summaryrefslogtreecommitdiffstats
path: root/drivers/firmware
Commit message (Collapse)AuthorAgeFilesLines
* Merge tag 'rproc-v6.2' of ↵Linus Torvalds2022-12-211-0/+97
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/remoteproc/linux Pull remoteproc updates from Bjorn Andersson: "rproc-virtio device names are now auto generated, to avoid conflicts between remoteproc instances. The imx_rproc driver is extended with support for communicating with and attaching to a running M4 on i.MX8QXP, as well as support for attaching to the M4 after self-recovering from a crash. Support is added for i.MX8QM and mailbox channels are reconnected during the recovery process, in order to avoid data corruption. The Xilinx Zynqmp firmware interface is extended and support for the Xilinx R5 RPU is introduced. Various resources leaks, primarily in error paths, throughout the Qualcomm drivers are corrected. Lastly a fix to ensure that pm_relax is invoked even if the remoteproc instance is stopped between a crash is being reported and the recovery handler is scheduled" * tag 'rproc-v6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/remoteproc/linux: (25 commits) remoteproc: core: Do pm_relax when in RPROC_OFFLINE state remoteproc: qcom: q6v5: Fix missing clk_disable_unprepare() in q6v5_wcss_qcs404_power_on() remoteproc: qcom_q6v5_pas: Fix missing of_node_put() in adsp_alloc_memory_region() remoteproc: qcom_q6v5_pas: detach power domains on remove remoteproc: qcom_q6v5_pas: disable wakeup on probe fail or remove remoteproc: qcom: q6v5: Fix potential null-ptr-deref in q6v5_wcss_init_mmio() remoteproc: sysmon: fix memory leak in qcom_add_sysmon_subdev() remoteproc: sysmon: Make QMI message rules const drivers: remoteproc: Add Xilinx r5 remoteproc driver firmware: xilinx: Add RPU configuration APIs firmware: xilinx: Add shutdown/wakeup APIs firmware: xilinx: Add ZynqMP firmware ioctl enums for RPU configuration. arm64: dts: xilinx: zynqmp: Add RPU subsystem device node dt-bindings: remoteproc: Add Xilinx RPU subsystem bindings remoteproc: core: Use device_match_of_node() remoteproc: imx_rproc: Correct i.MX93 DRAM mapping remoteproc: imx_rproc: Enable attach recovery for i.MX8QM/QXP remoteproc: imx_rproc: Request mbox channel later remoteproc: imx_rproc: Support i.MX8QM remoteproc: imx_rproc: Support kicking Mcore from Linux for i.MX8QXP ...
| * firmware: xilinx: Add RPU configuration APIsBen Levinsky2022-11-251-0/+62
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch adds APIs to access to configure RPU and its processor-specific memory. That is query the run-time mode of RPU as either split or lockstep as well as API to set this mode. In addition add APIs to access configuration of the RPUs' tightly coupled memory (TCM). Signed-off-by: Ben Levinsky <ben.levinsky@amd.com> Signed-off-by: Tanmay Shah <tanmay.shah@amd.com> Acked-by: Michal Simek <michal.simek@amd.com> Link: https://lore.kernel.org/r/20221114233940.2096237-6-tanmay.shah@amd.com Signed-off-by: Mathieu Poirier <mathieu.poirier@linaro.org>
| * firmware: xilinx: Add shutdown/wakeup APIsBen Levinsky2022-11-251-0/+35
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Add shutdown/wakeup a resource eemi operations to shutdown or bringup a resource. Note alignment of args matches convention of other fn's in this file. The reason being that the long fn name results in aligned args that otherwise go over 80 chars so shift right to avoid this Signed-off-by: Ben Levinsky <ben.levinsky@amd.com> Signed-off-by: Tanmay Shah <tanmay.shah@amd.com> Acked-by: Michal Simek <michal.simek@amd.com> Link: https://lore.kernel.org/r/20221114233940.2096237-5-tanmay.shah@amd.com Signed-off-by: Mathieu Poirier <mathieu.poirier@linaro.org>
* | efi: random: fix NULL-deref when refreshing seedJohan Hovold2022-12-201-1/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Do not try to refresh the RNG seed in case the firmware does not support setting variables. This is specifically needed to prevent a NULL-pointer dereference on the Lenovo X13s with some firmware revisions, or more generally, whenever the runtime services have been disabled (e.g. efi=noruntime or with PREEMPT_RT). Fixes: e7b813b32a42 ("efi: random: refresh non-volatile random seed when RNG is initialized") Reported-by: Steev Klimaszewski <steev@kali.org> Reported-by: Bjorn Andersson <andersson@kernel.org> Tested-by: Steev Klimaszewski <steev@kali.org> Tested-by: Andrew Halaney <ahalaney@redhat.com> # sc8280xp-lenovo-thinkpad-x13s Signed-off-by: Johan Hovold <johan+linaro@kernel.org> Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
* | Merge tag 'driver-core-6.2-rc1' of ↵Linus Torvalds2022-12-161-1/+1
|\ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core Pull driver core updates from Greg KH: "Here is the set of driver core and kernfs changes for 6.2-rc1. The "big" change in here is the addition of a new macro, container_of_const() that will preserve the "const-ness" of a pointer passed into it. The "problem" of the current container_of() macro is that if you pass in a "const *", out of it can comes a non-const pointer unless you specifically ask for it. For many usages, we want to preserve the "const" attribute by using the same call. For a specific example, this series changes the kobj_to_dev() macro to use it, allowing it to be used no matter what the const value is. This prevents every subsystem from having to declare 2 different individual macros (i.e. kobj_const_to_dev() and kobj_to_dev()) and having the compiler enforce the const value at build time, which having 2 macros would not do either. The driver for all of this have been discussions with the Rust kernel developers as to how to properly mark driver core, and kobject, objects as being "non-mutable". The changes to the kobject and driver core in this pull request are the result of that, as there are lots of paths where kobjects and device pointers are not modified at all, so marking them as "const" allows the compiler to enforce this. So, a nice side affect of the Rust development effort has been already to clean up the driver core code to be more obvious about object rules. All of this has been bike-shedded in quite a lot of detail on lkml with different names and implementations resulting in the tiny version we have in here, much better than my original proposal. Lots of subsystem maintainers have acked the changes as well. Other than this change, included in here are smaller stuff like: - kernfs fixes and updates to handle lock contention better - vmlinux.lds.h fixes and updates - sysfs and debugfs documentation updates - device property updates All of these have been in the linux-next tree for quite a while with no problems" * tag 'driver-core-6.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (58 commits) device property: Fix documentation for fwnode_get_next_parent() firmware_loader: fix up to_fw_sysfs() to preserve const usb.h: take advantage of container_of_const() device.h: move kobj_to_dev() to use container_of_const() container_of: add container_of_const() that preserves const-ness of the pointer driver core: fix up missed drivers/s390/char/hmcdrv_dev.c class.devnode() conversion. driver core: fix up missed scsi/cxlflash class.devnode() conversion. driver core: fix up some missing class.devnode() conversions. driver core: make struct class.devnode() take a const * driver core: make struct class.dev_uevent() take a const * cacheinfo: Remove of_node_put() for fw_token device property: Add a blank line in Kconfig of tests device property: Rename goto label to be more precise device property: Move PROPERTY_ENTRY_BOOL() a bit down device property: Get rid of __PROPERTY_ENTRY_ARRAY_EL*SIZE*() kernfs: fix all kernel-doc warnings and multiple typos driver core: pass a const * into of_device_uevent() kobject: kset_uevent_ops: make name() callback take a const * kobject: kset_uevent_ops: make filter() callback take a const * kobject: make kobject_namespace take a const * ...
