| Commit message (Collapse) | Author | Age | Files | Lines |
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
* git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (54 commits)
crypto: gf128mul - remove leftover "(EXPERIMENTAL)" in Kconfig
crypto: serpent-sse2 - remove unneeded LRW/XTS #ifdefs
crypto: serpent-sse2 - select LRW and XTS
crypto: twofish-x86_64-3way - remove unneeded LRW/XTS #ifdefs
crypto: twofish-x86_64-3way - select LRW and XTS
crypto: xts - remove dependency on EXPERIMENTAL
crypto: lrw - remove dependency on EXPERIMENTAL
crypto: picoxcell - fix boolean and / or confusion
crypto: caam - remove DECO access initialization code
crypto: caam - fix polarity of "propagate error" logic
crypto: caam - more desc.h cleanups
crypto: caam - desc.h - convert spaces to tabs
crypto: talitos - convert talitos_error to struct device
crypto: talitos - remove NO_IRQ references
crypto: talitos - fix bad kfree
crypto: convert drivers/crypto/* to use module_platform_driver()
char: hw_random: convert drivers/char/hw_random/* to use module_platform_driver()
crypto: serpent-sse2 - should select CRYPTO_CRYPTD
crypto: serpent - rename serpent.c to serpent_generic.c
crypto: serpent - cleanup checkpatch errors and warnings
...
|
| |
| |
| |
| |
| |
| |
| |
| | |
Since LRW & XTS are selected by serpent-sse2, we don't need these #ifdefs
anymore.
Signed-off-by: Jussi Kivilinna <jussi.kivilinna@mbnet.fi>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
| |
| |
| |
| |
| |
| |
| |
| | |
Since LRW & XTS are selected by twofish-x86_64-3way, we don't need these
#ifdefs anymore.
Signed-off-by: Jussi Kivilinna <jussi.kivilinna@mbnet.fi>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
LRW/XTS patches for serpent-sse2 forgot to add this. CRYPTO_TFM_REQ_MAY_SLEEP
should be cleared as sleeping between kernel_fpu_begin()/kernel_fpu_end() is
not allowed.
Signed-off-by: Jussi Kivilinna <jussi.kivilinna@mbnet.fi>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Patch adds XTS support for serpent-sse2 by using xts_crypt(). Patch has been
tested with tcrypt and automated filesystem tests.
Tcrypt benchmarks results (serpent-sse2/serpent_generic speed ratios):
Intel Celeron T1600 (x86_64) (fam:6, model:15, step:13):
size xts-enc xts-dec
16B 0.98x 1.00x
64B 1.00x 1.01x
256B 2.78x 2.75x
1024B 3.30x 3.26x
8192B 3.39x 3.30x
AMD Phenom II 1055T (x86_64) (fam:16, model:10):
size xts-enc xts-dec
16B 1.05x 1.02x
64B 1.04x 1.03x
256B 2.10x 2.05x
1024B 2.34x 2.35x
8192B 2.34x 2.40x
Intel Atom N270 (i586):
size xts-enc xts-dec
16B 0.95x 0.96x
64B 1.53x 1.50x
256B 1.72x 1.75x
1024B 1.88x 1.87x
8192B 1.86x 1.83x
Signed-off-by: Jussi Kivilinna <jussi.kivilinna@mbnet.fi>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Patch adds LRW support for serpent-sse2 by using lrw_crypt(). Patch has been
tested with tcrypt and automated filesystem tests.
Tcrypt benchmarks results (serpent-sse2/serpent_generic speed ratios):
Benchmark results with tcrypt:
Intel Celeron T1600 (x86_64) (fam:6, model:15, step:13):
size lrw-enc lrw-dec
16B 1.00x 0.96x
64B 1.01x 1.01x
256B 3.01x 2.97x
1024B 3.39x 3.33x
8192B 3.35x 3.33x
AMD Phenom II 1055T (x86_64) (fam:16, model:10):
size lrw-enc lrw-dec
16B 0.98x 1.03x
64B 1.01x 1.04x
256B 2.10x 2.14x
1024B 2.28x 2.33x
8192B 2.30x 2.33x
Intel Atom N270 (i586):
size lrw-enc lrw-dec
16B 0.97x 0.97x
64B 1.47x 1.50x
256B 1.72x 1.69x
1024B 1.88x 1.81x
8192B 1.84x 1.79x
Signed-off-by: Jussi Kivilinna <jussi.kivilinna@mbnet.fi>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Patch adds i586/SSE2 assembler implementation of serpent cipher. Assembler
functions crypt data in four block chunks.
