812-2-kirill.shutemov@linux.intel.com
|
| | |_|/
| |/| |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
With binutils 2.26, RESERVE_BRK() causes a build failure:
/tmp/ccnGOKZ5.s: Assembler messages:
/tmp/ccnGOKZ5.s:98: Error: missing ')'
/tmp/ccnGOKZ5.s:98: Error: missing ')'
/tmp/ccnGOKZ5.s:98: Error: missing ')'
/tmp/ccnGOKZ5.s:98: Error: junk at end of line, first unrecognized
character is `U'
The problem is this line:
RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE)
Specifically, the INIT_PGT_BUF_SIZE macro which (via PAGE_SIZE's use
_AC()) has a "1UL", which makes older versions of the assembler unhappy.
Unfortunately the _AC() macro doesn't work for inline asm.
Inline asm was only needed here to convince the toolchain to add the
STT_NOBITS flag. However, if a C variable is placed in a section whose
name is prefixed with ".bss", GCC and Clang automatically set
STT_NOBITS. In fact, ".bss..page_aligned" already relies on this trick.
So fix the build failure (and simplify the macro) by allocating the
variable in C.
Also, add NOLOAD to the ".brk" output section clause in the linker
script. This is a failsafe in case the ".bss" prefix magic trick ever
stops working somehow. If there's a section type mismatch, the GNU
linker will force the ".brk" output section to be STT_NOBITS. The LLVM
linker will fail with a "section type mismatch" error.
Note this also changes the name of the variable from .brk.##name to
__brk_##name. The variable names aren't actually used anywhere, so it's
harmless.
Fixes: a1e2c031ec39 ("x86/mm: Simplify RESERVE_BRK()")
Reported-by: Joe Damato <jdamato@fastly.com>
Reported-by: Byungchul Park <byungchul.park@lge.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Joe Damato <jdamato@fastly.com>
Link: https://lore.kernel.org/r/22d07a44c80d8e8e1e82b9a806ddc8c6bbb2606e.1654759036.git.jpoimboe@kernel.org
|
|\ \ \ \
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull build tooling updates from Thomas Gleixner:
- Remove obsolete CONFIG_X86_SMAP reference from objtool
- Fix overlapping text section failures in faddr2line for real
- Remove OBJECT_FILES_NON_STANDARD usage from x86 ftrace and replace it
with finegrained annotations so objtool can validate that code
correctly.
* tag 'objtool-urgent-2022-06-19' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/ftrace: Remove OBJECT_FILES_NON_STANDARD usage
faddr2line: Fix overlapping text section failures, the sequel
objtool: Fix obsolete reference to CONFIG_X86_SMAP
|
| | |/ /
| |/| |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
The file-wide OBJECT_FILES_NON_STANDARD annotation is used with
CONFIG_FRAME_POINTER to tell objtool to skip the entire file when frame
pointers are enabled. However that annotation is now deprecated because
it doesn't work with IBT, where objtool runs on vmlinux.o instead of
individual translation units.
Instead, use more fine-grained function-specific annotations:
- The 'save_mcount_regs' macro does funny things with the frame pointer.
Use STACK_FRAME_NON_STANDARD_FP to tell objtool to ignore the
functions using it.
- The return_to_handler() "function" isn't actually a callable function.
Instead of being called, it's returned to. The real return address
isn't on the stack, so unwinding is already doomed no matter which
unwinder is used. So just remove the STT_FUNC annotation, telling
objtool to ignore it. That also removes the implicit
ANNOTATE_NOENDBR, which now needs to be made explicit.