| * | driver core: make struct class.dev_uevent() take a const *Greg Kroah-Hartman2022-11-241-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The dev_uevent() in struct class should not be modifying the device that is passed into it, so mark it as a const * and propagate the function signature changes out into all relevant subsystems that use this callback. Cc: Jens Axboe <axboe@kernel.dk> Cc: Luis Chamberlain <mcgrof@kernel.org> Cc: Russ Weight <russell.h.weight@intel.com> Cc: Jean Delvare <jdelvare@suse.com> Cc: Johan Hovold <johan@kernel.org> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Leon Romanovsky <leon@kernel.org> Cc: Karsten Keil <isdn@linux-pingi.de> Cc: Mauro Carvalho Chehab <mchehab@kernel.org> Cc: Keith Busch <kbusch@kernel.org> Cc: Christoph Hellwig <hch@lst.de> Cc: Sagi Grimberg <sagi@grimberg.me> Cc: Dominik Brodowski <linux@dominikbrodowski.net> Cc: "David S. Miller" <davem@davemloft.net> Cc: Eric Dumazet <edumazet@google.com> Cc: Jakub Kicinski <kuba@kernel.org> Cc: Paolo Abeni <pabeni@redhat.com> Cc: Johannes Berg <johannes@sipsolutions.net> Cc: Wolfram Sang <wsa+renesas@sang-engineering.com> Cc: Raed Salem <raeds@nvidia.com> Cc: Chen Zhongjin <chenzhongjin@huawei.com> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Avihai Horon <avihaih@nvidia.com> Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org> Cc: Alan Stern <stern@rowland.harvard.edu> Cc: Colin Ian King <colin.i.king@gmail.com> Cc: Geert Uytterhoeven <geert+renesas@glider.be> Cc: Jakob Koschel <jakobkoschel@gmail.com> Cc: Antoine Tenart <atenart@kernel.org> Cc: Frederic Weisbecker <frederic@kernel.org> Cc: Wang Yufen <wangyufen@huawei.com> Cc: linux-block@vger.kernel.org Cc: linux-kernel@vger.kernel.org Cc: linux-media@vger.kernel.org Cc: linux-nvme@lists.infradead.org Cc: linux-pm@vger.kernel.org Cc: linux-rdma@vger.kernel.org Cc: linux-usb@vger.kernel.org Cc: linux-wireless@vger.kernel.org Cc: netdev@vger.kernel.org Acked-by: Sebastian Reichel <sre@kernel.org> Acked-by: Rafael J. Wysocki <rafael@kernel.org> Link: https://lore.kernel.org/r/20221123122523.1332370-1-gregkh@linuxfoundation.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* | | Merge tag 'char-misc-6.2-rc1' of ↵Linus Torvalds2022-12-166-4/+180
|\ \ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc Pull char/misc driver updates from Greg KH: "Here is the large set of char/misc and other driver subsystem changes for 6.2-rc1. Nothing earth-shattering in here at all, just a lot of new driver development and minor fixes. Highlights include: - fastrpc driver updates - iio new drivers and updates - habanalabs driver updates for new hardware and features - slimbus driver updates - speakup module parameters added to aid in boot time configuration - i2c probe_new conversions for lots of different drivers - other small driver fixes and additions One semi-interesting change in here is the increase of the number of misc dynamic minors available to 1048448 to handle new huge-cpu systems. All of these have been in linux-next for a while with no reported problems" * tag 'char-misc-6.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc: (521 commits) extcon: usbc-tusb320: Convert to i2c's .probe_new() extcon: rt8973: Convert to i2c's .probe_new() extcon: fsa9480: Convert to i2c's .probe_new() extcon: max77843: Replace irqchip mask_invert with unmask_base chardev: fix error handling in cdev_device_add() mcb: mcb-parse: fix error handing in chameleon_parse_gdd() drivers: mcb: fix resource leak in mcb_probe() coresight: etm4x: fix repeated words in comments coresight: cti: Fix null pointer error on CTI init before ETM coresight: trbe: remove cpuhp instance node before remove cpuhp state counter: stm32-lptimer-cnt: fix the check on arr and cmp registers update misc: fastrpc: Add dma_mask to fastrpc_channel_ctx misc: fastrpc: Add mmap request assigning for static PD pool misc: fastrpc: Safekeep mmaps on interrupted invoke misc: fastrpc: Add support for audiopd misc: fastrpc: Rework fastrpc_req_munmap misc: fastrpc: Use fastrpc_map_put in fastrpc_map_create on fail misc: fastrpc: Add fastrpc_remote_heap_alloc misc: fastrpc: Add reserved mem support misc: fastrpc: Rename audio protection domain to root ...