Patch has been tested with tcrypt and automated filesystem tests.
Tcrypt benchmarks results (serpent-sse2/serpent_generic speed ratios):
Intel Atom N270:
size ecb-enc ecb-dec cbc-enc cbc-dec ctr-enc ctr-dec
16 0.95x 1.12x 1.02x 1.07x 0.97x 0.98x
64 1.73x 1.82x 1.08x 1.82x 1.72x 1.73x
256 2.08x 2.00x 1.04x 2.07x 1.99x 2.01x
1024 2.28x 2.18x 1.05x 2.23x 2.17x 2.20x
8192 2.28x 2.13x 1.05x 2.23x 2.18x 2.20x
Full output:
http://koti.mbnet.fi/axh/kernel/crypto/atom-n270/serpent-generic.txt
http://koti.mbnet.fi/axh/kernel/crypto/atom-n270/serpent-sse2.txt
Userspace test results:
Encryption/decryption of sse2-i586 vs generic on Intel Atom N270:
encrypt: 2.35x
decrypt: 2.54x
Encryption/decryption of sse2-i586 vs generic on AMD Phenom II:
encrypt: 1.82x
decrypt: 2.51x
Encryption/decryption of sse2-i586 vs generic on Intel Xeon E7330:
encrypt: 2.99x
decrypt: 3.48x
Signed-off-by: Jussi Kivilinna <jussi.kivilinna@mbnet.fi>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Patch adds x86_64/SSE2 assembler implementation of serpent cipher. Assembler
functions crypt data in eigth block chunks (two 4 block chunk SSE2 operations
in parallel to improve performance on out-of-order CPUs). Glue code is based
on one from AES-NI implementation, so requests from irq context are redirected
to cryptd.
v2:
- add missing include of linux/module.h
(appearently crypto.h used to include module.h, which changed for 3.2 by
commit 7c926402a7e8c9b279968fd94efec8700ba3859e)
Patch has been tested with tcrypt and automated filesystem tests.
Tcrypt benchmarks results (serpent-sse2/serpent_generic speed ratios):
AMD Phenom II 1055T (fam:16, model:10):
size ecb-enc ecb-dec cbc-enc cbc-dec ctr-enc ctr-dec
16B 1.03x 1.01x 1.03x 1.05x 1.00x 0.99x
64B 1.00x 1.01x 1.02x 1.04x 1.02x 1.01x
256B 2.34x 2.41x 0.99x 2.43x 2.39x 2.40x
1024B 2.51x 2.57x 1.00x 2.59x 2.56x 2.56x
8192B 2.50x 2.54x 1.00x 2.55x 2.57x 2.57x
Intel Celeron T1600 (fam:6, model:15, step:13):
size ecb-enc ecb-dec cbc-enc cbc-dec ctr-enc ctr-dec
16B 0.97x 0.97x 1.01x 1.01x 1.01x 1.02x
64B 1.00x 1.00x 1.00x 1.02x 1.01x 1.01x
256B 3.41x 3.35x 1.00x 3.39x 3.42x 3.44x
1024B 3.75x 3.72x 0.99x 3.74x 3.75x 3.75x
8192B 3.70x 3.68x 0.99x 3.68x 3.69x 3.69x
Full output:
http://koti.mbnet.fi/axh/kernel/crypto/phenom-ii-1055t/serpent-generic.txt
http://koti.mbnet.fi/axh/kernel/crypto/phenom-ii-1055t/serpent-sse2.txt
http://koti.mbnet.fi/axh/kernel/crypto/celeron-t1600/serpent-generic.txt
http://koti.mbnet.fi/axh/kernel/crypto/celeron-t1600/serpent-sse2.txt
Signed-off-by: Jussi Kivilinna <jussi.kivilinna@mbnet.fi>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Patch adds XTS support for twofish-x86_64-3way by using xts_crypt(). Patch has
been tested with tcrypt and automated filesystem tests.