Fixes the following warning:
vmlinux.o: warning: objtool: __fentry__+0x16: return with modified stack frame
Fixes: ed53a0d97192 ("x86/alternative: Use .ibt_endbr_seal to seal indirect calls")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Link: https://lore.kernel.org/r/b7a7a42fe306aca37826043dac89e113a1acdbac.1654268610.git.jpoimboe@kernel.org
|
|\ \ \ \
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci
Pull pci fix from Bjorn Helgaas:
"Revert clipping of PCI host bridge windows to avoid E820 regions,
which broke several machines by forcing unnecessary BAR reassignments
(Hans de Goede)"
* tag 'pci-v5.19-fixes-2' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci:
x86/PCI: Revert "x86/PCI: Clip only host bridge windows for E820 regions"
|
| |/ / /
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
This reverts commit 4c5e242d3e93.
Prior to 4c5e242d3e93 ("x86/PCI: Clip only host bridge windows for E820
regions"), E820 regions did not affect PCI host bridge windows. We only
looked at E820 regions and avoided them when allocating new MMIO space.
If firmware PCI bridge window and BAR assignments used E820 regions, we
left them alone.
After 4c5e242d3e93, we removed E820 regions from the PCI host bridge
windows before looking at BARs, so firmware assignments in E820 regions
looked like errors, and we moved things around to fit in the space left
(if any) after removing the E820 regions. This unnecessary BAR
reassignment broke several machines.
Guilherme reported that Steam Deck fails to boot after 4c5e242d3e93. We
clipped the window that contained most 32-bit BARs:
BIOS-e820: [mem 0x00000000a0000000-0x00000000a00fffff] reserved
acpi PNP0A08:00: clipped [mem 0x80000000-0xf7ffffff window] to [mem 0xa0100000-0xf7ffffff window] for e820 entry [mem 0xa0000000-0xa00fffff]
which forced us to reassign all those BARs, for example, this NVMe BAR:
pci 0000:00:01.2: PCI bridge to [bus 01]
pci 0000:00:01.2: bridge window [mem 0x80600000-0x806fffff]
pci 0000:01:00.0: BAR 0: [mem 0x80600000-0x80603fff 64bit]
pci 0000:00:01.2: can't claim window [mem 0x80600000-0x806fffff]: no compatible bridge window
pci 0000:01:00.0: can't claim BAR 0 [mem 0x80600000-0x80603fff 64bit]: no compatible bridge window
pci 0000:00:01.2: bridge window: assigned [mem 0xa0100000-0xa01fffff]
pci 0000:01:00.0: BAR 0: assigned [mem 0xa0100000-0xa0103fff 64bit]
All the reassignments were successful, so the devices should have been
functional at the new addresses, but some were not.
Andy reported a similar failure on an Intel MID platform. Benjamin
reported a similar failure on a VMWare Fusion VM.
Note: this is not a clean revert; this revert keeps the later change to
make the clipping dependent on a new pci_use_e820 bool, moving the checking
of this bool to arch_remove_reservations().
[bhelgaas: commit log, add more reporters and testers]
BugLink: https://bugzilla.kernel.org/show_bug.cgi?id=216109
Reported-by: Guilherme G. Piccoli <gpiccoli@igalia.com>
Reported-by: Andy Shevchenko <andy.shevchenko@gmail.com>
Reported-by: Benjamin Coddington <bcodding@redhat.com>
Reported-by: Jongman Heo <jongman.heo@gmail.com>
Fixes: 4c5e242d3e93 ("x86/PCI: Clip only host bridge windows for E820 regions")
Link: https://lore.kernel.org/r/20220612144325.85366-1-hdegoede@redhat.com
Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com>
Tested-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Tested-by: Benjamin Coddington <bcodding@redhat.com>
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
|
|\ \ \ \
| |_|_|/
|/| | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/hyperv/linux
Pull hyperv fixes from Wei Liu:
- Fix hv_init_clocksource annotation (Masahiro Yamada)
- Two bug fixes for vmbus driver (Saurabh Sengar)
- Fix SEV negotiation (Tianyu Lan)
- Fix comments in code (Xiang Wang)
- One minor fix to HID driver (Michael Kelley)
* tag 'hyperv-fixes-signed-20220617' of git://git.kernel.org/pub/scm/linux/kernel/git/hyperv/linux:
x86/Hyper-V: Add SEV negotiate protocol support in Isolation VM
Drivers: hv: vmbus: Release cpu lock in error case
HID: hyperv: Correctly access fields declared as __le16
clocksource: hyper-v: unexport __init-annotated hv_init_clocksource()
Drivers: hv: Fix syntax errors in comments
Drivers: hv: vmbus: Don't assign VMbus channel interrupts to isolated CPUs
|
| |/ /
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Hyper-V Isolation VM current code uses sev_es_ghcb_hv_call()
to read/write MSR via GHCB page and depends on the sev code.