| * | | firmware: google: fix a NULL vs IS_ERR() check in cbmem_entry_probe()Peng Wu2022-11-231-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The devm_memremap() function returns error pointers on error, it doesn't return NULL. Fixes: 19d54020883c ("firmware: google: Implement cbmem in sysfs driver") Signed-off-by: Peng Wu <wupeng58@huawei.com> Reviewed-by: Guenter Roeck <groeck@chromium.org> Reviewed-by: Jack Rosenthal <jrosenth@chromium.org> Link: https://lore.kernel.org/r/20221115091138.51614-1-wupeng58@huawei.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
| * | | firmware: raspberrypi: fix possible memory leak in rpi_firmware_probe()Yang Yingliang2022-11-231-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In rpi_firmware_probe(), if mbox_request_channel() fails, the 'fw' will not be freed through rpi_firmware_delete(), fix this leak by calling kfree() in the error path. Fixes: 1e7c57355a3b ("firmware: raspberrypi: Keep count of all consumers") Signed-off-by: Yang Yingliang <yangyingliang@huawei.com> Link: https://lore.kernel.org/r/20221117070636.3849773-1-yangyingliang@huawei.com Acked-by: Joel Savitz <jsavitz@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
| * | | Merge 6.1-rc6 into char-misc-nextGreg Kroah-Hartman2022-11-2117-93/+238
| |\| | | | | | | | | | | | | | | | | | | | | | We need the char/misc fixes in here as well. Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
| * | | firmware: google: Implement cbmem in sysfs driverJack Rosenthal2022-11-105-1/+175
| | |/ | |/| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The CBMEM area is a downward-growing memory region used by coreboot to dynamically allocate tagged data structures ("CBMEM entries") that remain resident during boot. This implements a driver which exports access to the CBMEM entries via sysfs under /sys/bus/coreboot/devices/cbmem-<id>. This implementation is quite versatile. Examples of how it could be used are given below: * Tools like util/cbmem from the coreboot tree could use this driver instead of finding CBMEM in /dev/mem directly. Alternatively, firmware developers debugging an issue may find the sysfs interface more ergonomic than the cbmem tool and choose to use it directly. * The crossystem tool, which exposes verified boot variables, can use this driver to read the vboot work buffer. * Tools which read the BIOS SPI flash (e.g., flashrom) can find the flash layout in CBMEM directly, which is significantly faster than searching the flash directly. Write access is provided to all CBMEM regions via /sys/bus/coreboot/devices/cbmem-<id>/mem, as the existing cbmem tooling updates this memory region, and envisioned use cases with crossystem can benefit from updating memory regions. Link: https://issuetracker.google.com/239604743 Cc: Stephen Boyd <swboyd@chromium.org> Cc: Tzung-Bi Shih <tzungbi@kernel.org> Reviewed-by: Guenter Roeck <groeck@chromium.org> Reviewed-by: Julius Werner <jwerner@chromium.org> Tested-by: Jack Rosenthal <jrosenth@chromium.org> Signed-off-by: Jack Rosenthal <jrosenth@chromium.org> Link: https://lore.kernel.org/r/20221104161528.531248-1-jrosenth@chromium.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* | | Merge tag 'v6.2-p1' of ↵Linus Torvalds2022-12-141-1/+0
|\ \ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6 Pull crypto updates from Herbert Xu: "API: - Optimise away self-test overhead when they are disabled - Support symmetric encryption via keyring keys in af_alg - Flip hwrng default_quality, the default is now maximum entropy Algorithms: - Add library version of aesgcm - CFI fixes for assembly code - Add arm/arm64 accelerated versions of sm3/sm4 Drivers: - Remove assumption on arm64 that kmalloc is DMA-aligned - Fix selftest failures in rockchip - Add support for RK3328/RK3399 in rockchip - Add deflate support in qat - Merge ux500 into stm32 - Add support for TEE for PCI ID 0x14CA in ccp - Add mt7986 support in mtk - Add MaxLinear platform support in inside-secure - Add NPCM8XX support in npcm" * tag 'v6.2-p1' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (184 commits) crypto: ux500/cryp - delete driver crypto: stm32/cryp - enable for use with Ux500 crypto: stm32 - enable drivers to be used on Ux500 dt-bindings: crypto: Let STM32 define Ux500 CRYP hwrng: geode - Fix PCI device refcount leak hwrng: amd - Fix PCI device refcount leak crypto: qce - Set DMA alignment explicitly crypto: octeontx2 - Set DMA alignment explicitly crypto: octeontx - Set DMA alignment explicitly crypto: keembay - Set DMA alignment explicitly crypto: safexcel - Set DMA alignment explicitly crypto: hisilicon/hpre - Set DMA alignment explicitly crypto: chelsio - Set DMA alignment explicitly crypto: ccree - Set DMA alignment explicitly crypto: ccp - Set DMA alignment explicitly crypto: cavium - Set DMA alignment explicitly crypto: img-hash - Fix variable dereferenced before check 'hdev->req' crypto: arm64/ghash-ce - use frame_push/pop macros consistently crypto: arm64/crct10dif - use frame_push/pop macros consistently crypto: arm64/aes-modes - use frame_push/pop macros consistently ...
