| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
Remove the CXL_KERNEL_API and CXL_EEH Kconfig options, as they were only
needed to coordinate the merging of the cxlflash driver. Also remove the
stub implementation of cxl_perst_reloads_same_image() in cxlflash which is
only used if CXL_EEH isn't defined (i.e. never).
Suggested-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Acked-by: Matthew R. Ochs <mrochs@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
Add a new API, cxl_check_and_switch_mode() to allow for switching of
bi-modal CAPI cards, such as the Mellanox CX-4 network card.
When a driver requests to switch a card to CAPI mode, use PCI hotplug
infrastructure to remove all PCI devices underneath the slot. We then write
an updated mode control register to the CAPI VSEC, hot reset the card, and
reprobe the card.
As the card may present a different set of PCI devices after the mode
switch, use the infrastructure provided by the pnv_php driver and the OPAL
PCI slot management facilities to ensure that:
* the old devices are removed from both the OPAL and Linux device trees
* the new devices are probed by OPAL and added to the OPAL device tree
* the new devices are added to the Linux device tree and probed through
the regular PCI device probe path
As such, introduce a new option, CONFIG_CXL_BIMODAL, with a dependency on
the pnv_php driver.
Refactor existing code that touches the mode control register in the
regular single mode case into a new function, setup_cxl_protocol_area().
Co-authored-by: Ian Munsie <imunsie@au1.ibm.com>
Cc: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Signed-off-by: Ian Munsie <imunsie@au1.ibm.com>
Reviewed-by: Gavin Shan <gwshan@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
The CX4 card cannot cope with a context with PE=0 due to a hardware
limitation, resulting in:
[ 34.166577] command failed, status limits exceeded(0x8), syndrome 0x5a7939
[ 34.166580] mlx5_core 0000:01:00.1: Failed allocating uar, aborting
Since the kernel API allocates a default context very early during
device init that will almost certainly get Process Element ID 0 there is
no easy way for us to extend the API to allow the Mellanox to inform us
of this limitation ahead of time.
Instead, work around the issue by extending the XSL structure to include
a minimum PE to allocate. Although the bug is not in the XSL, it is the
easiest place to work around this limitation given that the CX4 is
currently the only card that uses an XSL.
Signed-off-by: Ian Munsie <imunsie@au1.ibm.com>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Reviewed-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
The Mellanox CX4 in cxl mode uses a hybrid interrupt model, where
interrupts are routed from the networking hardware to the XSL using the
MSIX table, and from there will be transformed back into an MSIX
interrupt using the cxl style interrupts (i.e. using IVTE entries and
ranges to map a PE and AFU interrupt number to an MSIX address).
We want to hide the implementation details of cxl interrupts as much as
possible. To this end, we use a special version of the MSI setup &
teardown routines in the PHB while in cxl mode to allocate the cxl
interrupts and configure the IVTE entries in the process element.
This function does not configure the MSIX table - the CX4 card uses a
custom format in that table and it would not be appropriate to fill that
out in generic code. The rest of the functionality is similar to the
"Full MSI-X mode" described in the CAIA, and this could be easily
extended to support other adapters that use that mode in the future.
The interrupts will be associated with the default context. If the
maximum number of interrupts per context has been limited (e.g. by the
mlx5 driver), it will automatically allocate additional kernel contexts
to associate extra interrupts as required. These contexts will be
started using the same WED that was used to start the default context.
Signed-off-by: Ian Munsie <imunsie@au1.ibm.com>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
The Mellanox CX4 has a hardware limitation where only 4 bits of the
AFU interrupt number can be passed to the XSL when sending an interrupt,
limiting it to only 15 interrupts per context (AFU interrupt number 0 is
invalid).
In order to overcome this, we will allocate additional contexts linked
to the default context as extra address space for the extra interrupts -
this will be implemented in the next patch.
This patch adds the preliminary support to allow this, by way of adding
a linked list in the context structure that we use to keep track of the
contexts dedicated to interrupts, and an API to simultaneously iterate
over the related context structures, AFU interrupt numbers and hardware
interrupt numbers. The point of using a single API to iterate these is
to hide some of the details of the iteration from external code, and to
reduce the number of APIs that need to be exported via base.c to allow
built in code to call.