This may cause regression when sev code changes interface
design.
The latest SEV-ES code requires to negotiate GHCB version before
reading/writing MSR via GHCB page and sev_es_ghcb_hv_call() doesn't
work for Hyper-V Isolation VM. Add Hyper-V ghcb related implementation
to decouple SEV and Hyper-V code. Negotiate GHCB version in the
hyperv_init() and use the version to communicate with Hyper-V
in the ghcb hv call function.
Fixes: 2ea29c5abbc2 ("x86/sev: Save the negotiated GHCB version")
Signed-off-by: Tianyu Lan <Tianyu.Lan@microsoft.com>
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Link: https://lore.kernel.org/r/20220614014553.1915929-1-ltykernel@gmail.com
Signed-off-by: Wei Liu <wei.liu@kernel.org>
|
|\ \ \
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Pull kvm fixes from Paolo Bonzini:
"While last week's pull request contained miscellaneous fixes for x86,
this one covers other architectures, selftests changes, and a bigger
series for APIC virtualization bugs that were discovered during 5.20
development. The idea is to base 5.20 development for KVM on top of
this tag.
ARM64:
- Properly reset the SVE/SME flags on vcpu load
- Fix a vgic-v2 regression regarding accessing the pending state of a
HW interrupt from userspace (and make the code common with vgic-v3)
- Fix access to the idreg range for protected guests
- Ignore 'kvm-arm.mode=protected' when using VHE
- Return an error from kvm_arch_init_vm() on allocation failure
- A bunch of small cleanups (comments, annotations, indentation)
RISC-V:
- Typo fix in arch/riscv/kvm/vmid.c
- Remove broken reference pattern from MAINTAINERS entry
x86-64:
- Fix error in page tables with MKTME enabled
- Dirty page tracking performance test extended to running a nested
guest
- Disable APICv/AVIC in cases that it cannot implement correctly"
[ This merge also fixes a misplaced end parenthesis bug introduced in
commit 3743c2f02517 ("KVM: x86: inhibit APICv/AVIC on changes to APIC
ID or APIC base") pointed out by Sean Christopherson ]
Link: https://lore.kernel.org/all/20220610191813.371682-1-seanjc@google.com/
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (34 commits)
KVM: selftests: Restrict test region to 48-bit physical addresses when using nested
KVM: selftests: Add option to run dirty_log_perf_test vCPUs in L2
KVM: selftests: Clean up LIBKVM files in Makefile
KVM: selftests: Link selftests directly with lib object files
KVM: selftests: Drop unnecessary rule for STATIC_LIBS
KVM: selftests: Add a helper to check EPT/VPID capabilities
KVM: selftests: Move VMX_EPT_VPID_CAP_AD_BITS to vmx.h
KVM: selftests: Refactor nested_map() to specify target level
KVM: selftests: Drop stale function parameter comment for nested_map()
KVM: selftests: Add option to create 2M and 1G EPT mappings
KVM: selftests: Replace x86_page_size with PG_LEVEL_XX
KVM: x86: SVM: fix nested PAUSE filtering when L0 intercepts PAUSE
KVM: x86: SVM: drop preempt-safe wrappers for avic_vcpu_load/put
KVM: x86: disable preemption around the call to kvm_arch_vcpu_{un|}blocking
KVM: x86: disable preemption while updating apicv inhibition
KVM: x86: SVM: fix avic_kick_target_vcpus_fast
KVM: x86: SVM: remove avic's broken code that updated APIC ID
KVM: x86: inhibit APICv/AVIC on changes to APIC ID or APIC base
KVM: x86: document AVIC/APICv inhibit reasons
KVM: x86/mmu: Set memory encryption "value", not "mask", in shadow PDPTRs
...