| * | | hwrng: core - treat default_quality as a maximum and default to 1024Jason A. Donenfeld2022-11-181-1/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Most hw_random devices return entropy which is assumed to be of full quality, but driver authors don't bother setting the quality knob. Some hw_random devices return less than full quality entropy, and then driver authors set the quality knob. Therefore, the entropy crediting should be opt-out rather than opt-in per-driver, to reflect the actual reality on the ground. For example, the two Raspberry Pi RNG drivers produce full entropy randomness, and both EDK2 and U-Boot's drivers for these treat them as such. The result is that EFI then uses these numbers and passes the to Linux, and Linux credits them as boot, thereby initializing the RNG. Yet, in Linux, the quality knob was never set to anything, and so on the chance that Linux is booted without EFI, nothing is ever credited. That's annoying. The same pattern appears to repeat itself throughout various drivers. In fact, very very few drivers have bothered setting quality=1024. Looking at the git history of existing drivers and corresponding mailing list discussion, this conclusion tracks. There's been a decent amount of discussion about drivers that set quality < 1024 -- somebody read and interepreted a datasheet, or made some back of the envelope calculation somehow. But there's been very little, if any, discussion about most drivers where the quality is just set to 1024 or unset (or set to 1000 when the authors misunderstood the API and assumed it was base-10 rather than base-2); in both cases the intent was fairly clear of, "this is a hardware random device; it's fine." So let's invert this logic. A hw_random struct's quality knob now controls the maximum quality a driver can produce, or 0 to specify 1024. Then, the module-wide switch called "default_quality" is changed to represent the maximum quality of any driver. By default it's 1024, and the quality of any particular driver is then given by: min(default_quality, rng->quality ?: 1024); This way, the user can still turn this off for weird reasons (and we can replace whatever driver-specific disabling hacks existed in the past), yet we get proper crediting for relevant RNGs. Cc: Dominik Brodowski <linux@dominikbrodowski.net> Cc: Ard Biesheuvel <ardb@kernel.org> Cc: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
* | | | Merge tag 'for-linus' of git://git.armlinux.org.uk/~rmk/linux-armLinus Torvalds2022-12-131-2/+2
|\ \ \ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Pull ARM updates from Russell King: - update unwinder to cope with module PLTs - enable UBSAN on ARM - improve kernel fault message - update UEFI runtime page tables dump - avoid clang's __aeabi_uldivmod generated in NWFPE code - disable FIQs on CPU shutdown paths - update XOR register usage - a number of build updates (using .arch, thread pointer, removal of lazy evaluation in Makefile) - conversion of stacktrace code to stackwalk - findbit assembly updates - hwcap feature updates for ARMv8 CPUs - instruction dump updates for big-endian platforms - support for function error injection * tag 'for-linus' of git://git.armlinux.org.uk/~rmk/linux-arm: (31 commits) ARM: 9279/1: support function error injection ARM: 9277/1: Make the dumped instructions are consistent with the disassembled ones ARM: 9276/1: Refactor dump_instr() ARM: 9275/1: Drop '-mthumb' from AFLAGS_ISA ARM: 9274/1: Add hwcap for Speculative Store Bypassing Safe ARM: 9273/1: Add hwcap for Speculation Barrier(SB) ARM: 9272/1: vfp: Add hwcap for FEAT_AA32I8MM ARM: 9271/1: vfp: Add hwcap for FEAT_AA32BF16 ARM: 9270/1: vfp: Add hwcap for FEAT_FHM ARM: 9269/1: vfp: Add hwcap for FEAT_DotProd ARM: 9268/1: vfp: Add hwcap FPHP and ASIMDHP for FEAT_FP16 ARM: 9267/1: Define Armv8 registers in AArch32 state ARM: findbit: add unwinder information ARM: findbit: operate by words ARM: findbit: convert to macros ARM: findbit: provide more efficient ARMv7 implementation ARM: findbit: document ARMv5 bit offset calculation ARM: 9259/1: stacktrace: Convert stacktrace to generic ARCH_STACKWALK ARM: 9258/1: stacktrace: Make stack walk callback consistent with generic code ARM: 9265/1: pass -march= only to compiler ...
| * | | | ARM: 9255/1: efi/dump UEFI runtime page tables for ARMWang Kefeng2022-11-071-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | UEFI runtime page tables dump only for ARM64 at present, but ARM support EFI and ARM_PTDUMP_DEBUGFS now. Since ARM could potentially execute with a 1G/3G user/kernel split, choosing 1G as the upper limit for UEFI runtime end, with this, we could enable UEFI runtime page tables on ARM. Acked-by: Ard Biesheuvel <ardb@kernel.org> Tested-by: Ard Biesheuvel <ardb@kernel.org> Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com> Signed-off-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
* | | | | Merge tag 'x86_boot_for_v6.2' of ↵Linus Torvalds2022-12-131-1/+1
|\ \ \ \ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 boot updates from Borislav Petkov: "A of early boot cleanups and fixes. - Do some spring cleaning to the compressed boot code by moving the EFI mixed-mode code to a separate compilation unit, the AMD memory encryption early code where it belongs and fixing up build dependencies. Make the deprecated EFI handover protocol optional with the goal of removing it at some point (Ard Biesheuvel) - Skip realmode init code on Xen PV guests as it is not needed there - Remove an old 32-bit PIC code compiler workaround" * tag 'x86_boot_for_v6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/boot: Remove x86_32 PIC using %ebx workaround x86/boot: Skip realmode init code when running as Xen PV guest x86/efi: Make the deprecated EFI handover protocol optional x86/boot/compressed: Only build mem_encrypt.S if AMD_MEM_ENCRYPT=y x86/boot/compressed: Adhere to calling convention in get_sev_encryption_bit() x86/boot/compressed: Move startup32_check_sev_cbit() out of head_64.S x86/boot/compressed: Move startup32_check_sev_cbit() into .text x86/boot/compressed: Move startup32_load_idt() out of head_64.S x86/boot/compressed: Move startup32_load_idt() into .text section x86/boot/compressed: Pull global variable reference into startup32_load_idt() x86/boot/compressed: Avoid touching ECX in startup32_set_idt_entry() x86/boot/compressed: Simplify IDT/GDT preserve/restore in the EFI thunk x86/boot/compressed, efi: Merge multiple definitions of image_offset into one x86/boot/compressed: Move efi32_pe_entry() out of head_64.S x86/boot/compressed: Move efi32_entry out of head_64.S x86/boot/compressed: Move efi32_pe_entry into .text section x86/boot/compressed: Move bootargs parsing out of 32-bit startup code x86/boot/compressed: Move 32-bit entrypoint code into .text section x86/boot/compressed: Rename efi_thunk_64.S to efi-mixed.S
| * | | | | x86/boot/compressed, efi: Merge multiple definitions of image_offset into oneArd Biesheuvel2022-11-241-1/+1