Signed-off-by: Ian Munsie <imunsie@au1.ibm.com>
Reviewed-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
These APIs will be used by the Mellanox CX4 support. While they function
standalone to configure existing behaviour, their primary purpose is to
allow the Mellanox driver to inform the cxl driver of a hardware
limitation, which will be used in a future patch.
Signed-off-by: Ian Munsie <imunsie@au1.ibm.com>
Reviewed-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
This hooks up support for using the kernel API with a real PHB. After
the AFU initialisation has completed it calls into the PHB code to pass
it the AFU that will be used by other peer physical functions on the
adapter.
The cxl_pci_to_afu API is extended to work with peer PCI devices,
retrieving the peer AFU from the PHB. This API may also now return an
error if it is called on a PCI device that is not associated with either
a cxl vPHB or a peer PCI device to an AFU, and this error is propagated
down.
Signed-off-by: Ian Munsie <imunsie@au1.ibm.com>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
The vPHB model of the cxl kernel API is a hierarchy where the AFU is
represented by the vPHB, and it's AFU configuration records are exposed
as functions under that vPHB. If there are no AFU configuration records
we will create a vPHB with nothing under it, which is a waste of
resources and will opt us into EEH handling despite not having anything
special to handle.
This also does not make sense for cards using the peer model of the cxl
kernel API, where the other functions of the device are exposed via
additional peer physical functions rather than AFU configuration
records. This model will also not work with the existing EEH handling in
the cxl driver, as that is designed around the vPHB model.
Skip creating the vPHB for AFUs without any AFU configuration records,
and opt out of EEH handling for them.
Signed-off-by: Ian Munsie <imunsie@au1.ibm.com>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
The cxl kernel API has a concept of a default context associated with
each PCI device under the virtual PHB. The Mellanox CX4 will also use
the cxl kernel API, but it does not use a virtual PHB - rather, the AFU
appears as a physical function as a peer to the networking functions.
In order to allow the kernel API to work with those networking
functions, we will need to associate a default context with them as
well. To this end, refactor the corresponding code to do this in vphb.c
and export it so that it can be called from the PHB code.
Signed-off-by: Ian Munsie <imunsie@au1.ibm.com>
Reviewed-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
The Mellanox CX4 uses a model where the AFU is one physical function of
the device, and is used by other peer physical functions of the same
device. This will require those other devices to grab a reference on the
AFU when they are initialised to make sure that it does not go away
during their lifetime.
Move the AFU refcount functions to base.c so they can be called from
the PHB code.
Signed-off-by: Ian Munsie <imunsie@au1.ibm.com>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Reviewed-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
Devices that use CAPP DMA mode (such as the Mellanox CX4) require bus
master to be enabled in order for the CAPI traffic to flow. This should
be harmless to enable for other cxl devices, so unconditionally enable
it in the adapter init flow.
Signed-off-by: Ian Munsie <imunsie@au1.ibm.com>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Reviewed-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
This extends the check that the adapter is in a CAPI capable slot so
that it may be called by external users in the kernel API. This will be
used by the upcoming Mellanox CX4 support, which needs to know ahead of
time if the card can be switched to cxl mode so that it can leave it in
PCI mode if it is not.
This API takes a parameter to check if CAPP DMA mode is supported, which
it currently only allows on P8NVL systems, since that mode currently has
issues accessing memory < 4GB on P8, and we cannot realistically avoid
that.
This API does not currently check if a CAPP unit is available (i.e. not
already assigned to another PHB) on P8. Doing so would be racy since it
is assigned on a first come first serve basis, and so long as CAPP DMA
mode is not supported on P8 we don't need this, since the only
anticipated user of this API requires CAPP DMA mode.
Cc: Philippe Bergheaud <felix@linux.vnet.ibm.com>
Signed-off-by: Ian Munsie <imunsie@au1.ibm.com>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Reviewed-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
Use for_each_compatible_node() macro instead of open coding it.