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Commit 74fd41ed16fd ("KVM: x86: nSVM: support PAUSE filtering when L0
doesn't intercept PAUSE") introduced passthrough support for nested pause
filtering, (when the host doesn't intercept PAUSE) (either disabled with
kvm module param, or disabled with '-overcommit cpu-pm=on')
Before this commit, L1 KVM didn't intercept PAUSE at all; afterwards,
the feature was exposed as supported by KVM cpuid unconditionally, thus
if L1 could try to use it even when the L0 KVM can't really support it.
In this case the fallback caused KVM to intercept each PAUSE instruction;
in some cases, such intercept can slow down the nested guest so much
that it can fail to boot. Instead, before the problematic commit KVM
was already setting both thresholds to 0 in vmcb02, but after the first
userspace VM exit shrink_ple_window was called and would reset the
pause_filter_count to the default value.
To fix this, change the fallback strategy - ignore the guest threshold
values, but use/update the host threshold values unless the guest
specifically requests disabling PAUSE filtering (either simple or
advanced).
Also fix a minor bug: on nested VM exit, when PAUSE filter counter
were copied back to vmcb01, a dirty bit was not set.
Thanks a lot to Suravee Suthikulpanit for debugging this!
Fixes: 74fd41ed16fd ("KVM: x86: nSVM: support PAUSE filtering when L0 doesn't intercept PAUSE")
Reported-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Tested-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Co-developed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220518072709.730031-1-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Now that these functions are always called with preemption disabled,
remove the preempt_disable()/preempt_enable() pair inside them.
No functional change intended.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220606180829.102503-8-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Currently nothing prevents preemption in kvm_vcpu_update_apicv.
On SVM, If the preemption happens after we update the
vcpu->arch.apicv_active, the preemption itself will
'update' the inhibition since the AVIC will be first disabled
on vCPU unload and then enabled, when the current task
is loaded again.
Then we will try to update it again, which will lead to a warning
in __avic_vcpu_load, that the AVIC is already enabled.
Fix this by disabling preemption in this code.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220606180829.102503-6-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
There are two issues in avic_kick_target_vcpus_fast
1. It is legal to issue an IPI request with APIC_DEST_NOSHORT
and a physical destination of 0xFF (or 0xFFFFFFFF in case of x2apic),
which must be treated as a broadcast destination.
Fix this by explicitly checking for it.
Also don’t use ‘index’ in this case as it gives no new information.
2. It is legal to issue a logical IPI request to more than one target.
Index field only provides index in physical id table of first
such target and therefore can't be used before we are sure
that only a single target was addressed.
Instead, parse the ICRL/ICRH, double check that a unicast interrupt
was requested, and use that info to figure out the physical id
of the target vCPU.
At that point there is no need to use the index field as well.
In addition to fixing the above issues, also skip the call to
kvm_apic_match_dest.
It is possible to do this now, because now as long as AVIC is not
inhibited, it is guaranteed that none of the vCPUs changed their
apic id from its default value.
This fixes boot of windows guest with AVIC enabled because it uses
IPI with 0xFF destination and no destination shorthand.
Fixes: 7223fd2d5338 ("KVM: SVM: Use target APIC ID to complete AVIC IRQs when possible")
Cc: stable@vger.kernel.org
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220606180829.102503-5-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
AVIC is now inhibited if the guest changes the apic id,
and therefore this code is no longer needed.
There are several ways this code was broken, including:
1. a vCPU was only allowed to change its apic id to an apic id
of an existing vCPU.