| | |_|_|/ | |/| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | There is no need for head_32.S and head_64.S both declaring a copy of the global 'image_offset' variable, so drop those and make the extern C declaration the definition. When image_offset is moved to the .c file, it needs to be placed particularly in the .data section because it lands by default in the .bss section which is cleared too late, in .Lrelocated, before the first access to it and thus garbage gets read, leading to SEV guests exploding in early boot. This happens only when the SEV guest kernel is loaded through grub. If supplied with qemu's -kernel command line option, that memory is always cleared upfront by qemu and all is fine there. [ bp: Expand commit message with SEV aspect. ] Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Signed-off-by: Borislav Petkov <bp@suse.de> Link: https://lore.kernel.org/r/20221122161017.2426828-8-ardb@kernel.org
* | | | | Merge tag 'efi-next-for-v6.2' of ↵Linus Torvalds2022-12-1340-1564/+1494
|\ \ \ \ \ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi Pull EFI updates from Ard Biesheuvel: "Another fairly sizable pull request, by EFI subsystem standards. Most of the work was done by me, some of it in collaboration with the distro and bootloader folks (GRUB, systemd-boot), where the main focus has been on removing pointless per-arch differences in the way EFI boots a Linux kernel. - Refactor the zboot code so that it incorporates all the EFI stub logic, rather than calling the decompressed kernel as a EFI app. - Add support for initrd= command line option to x86 mixed mode. - Allow initrd= to be used with arbitrary EFI accessible file systems instead of just the one the kernel itself was loaded from. - Move some x86-only handling and manipulation of the EFI memory map into arch/x86, as it is not used anywhere else. - More flexible handling of any random seeds provided by the boot environment (i.e., systemd-boot) so that it becomes available much earlier during the boot. - Allow improved arch-agnostic EFI support in loaders, by setting a uniform baseline of supported features, and adding a generic magic number to the DOS/PE header. This should allow loaders such as GRUB or systemd-boot to reduce the amount of arch-specific handling substantially. - (arm64) Run EFI runtime services from a dedicated stack, and use it to recover from synchronous exceptions that might occur in the firmware code. - (arm64) Ensure that we don't allocate memory outside of the 48-bit addressable physical range. - Make EFI pstore record size configurable - Add support for decoding CXL specific CPER records" * tag 'efi-next-for-v6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi: (43 commits) arm64: efi: Recover from synchronous exceptions occurring in firmware arm64: efi: Execute runtime services from a dedicated stack arm64: efi: Limit allocations to 48-bit addressable physical region efi: Put Linux specific magic number in the DOS header efi: libstub: Always enable initrd command line loader and bump version efi: stub: use random seed from EFI variable efi: vars: prohibit reading random seed variables efi: random: combine bootloader provided RNG seed with RNG protocol output efi/cper, cxl: Decode CXL Error Log efi/cper, cxl: Decode CXL Protocol Error Section efi: libstub: fix efi_load_initrd_dev_path() kernel-doc comment efi: x86: Move EFI runtime map sysfs code to arch/x86 efi: runtime-maps: Clarify purpose and enable by default for kexec efi: pstore: Add module parameter for setting the record size efi: xen: Set EFI_PARAVIRT for Xen dom0 boot on all architectures efi: memmap: Move manipulation routines into x86 arch tree efi: memmap: Move EFI fake memmap support into x86 arch tree efi: libstub: Undeprecate the command line initrd loader efi: libstub: Add mixed mode support to command line initrd loader efi: libstub: Permit mixed mode return types other than efi_status_t ...
| * | | | | arm64: efi: Recover from synchronous exceptions occurring in firmwareArd Biesheuvel2022-12-081-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Unlike x86, which has machinery to deal with page faults that occur during the execution of EFI runtime services, arm64 has nothing like that, and a synchronous exception raised by firmware code brings down the whole system. With more EFI based systems appearing that were not built to run Linux (such as the Windows-on-ARM laptops based on Qualcomm SOCs), as well as the introduction of PRM (platform specific firmware routines that are callable just like EFI runtime services), we are more likely to run into issues of this sort, and it is much more likely that we can identify and work around such issues if they don't bring down the system entirely. Since we already use a EFI runtime services call wrapper in assembler, we can quite easily add some code that captures the execution state at the point where the call is made, allowing us to revert to this state and proceed execution if the call triggered a synchronous exception. Given that the kernel and the firmware don't share any data structures that could end up in an indeterminate state, we can happily continue running, as long as we mark the EFI runtime services as unavailable from that point on. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Acked-by: Catalin Marinas <catalin.marinas@arm.com>
| * | | | | arm64: efi: Limit allocations to 48-bit addressable physical regionArd Biesheuvel2022-12-075-3/+12
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The UEFI spec does not mention or reason about the configured size of the virtual address space at all, but it does mention that all memory should be identity mapped using a page size of 4 KiB. This means that a LPA2 capable system that has any system memory outside of the 48-bit addressable physical range and follows the spec to the letter may serve page allocation requests from regions of memory that the kernel cannot access unless it was built with LPA2 support and enables it at runtime. So let's ensure that all page allocations are limited to the 48-bit range. Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
| * | | | | Merge tag 'v6.1-rc8' into efi/nextArd Biesheuvel2022-12-071-8/+29
| |\| | | | | | | | | | | | | | | | | | | | | | Linux 6.1-rc8
| * | | | | efi: Put Linux specific magic number in the DOS headerArd Biesheuvel2022-12-051-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | GRUB currently relies on the magic number in the image header of ARM and arm64 EFI kernel images to decide whether or not the image in question is a bootable kernel. However, the purpose of the magic number is to identify the image as one that implements the bare metal boot protocol, and so GRUB, which only does EFI boot, is limited unnecessarily to booting images that could potentially be booted in a non-EFI manner as well. This is problematic for the new zboot decompressor image format, as it can only boot in EFI mode, and must therefore not use the bare metal boot magic number in its header. For this reason, the strict magic number was dropped from GRUB, to permit essentially any kind of EFI executable to be booted via the 'linux' command, blurring the line between the linux loader and the chainloader. So let's use the same field in the DOS header that RISC-V and arm64 already use for their 'bare metal' magic numbers to store a 'generic Linux kernel' magic number, which can be used to identify bootable kernel images in PE format which don't necessarily implement a bare metal boot protocol in the same binary. Note that, in the context of EFI, the MS-DOS header is only described in terms of the fields that it shares with the hybrid PE/COFF image format, (i.e., the MS-DOS EXE magic number at offset #0 and the PE header offset at byte offset #0x3c). Since we aim for compatibility with EFI only, and not with MS-DOS or MS-Windows, we can use the remaining space in the MS-DOS header however we want. Let's set the generic magic number for x86 images as well: existing bootloaders already have their own methods to identify x86 Linux images that can be booted in a non-EFI manner, and having the magic number in place there will ease any future transitions in loader implementations to merge the x86 and non-x86 EFI boot paths. Note that 32-bit ARM already uses the same location in the header for a different purpose, but the ARM support is already widely implemented and the EFI zboot decompressor is not available on ARM anyway, so we just disregard it here. Acked-by: Leif Lindholm <quic_llindhol@quicinc.com> Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com> Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