Generated by Coccinelle.
Signed-off-by: Wei Yongjun <yongjun_wei@trendmicro.com.cn>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
One should not attempt to switch a PHB into CAPI mode if there is
a switch between the PHB and the adapter. This patch modifies the
cxl driver to ignore CAPI adapters misplaced in switched slots.
Signed-off-by: Philippe Bergheaud <felix@linux.vnet.ibm.com>
Reviewed-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
The Kconfig/Makefile currently controlling compilation of this code is:
drivers/misc/cxl/Kconfig:config CXL_BASE
drivers/misc/cxl/Kconfig: bool
drivers/misc/cxl/Makefile:obj-$(CONFIG_CXL_BASE) += base.o
...meaning that it currently is not being built as a module by anyone.
Lets convert the one module_init into device_initcall so that
when reading the driver it more clear that it is builtin-only.
Since module_init translates to device_initcall in the non-modular
case, the init ordering remains unchanged with this commit.
We don't replace module.h with init.h since the file is doing
other modular stuff (module_get/put) even though it is built-in.
Cc: Ian Munsie <imunsie@au1.ibm.com>
Cc: Michael Neuling <mikey@neuling.org>
Cc: linuxppc-dev@lists.ozlabs.org
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
The PSL Slice Error Register (PSL_SERR_An) reports implementation
dependent AFU errors, in the form of a bitmap. The PSL_SERR_An
register content is printed in the form of hex dump debug message.
This patch decodes the PSL_ERR_An register contents, and prints a
specific error message for each possible error bit. It also dumps
the secondary registers AFU_ERR_An and PSL_DSISR_An, that may
contain extra debug information.
This patch also removes the large WARN message that used to report
the cxl slice error interrupt, and replaces it by a short informative
message, that draws attention to AFU implementation errors.
Signed-off-by: Philippe Bergheaud <felix@linux.vnet.ibm.com>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
If a kernel context is initialised and does not have any AFU interrupts
allocated it will cause a NULL pointer dereference when the context is
detached since the irq_names list will not have been initialised.
Move the initialisation of the irq_names list into the cxl_context_init
routine so that it will be valid for the entire lifetime of the context
and will not cause a NULL pointer dereference.
Signed-off-by: Ian Munsie <imunsie@au1.ibm.com>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
An issue was noted in our debug logs where the XSL would leave the RA
bit asserted after an AFU reset operation, which would effectively
prevent further AFU reset operations from working.
Workaround the issue by clearing the RA bit with an MMIO write if it is
still asserted after any AFU control operation.
Signed-off-by: Ian Munsie <imunsie@au1.ibm.com>
Reviewed-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
The AFU disable operation has a bug where it will not clear the enable
bit and therefore will have no effect. To date this has likely been
masked by fact that we perform an AFU reset before the disable, which
also has the effect of clearing the enable bit, making the following
disable operation effectively a noop on most hardware. This patch
modifies the afu_control function to take a parameter to clear from the
AFU control register so that the disable operation can clear the
appropriate bit.
This bug was uncovered on the Mellanox CX4, which uses an XSL rather
than a PSL. On the XSL the reset operation will not complete while the
AFU is enabled, meaning the enable bit was still set at the start of the
disable and as a result this bug was hit and the disable also timed out.
Because of this difference in behaviour between the PSL and XSL, this
patch now makes the reset dependent on the card using a PSL to avoid
waiting for a timeout on the XSL. It is entirely possible that we may be
able to drop the reset altogether if it turns out we only ever needed it
due to this bug - however I am not willing to drop it without further
regression testing and have added comments to the code explaining the
background.
This also fixes a small issue where the AFU_Cntl register was read
outside of the lock that protects it.
Signed-off-by: Ian Munsie <imunsie@au1.ibm.com>
Reviewed-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
The Scheduled Process Area is allocated dynamically with enough pages to
fit at least as many processes as the AFU descriptor indicated. Since
the calculation is non-trivial, it does this by calculating how many
processes could fit in an allocation of a given order, and increasing
that order until it can fit enough processes or hits the maximum
supported size.