Tcrypt benchmarks results (twofish-3way/twofish-asm speed ratios):
Intel Celeron T1600 (fam:6, model:15, step:13):
size xts-enc xts-dec
16B 0.98x 1.00x
64B 1.14x 1.15x
256B 1.23x 1.25x
1024B 1.26x 1.29x
8192B 1.28x 1.30x
AMD Phenom II 1055T (fam:16, model:10):
size xts-enc xts-dec
16B 1.03x 1.03x
64B 1.13x 1.16x
256B 1.20x 1.20x
1024B 1.22x 1.22x
8192B 1.22x 1.21x
Signed-off-by: Jussi Kivilinna <jussi.kivilinna@mbnet.fi>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Patch adds LRW support for twofish-x86_64-3way by using lrw_crypt(). Patch has
been tested with tcrypt and automated filesystem tests.
Tcrypt benchmarks results (twofish-3way/twofish-asm speed ratios):
Intel Celeron T1600 (fam:6, model:15, step:13):
size lrw-enc lrw-dec
16B 0.99x 1.00x
64B 1.17x 1.17x
256B 1.26x 1.27x
1024B 1.30x 1.31x
8192B 1.31x 1.32x
AMD Phenom II 1055T (fam:16, model:10):
size lrw-enc lrw-dec
16B 1.06x 1.01x
64B 1.08x 1.14x
256B 1.19x 1.20x
1024B 1.21x 1.22x
8192B 1.23x 1.24x
Signed-off-by: Jussi Kivilinna <jussi.kivilinna@mbnet.fi>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|\ \
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
lib: use generic pci_iomap on all architectures
Many architectures don't want to pull in iomap.c,
so they ended up duplicating pci_iomap from that file.
That function isn't trivial, and we are going to modify it
https://lkml.org/lkml/2011/11/14/183
so the duplication hurts.
This reduces the scope of the problem significantly,
by moving pci_iomap to a separate file and
referencing that from all architectures.
* tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost:
alpha: drop pci_iomap/pci_iounmap from pci-noop.c
mn10300: switch to GENERIC_PCI_IOMAP
mn10300: add missing __iomap markers
frv: switch to GENERIC_PCI_IOMAP
tile: switch to GENERIC_PCI_IOMAP
tile: don't panic on iomap
sparc: switch to GENERIC_PCI_IOMAP
sh: switch to GENERIC_PCI_IOMAP
powerpc: switch to GENERIC_PCI_IOMAP
parisc: switch to GENERIC_PCI_IOMAP
mips: switch to GENERIC_PCI_IOMAP
microblaze: switch to GENERIC_PCI_IOMAP
arm: switch to GENERIC_PCI_IOMAP
alpha: switch to GENERIC_PCI_IOMAP
lib: add GENERIC_PCI_IOMAP
lib: move GENERIC_IOMAP to lib/Kconfig
Fix up trivial conflicts due to changes nearby in arch/{m68k,score}/Kconfig
|
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Jenkins disables PCI so asm-generic provides inline
stubs for these, we don't need offline stubs as well.
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
The pci_iomap variant that arch/mn10300/unit-asb2305/pci-iomap.c
uses differs from the generic one in that it does
not use ioremap_nocache for PCI addresses.
However, it turns out that PCI addresses are
automatically noncached, so switching to ioremap_nocache
and to the generic implementation is safe.
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
MN10300's *ioremap*() collection lacks __iomem markers.
Fix that.
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
frv uses a version of pci_iomap that simply
casts and returns back the start address.
Looking closely, both ioremap and ioport_map seem to
do this on this platform, so the generic pci_iomap
will DTRT automatically.
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
tile now has working stubs for ioport_map and ioremap
such that the generic pci_iomap will DTRT: cast to
pointer on memory and return NULL and log message on IO map.
Switch it over to GENERIC_PCI_IOMAP.