| * | | | | efi: libstub: Always enable initrd command line loader and bump versionArd Biesheuvel2022-12-012-17/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In preparation for setting a cross-architecture baseline for EFI boot support, remove the Kconfig option that permits the command line initrd loader to be disabled. Also, bump the minor version so that any image built with the new version can be identified as supporting this. Acked-by: Leif Lindholm <quic_llindhol@quicinc.com> Reviewed-by: Daniel Kiper <daniel.kiper@oracle.com> Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
| * | | | | efi: stub: use random seed from EFI variableJason A. Donenfeld2022-12-011-16/+52
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | EFI has a rather unique benefit that it has access to some limited non-volatile storage, where the kernel can store a random seed. Read that seed in EFISTUB and concatenate it with other seeds we wind up passing onward to the kernel in the configuration table. This is complementary to the current other two sources - previous bootloaders, and the EFI RNG protocol. Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> [ardb: check for non-NULL RNG protocol pointer, call GetVariable() without buffer first to obtain the size] Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
| * | | | | efi: random: combine bootloader provided RNG seed with RNG protocol outputArd Biesheuvel2022-11-183-8/+40
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Instead of blindly creating the EFI random seed configuration table if the RNG protocol is implemented and works, check whether such a EFI configuration table was provided by an earlier boot stage and if so, concatenate the existing and the new seeds, leaving it up to the core code to mix it in and credit it the way it sees fit. This can be used for, e.g., systemd-boot, to pass an additional seed to Linux in a way that can be consumed by the kernel very early. In that case, the following definitions should be used to pass the seed to the EFI stub: struct linux_efi_random_seed { u32 size; // of the 'seed' array in bytes u8 seed[]; }; The memory for the struct must be allocated as EFI_ACPI_RECLAIM_MEMORY pool memory, and the address of the struct in memory should be installed as a EFI configuration table using the following GUID: LINUX_EFI_RANDOM_SEED_TABLE_GUID 1ce1e5bc-7ceb-42f2-81e5-8aadf180f57b Note that doing so is safe even on kernels that were built without this patch applied, but the seed will simply be overwritten with a seed derived from the EFI RNG protocol, if available. The recommended seed size is 32 bytes, and seeds larger than 512 bytes are considered corrupted and ignored entirely. In order to preserve forward secrecy, seeds from previous bootloaders are memzero'd out, and in order to preserve memory, those older seeds are also freed from memory. Freeing from memory without first memzeroing is not safe to do, as it's possible that nothing else will ever overwrite those pages used by EFI. Reviewed-by: Jason A. Donenfeld <Jason@zx2c4.com> [ardb: incorporate Jason's followup changes to extend the maximum seed size on the consumer end, memzero() it and drop a needless printk] Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
| * | | | | efi/cper, cxl: Decode CXL Error LogSmita Koralahalli2022-11-181-0/+27
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Print the CXL Error Log field as found in CXL Protocol Error Section. The CXL RAS Capability structure will be reused by OS First Handling and the duplication/appropriate placement will be addressed eventually. Signed-off-by: Smita Koralahalli <Smita.KoralahalliChannabasappa@amd.com> Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
| * | | | | efi/cper, cxl: Decode CXL Protocol Error SectionSmita Koralahalli2022-11-184-1/+228
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Add support for decoding CXL Protocol Error Section as defined in UEFI 2.10 Section N.2.13. Do the section decoding in a new cper_cxl.c file. This new file will be used in the future for more CXL CPERs decode support. Add this to the existing UEFI_CPER config. Signed-off-by: Smita Koralahalli <Smita.KoralahalliChannabasappa@amd.com> Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
| * | | | | efi: libstub: fix efi_load_initrd_dev_path() kernel-doc commentJialin Zhang2022-11-181-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit f4dc7fffa987 ("efi: libstub: unify initrd loading between architectures") merge the first and the second parameters into a struct without updating the kernel-doc. Let's fix it. Signed-off-by: Jialin Zhang <zhangjialin11@huawei.com> Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
| * | | | | efi: x86: Move EFI runtime map sysfs code to arch/x86Ard Biesheuvel2022-11-184-209/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The EFI runtime map code is only wired up on x86, which is the only architecture that has a need for it in its implementation of kexec. So let's move this code under arch/x86 and drop all references to it from generic code. To ensure that the efi_runtime_map_init() is invoked at the appropriate time use a 'sync' subsys_initcall() that will be called right after the EFI initcall made from generic code where the original invocation of efi_runtime_map_init() resided. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Reviewed-by: Dave Young <dyoung@redhat.com>
| * | | | | efi: runtime-maps: Clarify purpose and enable by default for kexecArd Biesheuvel2022-11-181-6/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The current Kconfig logic for CONFIG_EFI_RUNTIME_MAPS does not convey that without it, a kexec kernel is not able to boot in EFI mode at all. So clarify this, and make the option only configurable via the menu system if CONFIG_EXPERT is set. Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Reviewed-by: Dave Young <dyoung@redhat.com>
| * | | | | efi: pstore: Add module parameter for setting the record sizeGuilherme G. Piccoli2022-11-181-6/+17