Currently, it will start this search using a SPA of 2 pages instead of
1. This can waste a page of memory if the AFU's maximum number of
supported processes was small enough to fit in one page.
Fix the algorithm to start the search at 1 page.
Signed-off-by: Ian Munsie <imunsie@au1.ibm.com>
Reviewed-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
If the AFU descriptor of an AFU directed AFU indicates that it supports
0 maximum processes, we will accept that value and attempt to use it.
The SPA will still be allocated (with 2 pages due to another minor bug
and room for 958 processes), and when a context is allocated we will
pass the value of 0 to idr_alloc as the maximum. However, idr_alloc will
treat that as meaning no maximum and will allocate a context number and
we return a valid context.
Conceivably, this could lead to a buffer overflow of the SPA if more
than 958 contexts were allocated, however this is mitigated by the fact
that there are no known AFUs in the wild with a bogus AFU descriptor
like this, and that only the root user is allowed to flash an AFU image
to a card.
Add a check when validating the AFU descriptor to reject any with 0
maximum processes.
We do still allow a dedicated process only AFU to indicate that it
supports 0 contexts even though that is forbidden in the architecture,
as in that case we ignore the value and use 1 instead. This is just on
the off-chance that such a dedicated process AFU may exist (not that I
am aware of any), since their developers are less likely to have cared
about this value at all.
Signed-off-by: Ian Munsie <imunsie@au1.ibm.com>
Reviewed-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
This provides AFU drivers a means to associate private data with a cxl
context. This is particularly intended for make the new callbacks for
driver specific events easier for AFU drivers to use, as they can easily
get back to any private data structures they may use.
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Philippe Bergheaud <felix@linux.vnet.ibm.com
Reviewed-by: Matthew R. Ochs <mrochs@linux.vnet.ibm.com>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
This adds an afu_driver_ops structure with fetch_event() and
event_delivered() callbacks. An AFU driver such as cxlflash can fill
this out and associate it with a context to enable passing custom AFU
specific events to userspace.
This also adds a new kernel API function cxl_context_pending_events(),
that the AFU driver can use to notify the cxl driver that new specific
events are ready to be delivered, and wake up anyone waiting on the
context wait queue.
The current count of AFU driver specific events is stored in the field
afu_driver_events of the context structure.
The cxl driver checks the afu_driver_events count during poll, select,
read, etc. calls to check if an AFU driver specific event is pending,
and calls fetch_event() to obtain and deliver that event. This way, the
cxl driver takes care of all the usual locking semantics around these
calls and handles all the generic cxl events, so that the AFU driver
only needs to worry about it's own events.
fetch_event() return a struct cxl_event_afu_driver_reserved, allocated
by the AFU driver, and filled in with the specific event information and
size. Total event size (header + data) should not be greater than
CXL_READ_MIN_SIZE (4K).
Th cxl driver prepends an appropriate cxl event header, copies the event
to userspace, and finally calls event_delivered() to return the status of
the operation to the AFU driver. The event is identified by the context
and cxl_event_afu_driver_reserved pointers.
Since AFU drivers provide their own means for userspace to obtain the
AFU file descriptor (i.e. cxlflash uses an ioctl on their scsi file
descriptor to obtain the AFU file descriptor) and the generic cxl driver
will never use this event, the ABI of the event is up to each individual
AFU driver.
Signed-off-by: Philippe Bergheaud <felix@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
On bare-metal, when a device is attached to the cxl card, lsvpd shows
a location code such as (with cxlflash):
# lsvpd -l sg22
...
*YL U78CB.001.WZS0073-P1-C33-B0-T0-L0
which makes it hard to easily identify the cxl adapter owning the
flash device, since in this example C33 refers to a P8 processor.
lsvpd looks in the parent devices until it finds a location code, so the
device node for the vPHB ends up being used.
By reusing the device node of the adapter for the vPHB, lsvpd shows:
# lsvpd -l sg16
...
*YL U78C9.001.WZS09XA-P1-C7-B1-T0-L3
where C7 is the PCI slot of the cxl adapter.