2. After such change, the vCPU whose apic id entry was overwritten,
could not correctly change its own apic id, because its own
entry is already overwritten.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220606180829.102503-4-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Neither of these settings should be changed by the guest and it is
a burden to support it in the acceleration code, so just inhibit
this code instead.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220606180829.102503-3-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
These days there are too many AVIC/APICv inhibit
reasons, and it doesn't hurt to have some documentation
for them.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220606180829.102503-2-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Assign shadow_me_value, not shadow_me_mask, to PAE root entries,
a.k.a. shadow PDPTRs, when host memory encryption is supported. The
"mask" is the set of all possible memory encryption bits, e.g. MKTME
KeyIDs, whereas "value" holds the actual value that needs to be
stuffed into host page tables.
Using shadow_me_mask results in a failed VM-Entry due to setting
reserved PA bits in the PDPTRs, and ultimately causes an OOPS due to
physical addresses with non-zero MKTME bits sending to_shadow_page()
into the weeds:
set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.
BUG: unable to handle page fault for address: ffd43f00063049e8
PGD 86dfd8067 P4D 0
Oops: 0000 [#1] PREEMPT SMP
RIP: 0010:mmu_free_root_page+0x3c/0x90 [kvm]
kvm_mmu_free_roots+0xd1/0x200 [kvm]
__kvm_mmu_unload+0x29/0x70 [kvm]
kvm_mmu_unload+0x13/0x20 [kvm]
kvm_arch_destroy_vm+0x8a/0x190 [kvm]
kvm_put_kvm+0x197/0x2d0 [kvm]
kvm_vm_release+0x21/0x30 [kvm]
__fput+0x8e/0x260
____fput+0xe/0x10
task_work_run+0x6f/0xb0
do_exit+0x327/0xa90
do_group_exit+0x35/0xa0
get_signal+0x911/0x930
arch_do_signal_or_restart+0x37/0x720
exit_to_user_mode_prepare+0xb2/0x140
syscall_exit_to_user_mode+0x16/0x30
do_syscall_64+0x4e/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
Fixes: e54f1ff244ac ("KVM: x86/mmu: Add shadow_me_value and repurpose shadow_me_mask")
Signed-off-by: Yuan Yao <yuan.yao@intel.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Message-Id: <20220608012015.19566-1-yuan.yao@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
|
| |\| |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
into HEAD
KVM/riscv fixes for 5.19, take #1
- Typo fix in arch/riscv/kvm/vmid.c
- Remove broken reference pattern from MAINTAINERS entry
|
|\ \ \ \
| |_|_|/
|/| | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 MMIO stale data fixes from Thomas Gleixner:
"Yet another hw vulnerability with a software mitigation: Processor
MMIO Stale Data.
They are a class of MMIO-related weaknesses which can expose stale
data by propagating it into core fill buffers. Data which can then be
leaked using the usual speculative execution methods.
Mitigations include this set along with microcode updates and are
similar to MDS and TAA vulnerabilities: VERW now clears those buffers
too"
* tag 'x86-bugs-2022-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/speculation/mmio: Print SMT warning
KVM: x86/speculation: Disable Fill buffer clear within guests
x86/speculation/mmio: Reuse SRBDS mitigation for SBDS
x86/speculation/srbds: Update SRBDS mitigation selection
x86/speculation/mmio: Add sysfs reporting for Processor MMIO Stale Data
x86/speculation/mmio: Enable CPU Fill buffer clearing on idle
x86/bugs: Group MDS, TAA & Processor MMIO Stale Data mitigations
x86/speculation/mmio: Add mitigation for Processor MMIO Stale Data
x86/speculation: Add a common function for MD_CLEAR mitigation update
x86/speculation/mmio: Enumerate Processor MMIO Stale Data bug
Documentation: Add documentation for Processor MMIO Stale Data
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Similar to MDS and TAA, print a warning if SMT is enabled for the MMIO
Stale Data vulnerability.