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
I think panic on iomap is there just for debugging.
If we return NULL instead, the generic pci_iomap will
DTRT so we don't need to roll our own.
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
sparc copied pci_iomap from generic code, probably to avoid
pulling the rest of iomap.c in. Since that's in
a separate file now, we can reuse the common implementation.
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
sh copied pci_iomap from generic code, probably to avoid
pulling the rest of iomap.c in. Since that's in
a separate file now, we can reuse the common implementation.
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
powerpc copied pci_iomap from generic code, probably to avoid
pulling the rest of iomap.c in. Since that's in
a separate file now, we can reuse the common implementation.
The only difference is handling of nocache flag,
that turns out to be done correctly by the
generic code since arch/powerpc/include/asm/io.h
defines ioremap_nocache same as ioremap.
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
parisc copied pci_iomap from generic code, probably to avoid
pulling the rest of iomap.c in. Since that's in
a separate file now, we can reuse the common implementation.
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
mips copied pci_iomap from generic code, probably to avoid
pulling the rest of iomap.c in. Since that's in
a separate file now, we can reuse the common implementation.
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
microblaze copied pci_iomap from generic code, probably to avoid
pulling the rest of iomap.c in. Since that's in
a separate file now, we can reuse the common implementation.
The only difference is handling of nocache flag,
that turns out to be done correctly by the
generic code since arch/microblaze/include/asm/io.h
defines ioremap_nocache same as ioremap.
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
arm copied pci_iomap from generic code, probably to avoid
pulling the rest of iomap.c in. Since that's in
a separate file now, we can reuse the common implementation.
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
alpha copied pci_iomap from generic code to avoid
pulling the rest of iomap.c in. Since that's in
a separate file now, we can reuse the common implementation.
The only difference is handling of nocache flag,
that turns out to be done correctly by the
generic code since arch/alpha/include/asm/io.h
defines ioremap_nocache same as ioremap.
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
define GENERIC_IOMAP in a central location
instead of all architectures. This will be helpful
for the follow-up patch which makes it select
other configs. Code is also a bit shorter this way.
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
|
|\ \ \
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
git://linux-c6x.org/git/projects/linux-c6x-upstreaming
* tag 'for-linux-3.3-merge-window' of git://linux-c6x.org/git/projects/linux-c6x-upstreaming: (29 commits)
C6X: replace tick_nohz_stop/restart_sched_tick calls
C6X: add register_cpu call
C6X: deal with memblock API changes
C6X: fix timer64 initialization
C6X: fix layout of EMIFA registers
C6X: MAINTAINERS
C6X: DSCR - Device State Configuration Registers
C6X: EMIF - External Memory Interface
C6X: general SoC support
C6X: library code
C6X: headers
C6X: ptrace support
C6X: loadable module support
C6X: cache control
C6X: clocks
C6X: build infrastructure
C6X: syscalls
C6X: interrupt handling
C6X: time management
C6X: signal management
...
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
The following commits replaced the tick_nohz_{stop,restart}_sched_tick
API with separate tick and rcu calls:
280f06774afedf849f0b34248ed6aff57d0f6908
2bbb6817c0ac1b5f2a68d720f364f98eeb1ac4fd
1268fbc746ea1cd279886a740dcbad4ba5232225
This patch replaces the C6X use of the old API with the newer interfaces.
Signed-off-by: Mark Salter <msalter@redhat.com>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Commit ccbc60d3e19a1b6ae66ca0d89b3da02dde62088b requires CPU
topology information even in !SMP cases. This requires C6X to
add a call tp register_cpu() in order to avoid a panic at
boot time.
Signed-off-by: Mark Salter <msalter@redhat.com>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Recent memblock related commits require the following C6X changes:
* commit 24aa07882b672fff2da2f5c955759f0bd13d32d5
asm/memblock.h no longer required
* commit 1440c4e2c918532f39131c3330fe2226e16be7b6
memblock_analyze() no longer needed to update total size
* commit fe091c208a40299fba40e62292a610fb91e44b4e
memblock_init() no longer needed
Signed-off-by: Mark Salter <msalter@redhat.com>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Some SoCs have a timer block enable controlled through the DSCR registers.