On powerVM, the vPHB was already using the adapter device node, so
there's no change there.
Tested by cxlflash on bare-metal and powerVM.
Signed-off-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Reviewed-by: Matthew R. Ochs <mrochs@linux.vnet.ibm.com>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
This adds support for using CAPP DMA mode, which is required for XSL
based cards such as the Mellanox CX4 to function.
This is currently an RFC as it depends on the corresponding support to
be merged into skiboot first, which was submitted here:
http://patchwork.ozlabs.org/patch/625582/
In the event that the skiboot on the system does not have the above
support, it will indicate as such in the kernel log and abort the init
process.
Signed-off-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
The XSL (Translation Service Layer) is a stripped down version of the
PSL (Power Service Layer) used in some cards such as the Mellanox CX4.
Like the PSL, it implements the CAIA architecture, but has a number of
differences, mostly in it's implementation dependent registers. This
adds an ops structure to abstract these differences to bring initial
support for XSL CAPI devices.
The XSL does not implement the optional architected SERR register,
however while it treats it as a reserved register and should work with
no special treatment, attempting to access it will cause the XSL_FEC
(First Error Capture) register to be filled out, preventing it from
capturing any subsequent errors. Therefore, this patch also prevents the
kernel from trying to set up the SERR register so that the FEC register
may still be useful, and to save one interrupt.
The XSL also uses a special DMA cxl mode, which uses a slightly
different init sequence for the CAPP and PHB. The kernel support for
this will be in a future patch once the corresponding support has been
merged into skiboot.
Co-authored-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
In the kernel API, it is possible to attempt to allocate AFU interrupts
after already starting a context. Since the process element structure
used by the hardware is only filled out at the time the context is
started, it will not be updated with the interrupt numbers that have
just been allocated and therefore AFU interrupts will not work unless
they were allocated prior to starting the context.
This can present some difficulties as each CAPI enabled PCI device in
the kernel API has a default context, which may need to be started very
early to enable translations, potentially before interrupts can easily
be set up.
This patch makes the API more flexible to allow interrupts to be
allocated after a context has already been started and takes care of
updating the PE structure used by the hardware and notifying it to
discard any cached copy it may have.
The update is currently performed via a terminate/remove/add sequence.
This is necessary on some hardware such as the XSL that does not
properly support the update LLCMD.
Note that this is only supported on powernv at present - attempting to
perform this ordering on PowerVM will raise a warning.
Signed-off-by: Ian Munsie <imunsie@au1.ibm.com>
Reviewed-by: Frederic Barrat <fbarrat@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
| |/ / /
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Make a couple more variables static. Found by sparse.
Signed-off-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Reviewed-by: fbarrat@linux.vnet.ibm.com
Reviewed-by: Matthew R. Ochs <mrochs@linux.vnet.ibm.com>
Acked-by: Ian Munsie <imunsie@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|\ \ \ \
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/wsa/linux
Pull i2c updates from Wolfram Sang:
"Here is the I2C pull request for 4.8:
- the core and i801 driver gained support for SMBus Host Notify
- core support for more than one address in DT
- i2c_add_adapter() has now better error messages. We can remove all
error messages from drivers calling it as a next step.
- bigger updates to rk3x driver to support rk3399 SoC
- the at24 eeprom driver got refactored and can now read special
variants with unique serials or fixed MAC addresses.
The rest is regular driver updates and bugfixes"
* 'i2c/for-4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/wsa/linux: (66 commits)
i2c: i801: use IS_ENABLED() instead of checking for built-in or module
Documentation: i2c: slave: give proper example for pm usage
Documentation: i2c: slave: describe buffer problems a bit better
i2c: bcm2835: Don't complain on -EPROBE_DEFER from getting our clock
i2c: i2c-smbus: drop useless stubs
i2c: efm32: fix a failure path in efm32_i2c_probe()
Revert "i2c: core: Cleanup I2C ACPI namespace"
Revert "i2c: core: Add function for finding the bus speed from ACPI"
i2c: Update the description of I2C_SMBUS
i2c: i2c-smbus: fix i2c_handle_smbus_host_notify documentation
eeprom: at24: tweak the loop_until_timeout() macro
eeprom: at24: add support for at24mac series
eeprom: at24: support reading the serial number for 24csxx
eeprom: at24: platform_data: use BIT() macro
eeprom: at24: split at24_eeprom_write() into specialized functions
eeprom: at24: split at24_eeprom_read() into specialized functions
eeprom: at24: hide the read/write loop behind a macro
eeprom: at24: call read/write functions via function pointers
eeprom: at24: coding style fixes
eeprom: at24: move at24_read() below at24_eeprom_write()
...