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
The enumeration of MD_CLEAR in CPUID(EAX=7,ECX=0).EDX{bit 10} is not an
accurate indicator on all CPUs of whether the VERW instruction will
overwrite fill buffers. FB_CLEAR enumeration in
IA32_ARCH_CAPABILITIES{bit 17} covers the case of CPUs that are not
vulnerable to MDS/TAA, indicating that microcode does overwrite fill
buffers.
Guests running in VMM environments may not be aware of all the
capabilities/vulnerabilities of the host CPU. Specifically, a guest may
apply MDS/TAA mitigations when a virtual CPU is enumerated as vulnerable
to MDS/TAA even when the physical CPU is not. On CPUs that enumerate
FB_CLEAR_CTRL the VMM may set FB_CLEAR_DIS to skip overwriting of fill
buffers by the VERW instruction. This is done by setting FB_CLEAR_DIS
during VMENTER and resetting on VMEXIT. For guests that enumerate
FB_CLEAR (explicitly asking for fill buffer clear capability) the VMM
will not use FB_CLEAR_DIS.
Irrespective of guest state, host overwrites CPU buffers before VMENTER
to protect itself from an MMIO capable guest, as part of mitigation for
MMIO Stale Data vulnerabilities.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
The Shared Buffers Data Sampling (SBDS) variant of Processor MMIO Stale
Data vulnerabilities may expose RDRAND, RDSEED and SGX EGETKEY data.
Mitigation for this is added by a microcode update.
As some of the implications of SBDS are similar to SRBDS, SRBDS mitigation
infrastructure can be leveraged by SBDS. Set X86_BUG_SRBDS and use SRBDS
mitigation.
Mitigation is enabled by default; use srbds=off to opt-out. Mitigation
status can be checked from below file:
/sys/devices/system/cpu/vulnerabilities/srbds
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Currently, Linux disables SRBDS mitigation on CPUs not affected by
MDS and have the TSX feature disabled. On such CPUs, secrets cannot
be extracted from CPU fill buffers using MDS or TAA. Without SRBDS
mitigation, Processor MMIO Stale Data vulnerabilities can be used to
extract RDRAND, RDSEED, and EGETKEY data.
Do not disable SRBDS mitigation by default when CPU is also affected by
Processor MMIO Stale Data vulnerabilities.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Add the sysfs reporting file for Processor MMIO Stale Data
vulnerability. It exposes the vulnerability and mitigation state similar
to the existing files for the other hardware vulnerabilities.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
When the CPU is affected by Processor MMIO Stale Data vulnerabilities,
Fill Buffer Stale Data Propagator (FBSDP) can propagate stale data out
of Fill buffer to uncore buffer when CPU goes idle. Stale data can then
be exploited with other variants using MMIO operations.
Mitigate it by clearing the Fill buffer before entering idle state.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Co-developed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
MDS, TAA and Processor MMIO Stale Data mitigations rely on clearing CPU
buffers. Moreover, status of these mitigations affects each other.
During boot, it is important to maintain the order in which these
mitigations are selected. This is especially true for
md_clear_update_mitigation() that needs to be called after MDS, TAA and
Processor MMIO Stale Data mitigation selection is done.
Introduce md_clear_select_mitigation(), and select all these mitigations
from there. This reflects relationships between these mitigations and
ensures proper ordering.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Processor MMIO Stale Data is a class of vulnerabilities that may
expose data after an MMIO operation. For details please refer to
Documentation/admin-guide/hw-vuln/processor_mmio_stale_data.rst.
These vulnerabilities are broadly categorized as:
Device Register Partial Write (DRPW):
Some endpoint MMIO registers incorrectly handle writes that are
smaller than the register size. Instead of aborting the write or only
copying the correct subset of bytes (for example, 2 bytes for a 2-byte
write), more bytes than specified by the write transaction may be
written to the register. On some processors, this may expose stale
data from the fill buffers of the core that created the write
transaction.