There is a problem in the timer64 driver initialization where the code
accesses a timer register to get the divisor used to calculate timer clock
rate. If the timer block has not been enabled when this register read takes
place, an exception is generated. This patch makes sure that the timer block
is enabled before accessing the registers.
Signed-off-by: Mark Salter <msalter@redhat.com>
|
| | | |
| | | |
| | | |
| | | | |
Signed-off-by: Mark Salter <msalter@redhat.com>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
All SoCs provide an area of device configuration registers called the DSCR. The
location of specific registers as well as their use varies considerably from
implementation to implementation. Rather than having to rely on additional
SoC-specific DSCR code for each new supported SoC, this code generalize things
as much as possible using device tree properties. Initialization must take
place early on (setup_arch time) in case the event timer device needs to be
enable via the DSCR.
Signed-off-by: Mark Salter <msalter@redhat.com>
Signed-off-by: Aurelien Jacquiot <a-jacquiot@ti.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Several SoC parts provide a simple bridge to support external memory mapped
devices. This code probes the device tree for an EMIF node and sets up the
bridge registers if such a node is found. Beyond initial set up, there is no
further need to access the bridge control registers. External devices on the
bus are accessed through their MMIO registers using suitable drivers. The
bridge hardware does provide for timeout and other error interrupts, but these
are not yet supported.
Signed-off-by: Mark Salter <msalter@redhat.com>
Signed-off-by: Aurelien Jacquiot <a-jacquiot@ti.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
This patch provides a soc_ops struct which provides hooks for SoC functionality
which doesn't fit well into other places.
Signed-off-by: Mark Salter <msalter@redhat.com>
Signed-off-by: Aurelien Jacquiot <a-jacquiot@ti.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Original port to early 2.6 kernel using TI COFF toolchain.
Brought up to date by Mark Salter <msalter@redhat.com>
Signed-off-by: Aurelien Jacquiot <a-jacquiot@ti.com>
Signed-off-by: Mark Salter <msalter@redhat.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Original port to early 2.6 kernel using TI COFF toolchain.
Brought up to date by Mark Salter <msalter@redhat.com>
Signed-off-by: Aurelien Jacquiot <a-jacquiot@ti.com>
Signed-off-by: Mark Salter <msalter@redhat.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Original port to early 2.6 kernel using TI COFF toolchain.
Brought up to date by Mark Salter <msalter@redhat.com>
Signed-off-by: Aurelien Jacquiot <a-jacquiot@ti.com>
Signed-off-by: Mark Salter <msalter@redhat.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Original port to early 2.6 kernel using TI COFF toolchain.
Brought up to date by Mark Salter <msalter@redhat.com>
Signed-off-by: Aurelien Jacquiot <a-jacquiot@ti.com>
Signed-off-by: Mark Salter <msalter@redhat.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Original port to early 2.6 kernel using TI COFF toolchain.
Brought up to date by Mark Salter <msalter@redhat.com>
Signed-off-by: Aurelien Jacquiot <a-jacquiot@ti.com>
Signed-off-by: Mark Salter <msalter@redhat.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
The C6X SoCs contain several PLL controllers each with up to 16 clock outputs
feeding into the cores or peripheral clock domains. The hardware is very similar
to arm/mach-davinci clocks. This is still a work in progress which needs to be
updated once device tree clock binding changes shake out.
Signed-off-by: Mark Salter <msalter@redhat.com>
Signed-off-by: Aurelien Jacquiot <a-jacquiot@ti.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Original port to early 2.6 kernel using TI COFF toolchain.
Brought up to date by Mark Salter <msalter@redhat.com>
Signed-off-by: Aurelien Jacquiot <a-jacquiot@ti.com>
Signed-off-by: Mark Salter <msalter@redhat.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Original port to early 2.6 kernel using TI COFF toolchain.
Brought up to date by Mark Salter <msalter@redhat.com>
Signed-off-by: Aurelien Jacquiot <a-jacquiot@ti.com>
Signed-off-by: Mark Salter <msalter@redhat.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
[msalter@redhat.com: add include of linux/module.h to sys_c6x.c]
Signed-off-by: Mark Salter <msalter@redhat.com>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Original port to early 2.6 kernel using TI COFF toolchain.