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | By default, the efi-pstore backend hardcode the UEFI variable size as 1024 bytes. The historical reasons for that were discussed by Ard in threads [0][1]: "there is some cargo cult from prehistoric EFI times going on here, it seems. Or maybe just misinterpretation of the maximum size for the variable *name* vs the variable itself.". "OVMF has OvmfPkg/OvmfPkgX64.dsc: gEfiMdeModulePkgTokenSpaceGuid.PcdMaxVariableSize|0x2000 OvmfPkg/OvmfPkgX64.dsc: gEfiMdeModulePkgTokenSpaceGuid.PcdMaxVariableSize|0x8400 where the first one is without secure boot and the second with secure boot. Interestingly, the default is gEfiMdeModulePkgTokenSpaceGuid.PcdMaxVariableSize|0x400 so this is probably where this 1k number comes from." With that, and since there is not such a limit in the UEFI spec, we have the confidence to hereby add a module parameter to enable advanced users to change the UEFI record size for efi-pstore data collection, this way allowing a much easier reading of the collected log, which wouldn't be scattered anymore among many small files. Through empirical analysis we observed that extreme low values (like 8 bytes) could eventually cause writing issues, so given that and the OVMF default discussed, we limited the minimum value to 1024 bytes, which also is still the default. [0] https://lore.kernel.org/lkml/CAMj1kXF4UyRMh2Y_KakeNBHvkHhTtavASTAxXinDO1rhPe_wYg@mail.gmail.com/ [1] https://lore.kernel.org/lkml/CAMj1kXFy-2KddGu+dgebAdU9v2sindxVoiHLWuVhqYw+R=kqng@mail.gmail.com/ Signed-off-by: Guilherme G. Piccoli <gpiccoli@igalia.com> Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
| * | | | | efi: xen: Set EFI_PARAVIRT for Xen dom0 boot on all architecturesArd Biesheuvel2022-11-182-3/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently, the EFI_PARAVIRT flag is only used by Xen dom0 boot on x86, even though other architectures also support pseudo-EFI boot, where the core kernel is invoked directly and provided with a set of data tables that resemble the ones constructed by the EFI stub, which never actually runs in that case. Let's fix this inconsistency, and always set this flag when booting dom0 via the EFI boot path. Note that Xen on x86 does not provide the EFI memory map in this case, whereas other architectures do, so move the associated EFI_PARAVIRT check into the x86 platform code. Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
| * | | | | efi: memmap: Move manipulation routines into x86 arch treeArd Biesheuvel2022-11-181-230/+10
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The EFI memory map is a description of the memory layout as provided by the firmware, and only x86 manipulates it in various different ways for its own memory bookkeeping. So let's move the memmap routines that are only used by x86 into the x86 arch tree. Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
| * | | | | efi: memmap: Move EFI fake memmap support into x86 arch treeArd Biesheuvel2022-11-185-235/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The EFI fake memmap support is specific to x86, which manipulates the EFI memory map in various different ways after receiving it from the EFI stub. On other architectures, we have managed to push back on this, and the EFI memory map is kept pristine. So let's move the fake memmap code into the x86 arch tree, where it arguably belongs. Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
| * | | | | efi: libstub: Undeprecate the command line initrd loaderArd Biesheuvel2022-11-181-5/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The initrd= command line loader can be useful for development, but it was limited to loading files from the same file system as the loaded kernel (and it didn't work on x86 mixed mode). As both issues have been fixed, and the initrd= can now be used with files residing on any simple file system exposed by the EFI firmware, let's permit it to be enabled on RISC-V and LoongArch, which did not support it up to this point. Note that LoadFile2 remains the preferred option, as it is much simpler to use and implement, but generic loaders (including the UEFI shell) may not implement this so there, initrd= can now be used as well (if enabled in the build) Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
| * | | | | efi: libstub: Add mixed mode support to command line initrd loaderArd Biesheuvel2022-11-183-43/+72
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Now that we have support for calling protocols that need additional marshalling for mixed mode, wire up the initrd command line loader. Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
| * | | | | efi: libstub: Permit mixed mode return types other than efi_status_tArd Biesheuvel2022-11-181-6/+14
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Rework the EFI stub macro wrappers around protocol method calls and other indirect calls in order to allow return types other than efi_status_t. This means the widening should be conditional on whether or not the return type is efi_status_t, and should be omitted otherwise. Also, switch to _Generic() to implement the type based compile time conditionals, which is more concise, and distinguishes between efi_status_t and u64 properly. Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
| * | | | | efi: libstub: Implement devicepath support for initrd commandline loaderArd Biesheuvel2022-11-182-12/+81
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently, the initrd= command line option to the EFI stub only supports loading files that reside on the same volume as the loaded image, which is not workable for loaders like GRUB that don't even implement the volume abstraction (EFI_SIMPLE_FILE_SYSTEM_PROTOCOL), and load the kernel from an anonymous buffer in memory. For this reason, another method was devised that relies on the LoadFile2 protocol. However, the command line loader is rather useful when using the UEFI shell or other generic loaders that have no awareness of Linux specific protocols so let's make it a bit more flexible, by permitting textual device paths to be provided to initrd= as well, provided that they refer to a file hosted on a EFI_SIMPLE_FILE_SYSTEM_PROTOCOL volume. E.g., initrd=PciRoot(0x0)/Pci(0x3,0x0)/HD(1,MBR,0xBE1AFDFA,0x3F,0xFBFC1)/rootfs.cpio.gz Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
| * | | | | efi: libstub: use EFI_LOADER_CODE region when moving the kernel in memoryArd Biesheuvel2022-11-185-9/+16
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The EFI spec is not very clear about which permissions are being given when allocating pages of a certain type. However, it is quite obvious that EFI_LOADER_CODE is more likely to permit execution than EFI_LOADER_DATA, which becomes relevant once we permit booting the kernel proper with the firmware's 1:1 mapping still active. Ostensibly, recent systems such as the Surface Pro X grant executable permissions to EFI_LOADER_CODE regions but not EFI_LOADER_DATA regions. Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
| * | | | | Merge tag 'efi-zboot-direct-for-v6.2' into efi/nextArd Biesheuvel2022-11-1823-777/+925
| |\ \ \ \ \
| | * | | | | efi: libstub: Merge zboot decompressor with the ordinary stubArd Biesheuvel2022-11-092-228/+74