Shared Buffers Data Sampling (SBDS):
After propagators may have moved data around the uncore and copied
stale data into client core fill buffers, processors affected by MFBDS
can leak data from the fill buffer.
Shared Buffers Data Read (SBDR):
It is similar to Shared Buffer Data Sampling (SBDS) except that the
data is directly read into the architectural software-visible state.
An attacker can use these vulnerabilities to extract data from CPU fill
buffers using MDS and TAA methods. Mitigate it by clearing the CPU fill
buffers using the VERW instruction before returning to a user or a
guest.
On CPUs not affected by MDS and TAA, user application cannot sample data
from CPU fill buffers using MDS or TAA. A guest with MMIO access can
still use DRPW or SBDR to extract data architecturally. Mitigate it with
VERW instruction to clear fill buffers before VMENTER for MMIO capable
guests.
Add a kernel parameter mmio_stale_data={off|full|full,nosmt} to control
the mitigation.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Processor MMIO Stale Data mitigation uses similar mitigation as MDS and
TAA. In preparation for adding its mitigation, add a common function to
update all mitigations that depend on MD_CLEAR.
[ bp: Add a newline in md_clear_update_mitigation() to separate
statements better. ]
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Processor MMIO Stale Data is a class of vulnerabilities that may
expose data after an MMIO operation. For more details please refer to
Documentation/admin-guide/hw-vuln/processor_mmio_stale_data.rst
Add the Processor MMIO Stale Data bug enumeration. A microcode update
adds new bits to the MSR IA32_ARCH_CAPABILITIES, define them.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
|
|\ \ \ \
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip
Pull xen updates from Juergen Gross:
- a small cleanup removing "export" of an __init function
- a small series adding a new infrastructure for platform flags
- a series adding generic virtio support for Xen guests (frontend side)
* tag 'for-linus-5.19a-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip:
xen: unexport __init-annotated xen_xlate_map_ballooned_pages()
arm/xen: Assign xen-grant DMA ops for xen-grant DMA devices
xen/grant-dma-ops: Retrieve the ID of backend's domain for DT devices
xen/grant-dma-iommu: Introduce stub IOMMU driver
dt-bindings: Add xen,grant-dma IOMMU description for xen-grant DMA ops
xen/virtio: Enable restricted memory access using Xen grant mappings
xen/grant-dma-ops: Add option to restrict memory access under Xen
xen/grants: support allocating consecutive grants
arm/xen: Introduce xen_setup_dma_ops()
virtio: replace arch_has_restricted_virtio_memory_access()
kernel: add platform_has() infrastructure
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
In order to support virtio in Xen guests add a config option XEN_VIRTIO
enabling the user to specify whether in all Xen guests virtio should
be able to access memory via Xen grant mappings only on the host side.
Also set PLATFORM_VIRTIO_RESTRICTED_MEM_ACCESS feature from the guest
initialization code on Arm and x86 if CONFIG_XEN_VIRTIO is enabled.
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Oleksandr Tyshchenko <oleksandr_tyshchenko@epam.com>
Reviewed-by: Stefano Stabellini <sstabellini@kernel.org>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Link: https://lore.kernel.org/r/1654197833-25362-5-git-send-email-olekstysh@gmail.com
Signed-off-by: Juergen Gross <jgross@suse.com>
|
| | |_|/
| |/| |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Instead of using arch_has_restricted_virtio_memory_access() together
with CONFIG_ARCH_HAS_RESTRICTED_VIRTIO_MEMORY_ACCESS, replace those
with platform_has() and a new platform feature
PLATFORM_VIRTIO_RESTRICTED_MEM_ACCESS.
Signed-off-by: Juergen Gross <jgross@suse.com>
Reviewed-by: Oleksandr Tyshchenko <oleksandr_tyshchenko@epam.com>
Tested-by: Oleksandr Tyshchenko <oleksandr_tyshchenko@epam.com> # Arm64 only
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: Borislav Petkov <bp@suse.de>
|