Brought up to date by Mark Salter <msalter@redhat.com>
Signed-off-by: Aurelien Jacquiot <a-jacquiot@ti.com>
Signed-off-by: Mark Salter <msalter@redhat.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Arnd Bergmann <arnd@arndb.de>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Original port to early 2.6 kernel using TI COFF toolchain.
Brought up to date by Mark Salter <msalter@redhat.com>
Signed-off-by: Aurelien Jacquiot <a-jacquiot@ti.com>
Signed-off-by: Mark Salter <msalter@redhat.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Arnd Bergmann <arnd@arndb.de>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Original port to early 2.6 kernel using TI COFF toolchain.
Brought up to date by Mark Salter <msalter@redhat.com>
Signed-off-by: Aurelien Jacquiot <a-jacquiot@ti.com>
Signed-off-by: Mark Salter <msalter@redhat.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Original port to early 2.6 kernel using TI COFF toolchain.
Brought up to date by Mark Salter <msalter@redhat.com>
Signed-off-by: Aurelien Jacquiot <a-jacquiot@ti.com>
Signed-off-by: Mark Salter <msalter@redhat.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Original port to early 2.6 kernel using TI COFF toolchain.
Brought up to date by Mark Salter <msalter@redhat.com>
The C6X architecture currently lacks an MMU so memory management is relatively
simple. There is no bus snooping between L2 and main memory but coherent DMA
memory is supported by making regions of main memory uncached. If such a region
is desired, it can be specified on the commandline with a "memdma=" argument.
Signed-off-by: Aurelien Jacquiot <a-jacquiot@ti.com>
Signed-off-by: Mark Salter <msalter@redhat.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
This is the basic devicetree support for C6X. Currently, four boards are
supported. Each one uses a different SoC part. Two of the four supported
SoCs are multicore. One with 3 cores and the other with 6 cores. There is
no coherency between the core-level caches, so SMP is not an option. It is
possible to run separate kernel instances on the various cores. There is
currently no C6X bootloader support for device trees so we build in the DTB
for now.
There are some interesting twists to the hardware which are of note for device
tree support. Each core has its own interrupt controller which is controlled
by special purpose core registers. This core controller provides 12 general
purpose prioritized interrupt sources. Each core is contained within a
hardware "module" which provides L1 and L2 caches, power control, and another
interrupt controller which cascades into the core interrupt controller. These
core module functions are controlled by memory mapped registers. The addresses
for these registers are the same for each core. That is, when coreN accesses
a module-level MMIO register at a given address, it accesses the register for
coreN even though other cores would use the same address to access the register
in the module containing those cores. Other hardware modules (timers, enet, etc)
which are memory mapped can be accessed by all cores.
The timers need some further explanation for multicore SoCs. Even though all
timer control registers are visible to all cores, interrupt routing or other
considerations may make a given timer more suitable for use by a core than
some other timer. Because of this and the desire to have the same image run
on more than one core, the timer nodes have a "ti,core-mask" property which
is used by the driver to scan for a suitable timer to use.
Signed-off-by: Mark Salter <msalter@redhat.com>
Signed-off-by: Aurelien Jacquiot <a-jacquiot@ti.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Original port to early 2.6 kernel using TI COFF toolchain.
Brought up to date by Mark Salter <msalter@redhat.com>
This patch provides the early boot code for C6X architecture. There is a
16 entry vector table which is used to direct reset and interrupt events. The
vector table entries contain a small amount of code (maximum of 8 opcodes)
which simply branches to the actual event handling code.
The head.S code simply clears BSS, setups up a few control registers, and calls
machine_init followed by start_kernel. The machine_init code in setup.c does
the early flat tree parsing (memory, commandline, etc). At setup_arch time, the
code does the usual memory setup and minimally scans the devicetree for any
needed information.
Signed-off-by: Aurelien Jacquiot <a-jacquiot@ti.com>
Signed-off-by: Mark Salter <msalter@redhat.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
|