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
loop_until_timeout() replaced a do {} while loop in the at24 driver
with a for loop which, under certain circumstances (such as heavy load
or low value of the write_timeout argument), can lead to the code in
the loop never being executed.
Make sure that at least one iteration of the code enclosed within
loop_until_timeout() is always executed.
Suggested-by: Wolfram Sang <wsa@the-dreams.de>
Signed-off-by: Bartosz Golaszewski <bgolaszewski@baylibre.com>
Signed-off-by: Wolfram Sang <wsa@the-dreams.de>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
Add a new read function to the at24 driver allowing to retrieve the
factory-programmed mac address embedded in chips from the at24mac
family.
These chips can be instantiated similarily to the at24cs family,
except that there's no way of having access to both the serial number
and the mac address at the same time - the user must instantiate
either an at24cs or at24mac device as both special memory areas are
accessible on the same slave address.
Signed-off-by: Bartosz Golaszewski <bgolaszewski@baylibre.com>
Signed-off-by: Wolfram Sang <wsa@the-dreams.de>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
The chips from the at24cs family have two memory areas - a regular
read-write block and a read-only area containing the serial number.
The latter is visible on a different slave address (the address of the
rw memory block + 0x08). In order to access both blocks the user needs
to instantiate a regular at24c device for the rw block address and a
corresponding at24cs device on the serial number block address.
Add a function that allows to access the serial number and assign it
to at24->read_func if the chip allows serial number read operations
and the driver was passed the relevant flag for this device.
Signed-off-by: Bartosz Golaszewski <bgolaszewski@baylibre.com>
Signed-off-by: Wolfram Sang <wsa@the-dreams.de>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
Split at24_eeprom_write() into three smaller functions - one for the
i2c operations and two for the smbus extensions (separate routines for
block and byte transfers). Assign them in at24_probe() depending on
the bus capabilities.
Also: in order to avoid duplications move code adjusting the count
argument into a separate function and use it for i2c and smbus block
writes (no need for a roll-over for byte writes as we're always
writing one byte).
Signed-off-by: Bartosz Golaszewski <bgolaszewski@baylibre.com>
Signed-off-by: Wolfram Sang <wsa@the-dreams.de>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
Split at24_eeprom_read() into two smaller functions - one for the
i2c operations and one for the smbus extensions. Assign them in
at24_probe() depending on the bus capabilities.
Also: in order to avoid duplications move the comments related to
offset calculations above the at24_translate_offset() routine.
Signed-off-by: Bartosz Golaszewski <bgolaszewski@baylibre.com>
Signed-off-by: Wolfram Sang <wsa@the-dreams.de>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
Before splitting the read/write routines into smaller, more
specialized functions, unduplicate some code in advance.
Use a 'for' loop instead of 'do while' when waiting for the previous
write to complete and hide it behind a macro.
Signed-off-by: Bartosz Golaszewski <bgolaszewski@baylibre.com>
Signed-off-by: Wolfram Sang <wsa@the-dreams.de>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
The first step in simplifying the read and write functions is to call
them via function pointers stored in at24_data. When we eventually
split the routines into smaller ones (depending on whether they use
smbus or i2c operations) we'll simply assign them to said pointers
instead of checking the flags at runtime every time we read/write.