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Even though our EFI zboot decompressor is pedantically spec compliant and idiomatic for EFI image loaders, calling LoadImage() and StartImage() for the nested image is a bit of a burden. Not only does it create workflow issues for the distros (as both the inner and outer PE/COFF images need to be signed for secure boot), it also copies the image around in memory numerous times: - first, the image is decompressed into a buffer; - the buffer is consumed by LoadImage(), which copies the sections into a newly allocated memory region to hold the executable image; - once the EFI stub is invoked by StartImage(), it will also move the image in memory in case of KASLR, mirrored memory or if the image must execute from a certain a priori defined address. There are only two EFI spec compliant ways to load code into memory and execute it: - use LoadImage() and StartImage(), - call ExitBootServices() and take ownership of the entire system, after which anything goes. Given that the EFI zboot decompressor always invokes the EFI stub, and given that both are built from the same set of objects, let's merge the two, so that we can avoid LoadImage()/StartImage but still load our image into memory without breaking the above rules. This also means we can decompress the image directly into its final location, which could be randomized or meet other platform specific constraints that LoadImage() does not know how to adhere to. It also means that, even if the encapsulated image still has the EFI stub incorporated as well, it does not need to be signed for secure boot when wrapping it in the EFI zboot decompressor. In the future, we might decide to retire the EFI stub attached to the decompressed image, but for the time being, they can happily coexist. Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
| | * | | | | efi/loongarch: libstub: Split off kernel image relocation for builtin stubArd Biesheuvel2022-11-093-67/+82
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The LoongArch build of the EFI stub is part of the core kernel image, and therefore accesses section markers directly when it needs to figure out the size of the various section. The zboot decompressor does not have access to those symbols, but doesn't really need that either. So let's move handle_kernel_image() into a separate file (or rather, move everything else into a separate file) so that the zboot build does not pull in unused code that links to symbols that it does not define. Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
| | * | | | | efi/loongarch: Don't jump to kernel entry via the old imageArd Biesheuvel2022-11-091-9/+24
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently, the EFI entry code for LoongArch is set up to copy the executable image to the preferred offset, but instead of branching directly into that image, it branches to the local copy of kernel_entry, and relies on the logic in that function to switch to the link time address instead. This is a bit sloppy, and not something we can support once we merge the EFI decompressor with the EFI stub. So let's clean this up a bit, by adding a helper that computes the offset of kernel_entry from the start of the image, and simply adding the result to VMLINUX_LOAD_ADDRESS. And considering that we cannot execute from anywhere else anyway, let's avoid efi_relocate_kernel() and just allocate the pages instead. Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
| | * | | | | efi/arm64: libstub: Split off kernel image relocation for builtin stubArd Biesheuvel2022-11-095-29/+76
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The arm64 build of the EFI stub is part of the core kernel image, and therefore accesses section markers directly when it needs to figure out the size of the various section. The zboot decompressor does not have access to those symbols, but doesn't really need that either. So let's move handle_kernel_image() into a separate file (or rather, move everything else into a separate file) so that the zboot build does not pull in unused code that links to symbols that it does not define. While at it, introduce a helper routine that the generic zboot loader will need to invoke after decompressing the image but before invoking it, to ensure that the I-side view of memory is consistent. Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
| | * | | | | efi/riscv: libstub: Split off kernel image relocation for builtin stubArd Biesheuvel2022-11-093-75/+106
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The RISC-V build of the EFI stub is part of the core kernel image, and therefore accesses section markers directly when it needs to figure out the size of the various section. The zboot decompressor does not have access to those symbols, but doesn't really need that either. So let's move handle_kernel_image() into a separate file (or rather, move everything else into a separate file) so that the zboot build does not pull in unused code that links to symbols that it does not define. Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
| | * | | | | efi: libstub: Factor out min alignment and preferred kernel load addressArd Biesheuvel2022-11-093-23/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Factor out the expressions that describe the preferred placement of the loaded image as well as the minimum alignment so we can reuse them in the decompressor. Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
| | * | | | | efi: libstub: Add image code and data size to the zimage metadataArd Biesheuvel2022-11-092-13/+11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In order to be able to switch from LoadImage() [which treats the supplied PE/COFF image as file input only, and reconstructs the memory image based on the section descriptors] to a mode where we allocate the memory directly, and invoke the image in place, we need to now how much memory to allocate beyond the end of the image. So copy this information from the payload's PE/COFF header to the end of the compressed version of the payload, so that the decompressor app can access it before performing the decompression itself. We'll also need to size of the code region once we switch arm64 to jumping to the kernel proper with MMU and caches enabled, so let's capture that information as well. Note that SizeOfCode does not account for the header, so we need SizeOfHeaders as well. Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
| | * | | | | efi: libstub: Factor out EFI stub entrypoint into separate fileArd Biesheuvel2022-11-094-64/+100
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In preparation for allowing the EFI zboot decompressor to reuse most of the EFI stub machinery, factor out the actual EFI PE/COFF entrypoint into a separate file. Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
| | * | | | | efi: libstub: Provide local implementations of strrchr() and memchr()Ard Biesheuvel2022-11-092-1/+64
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Clone the implementations of strrchr() and memchr() in lib/string.c so we can use them in the standalone zboot decompressor app. These routines are used by the FDT handling code. Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
| | * | | | | efi: libstub: Move screen_info handling to common codeArd Biesheuvel2022-11-097-41/+93
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently, arm64, RISC-V and LoongArch rely on the fact that struct screen_info can be accessed directly, due to the fact that the EFI stub and the core kernel are part of the same image. This will change after a future patch, so let's ensure that the screen_info handling is able to deal with this, by adopting the arm32 approach of passing it as a configuration table. While at it, switch to ACPI reclaim memory to hold the screen_info data, which is more appropriate for this kind of allocation. Signed-off-by: Ard Biesheuvel <ardb@kernel.org>