Signed-off-by: Bartosz Golaszewski <bgolaszewski@baylibre.com>
Signed-off-by: Wolfram Sang <wsa@the-dreams.de>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
Align the arguments in broken lines with the arguments list's opening
brackets and make checkpatch.pl happy by converting 'unsigned' into
'unsigned int'.
Signed-off-by: Bartosz Golaszewski <bgolaszewski@baylibre.com>
Signed-off-by: Wolfram Sang <wsa@the-dreams.de>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
In preparation for splitting at24_eeprom_write() & at24_eeprom_read()
into smaller, specialized routines move at24_read() below, so that it
won't be intertwined with the low-level EEPROM accessors.
Signed-off-by: Bartosz Golaszewski <bgolaszewski@baylibre.com>
Signed-off-by: Wolfram Sang <wsa@the-dreams.de>
|
| |/ / /
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
As part of the preparation for introducing support for more chips,
improve the readability of the device table by separating columns
with tabs.
Signed-off-by: Bartosz Golaszewski <bgolaszewski@baylibre.com>
Signed-off-by: Wolfram Sang <wsa@the-dreams.de>
|
|\ \ \ \
| |_|_|/
|/| | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Pull networking updates from David Miller:
1) Unified UDP encapsulation offload methods for drivers, from
Alexander Duyck.
2) Make DSA binding more sane, from Andrew Lunn.
3) Support QCA9888 chips in ath10k, from Anilkumar Kolli.
4) Several workqueue usage cleanups, from Bhaktipriya Shridhar.
5) Add XDP (eXpress Data Path), essentially running BPF programs on RX
packets as soon as the device sees them, with the option to mirror
the packet on TX via the same interface. From Brenden Blanco and
others.
6) Allow qdisc/class stats dumps to run lockless, from Eric Dumazet.
7) Add VLAN support to b53 and bcm_sf2, from Florian Fainelli.
8) Simplify netlink conntrack entry layout, from Florian Westphal.
9) Add ipv4 forwarding support to mlxsw spectrum driver, from Ido
Schimmel, Yotam Gigi, and Jiri Pirko.
10) Add SKB array infrastructure and convert tun and macvtap over to it.
From Michael S Tsirkin and Jason Wang.
11) Support qdisc packet injection in pktgen, from John Fastabend.
12) Add neighbour monitoring framework to TIPC, from Jon Paul Maloy.
13) Add NV congestion control support to TCP, from Lawrence Brakmo.
14) Add GSO support to SCTP, from Marcelo Ricardo Leitner.
15) Allow GRO and RPS to function on macsec devices, from Paolo Abeni.
16) Support MPLS over IPV4, from Simon Horman.
* git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (1622 commits)
xgene: Fix build warning with ACPI disabled.
be2net: perform temperature query in adapter regardless of its interface state
l2tp: Correctly return -EBADF from pppol2tp_getname.
net/mlx5_core/health: Remove deprecated create_singlethread_workqueue
net: ipmr/ip6mr: update lastuse on entry change
macsec: ensure rx_sa is set when validation is disabled
tipc: dump monitor attributes
tipc: add a function to get the bearer name
tipc: get monitor threshold for the cluster
tipc: make cluster size threshold for monitoring configurable
tipc: introduce constants for tipc address validation
net: neigh: disallow transition to NUD_STALE if lladdr is unchanged in neigh_update()
MAINTAINERS: xgene: Add driver and documentation path
Documentation: dtb: xgene: Add MDIO node
dtb: xgene: Add MDIO node
drivers: net: xgene: ethtool: Use phy_ethtool_gset and sset
drivers: net: xgene: Use exported functions
drivers: net: xgene: Enable MDIO driver
drivers: net: xgene: Add backward compatibility
drivers: net: phy: xgene: Add MDIO driver
...
|
| | |/
| |/|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
On mips and parisc:
drivers/bluetooth/btwilink.c: In function 'ti_st_open':
drivers/bluetooth/btwilink.c:174:21: warning: overflow in implicit constant conversion [-Woverflow]
hst->reg_status = -EINPROGRESS;
drivers/nfc/nfcwilink.c: In function 'nfcwilink_open':
drivers/nfc/nfcwilink.c:396:31: warning: overflow in implicit constant conversion [-Woverflow]
drv->st_register_cb_status = -EINPROGRESS;
There are actually two issues:
1. Whether "char" is signed or unsigned depends on the architecture.
As the completion callback data is used to pass a (negative) error
code, it should always be signed.
2. EINPROGRESS is 150 on mips, 245 on parisc.
Hence -EINPROGRESS doesn't fit in a signed 8-bit number.
Change the callback status from "char" to "int" to fix these.
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Mauro Carvalho Chehab <mchehab@s-opensource.com>
Acked-by: Samuel Ortiz <sameo@linux.intel.com>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
When building under W=1, the lack of lkdtm.h in lkdtm_usercopy.c and
lkdtm_rodata.c was discovered. This fixes the issue and consolidates
the common header and the pr_fmt macro for simplicity and regularity
across each test source file.
Signed-off-by: Kees Cook <keescook@chromium.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
A conversion of the lkdtm core module added an "#ifdef CONFIG_KPROBES" check,
but a number of functions then become unused:
drivers/misc/lkdtm_core.c:340:16: error: 'lkdtm_debugfs_entry' defined but not used [-Werror=unused-function]
drivers/misc/lkdtm_core.c:122:12: error: 'jp_generic_ide_ioctl' defined but not used [-Werror=unused-function]
drivers/misc/lkdtm_core.c:114:12: error: 'jp_scsi_dispatch_cmd' defined but not used [-Werror=unused-function]
drivers/misc/lkdtm_core.c:106:12: error: 'jp_hrtimer_start' defined but not used [-Werror=unused-function]
drivers/misc/lkdtm_core.c:97:22: error: 'jp_shrink_inactive_list' defined but not used [-Werror=unused-function]
drivers/misc/lkdtm_core.c:89:13: error: 'jp_ll_rw_block' defined but not used [-Werror=unused-function]
drivers/misc/lkdtm_core.c:83:13: error: 'jp_tasklet_action' defined but not used [-Werror=unused-function]
drivers/misc/lkdtm_core.c:75:20: error: 'jp_handle_irq_event' defined but not used [-Werror=unused-function]
drivers/misc/lkdtm_core.c:68:21: error: 'jp_do_irq' defined but not used [-Werror=unused-function]
This adds the same #ifdef everywhere. There is probably a better way to do the
same thing, but for now this avoids the new warnings.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Fixes: c479e3fd8870 ("lkdtm: use struct arrays instead of enums")
[kees: moved some code around to better consolidate the #ifdefs]
Signed-off-by: Kees Cook <keescook@chromium.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
This removes the use of enums in favor of much more readable and compact
structure arrays. This requires changing all the enum passing to pointers
instead, but the results are much cleaner.
Signed-off-by: Kees Cook <keescook@chromium.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
In preparation of referencing the jprobe entry points in a structure,
this moves them to the start of the source since they operate mostly
separately from everything else.
Signed-off-by: Kees Cook <keescook@chromium.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
This reorganizes module parameters and global variables in the source
so they're grouped together with comments. Also moves early function
declarations to the top of the file.
Signed-off-by: Kees Cook <keescook@chromium.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
The global variables used to track the active crashpoint and crashtype
are hard to distinguish from local variable names, so add a "lkdtm_"
prefix to them (or in the case of "lkdtm", add a "_jprobe" suffix).
Signed-off-by: Kees Cook <keescook@chromium.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
The "count" variable name was not easy to understand, since it was regularly
obscured by local variables of the same name, and it's purpose wasn't clear.
This renames it (and its lock) to "crash_count", which is more readable.
Signed-off-by: Kees Cook <keescook@chromium.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
There wasn't a good reason for keeping the enum and the names out of sync
by 1 position just to avoid "NONE" and "INVALID" from being in the string
lists.
Signed-off-by: Kees Cook <keescook@chromium.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
This splits all the remaining tests from lkdtm_core.c into the new
lkdtm_bugs.c file to help separate things better for readability.
Signed-off-by: Kees Cook <keescook@chromium.org>
|