| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 16199ad9eb6db60a6b10794a09fc1ac6d09312ff upstream.
When syncing the log, if we fail to write log tree extent buffers, we mark
the log for a full commit and abort the transaction. However we don't need
to abort the transaction, all we really need to do is to make sure no one
can commit a superblock pointing to new log tree roots. Just because we
got a failure writing extent buffers for a log tree, it does not mean we
will also fail to do a transaction commit.
One particular case is if due to a bug somewhere, when writing log tree
extent buffers, the tree checker detects some corruption and the writeout
fails because of that. Aborting the transaction can be very disruptive for
a user, specially if the issue happened on a root filesystem. One example
is the scenario in the Link tag below, where an isolated corruption on log
tree leaves was causing transaction aborts when syncing the log.
Link: https://lore.kernel.org/linux-btrfs/ae169fc6-f504-28f0-a098-6fa6a4dfb612@leemhuis.info/
CC: stable@vger.kernel.org # 5.15+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 3d17adea74a56a4965f7a603d8ed8c66bb9356d9 upstream.
Previous commit a05d3c915314 ("btrfs: check superblock to ensure the fs
was not modified at thaw time") only checks the content of the super
block, but it doesn't really check if the on-disk super block has a
matching checksum.
This patch will add the checksum verification to thaw time superblock
verification.
This involves the following extra changes:
- Export btrfs_check_super_csum()
As we need to call it in super.c.
- Change the argument list of btrfs_check_super_csum()
Instead of passing a char *, directly pass struct btrfs_super_block *
pointer.
- Verify that our checksum type didn't change before checking the
checksum value, like it's done at mount time
Fixes: a05d3c915314 ("btrfs: check superblock to ensure the fs was not modified at thaw time")
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit a05d3c9153145283ce9c58a1d7a9056fbb85f6a1 ]
[BACKGROUND]
There is an incident report that, one user hibernated the system, with
one btrfs on removable device still mounted.
Then by some incident, the btrfs got mounted and modified by another
system/OS, then back to the hibernated system.
After resuming from the hibernation, new write happened into the victim btrfs.
Now the fs is completely broken, since the underlying btrfs is no longer
the same one before the hibernation, and the user lost their data due to
various transid mismatch.
[REPRODUCER]
We can emulate the situation using the following small script:
truncate -s 1G $dev
mkfs.btrfs -f $dev
mount $dev $mnt
fsstress -w -d $mnt -n 500
sync
xfs_freeze -f $mnt
cp $dev $dev.backup
# There is no way to mount the same cloned fs on the same system,
# as the conflicting fsid will be rejected by btrfs.
# Thus here we have to wipe the fs using a different btrfs.
mkfs.btrfs -f $dev.backup
dd if=$dev.backup of=$dev bs=1M
xfs_freeze -u $mnt
fsstress -w -d $mnt -n 20
umount $mnt
btrfs check $dev
The final fsck will fail due to some tree blocks has incorrect fsid.
This is enough to emulate the problem hit by the unfortunate user.
[ENHANCEMENT]
Although such case should not be that common, it can still happen from
time to time.
From the view of btrfs, we can detect any unexpected super block change,
and if there is any unexpected change, we just mark the fs read-only,
and thaw the fs.
By this we can limit the damage to minimal, and I hope no one would lose
their data by this anymore.
Suggested-by: Goffredo Baroncelli <kreijack@libero.it>
Link: https://lore.kernel.org/linux-btrfs/83bf3b4b-7f4c-387a-b286-9251e3991e34@bluemole.com/
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit a8d1b1647bf8244a5f270538e9e636e2657fffa3 upstream.
When performing seeding on a zoned filesystem it is necessary to
initialize each zoned device's btrfs_zoned_device_info structure,
otherwise mounting the filesystem will cause a NULL pointer dereference.
This was uncovered by fstests' testcase btrfs/163.
CC: stable@vger.kernel.org # 5.15+
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit a362bb864b8db4861977d00bd2c3222503ccc34b upstream.
Often when running generic/562 from fstests we can hang during unmount,
resulting in a trace like this:
Sep 07 11:52:00 debian9 unknown: run fstests generic/562 at 2022-09-07 11:52:00
Sep 07 11:55:32 debian9 kernel: INFO: task umount:49438 blocked for more than 120 seconds.
Sep 07 11:55:32 debian9 kernel: Not tainted 6.0.0-rc2-btrfs-next-122 #1
Sep 07 11:55:32 debian9 kernel: "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
Sep 07 11:55:32 debian9 kernel: task:umount state:D stack: 0 pid:49438 ppid: 25683 flags:0x00004000
Sep 07 11:55:32 debian9 kernel: Call Trace:
Sep 07 11:55:32 debian9 kernel: <TASK>
Sep 07 11:55:32 debian9 kernel: __schedule+0x3c8/0xec0
Sep 07 11:55:32 debian9 kernel: ? rcu_read_lock_sched_held+0x12/0x70
Sep 07 11:55:32 debian9 kernel: schedule+0x5d/0xf0
Sep 07 11:55:32 debian9 kernel: schedule_timeout+0xf1/0x130
Sep 07 11:55:32 debian9 kernel: ? lock_release+0x224/0x4a0
Sep 07 11:55:32 debian9 kernel: ? lock_acquired+0x1a0/0x420
Sep 07 11:55:32 debian9 kernel: ? trace_hardirqs_on+0x2c/0xd0
Sep 07 11:55:32 debian9 kernel: __wait_for_common+0xac/0x200
Sep 07 11:55:32 debian9 kernel: ? usleep_range_state+0xb0/0xb0
Sep 07 11:55:32 debian9 kernel: __flush_work+0x26d/0x530
Sep 07 11:55:32 debian9 kernel: ? flush_workqueue_prep_pwqs+0x140/0x140
Sep 07 11:55:32 debian9 kernel: ? trace_clock_local+0xc/0x30
Sep 07 11:55:32 debian9 kernel: __cancel_work_timer+0x11f/0x1b0
Sep 07 11:55:32 debian9 kernel: ? close_ctree+0x12b/0x5b3 [btrfs]
Sep 07 11:55:32 debian9 kernel: ? __trace_bputs+0x10b/0x170
Sep 07 11:55:32 debian9 kernel: close_ctree+0x152/0x5b3 [btrfs]
Sep 07 11:55:32 debian9 kernel: ? evict_inodes+0x166/0x1c0
Sep 07 11:55:32 debian9 kernel: generic_shutdown_super+0x71/0x120
Sep 07 11:55:32 debian9 kernel: kill_anon_super+0x14/0x30
Sep 07 11:55:32 debian9 kernel: btrfs_kill_super+0x12/0x20 [btrfs]
Sep 07 11:55:32 debian9 kernel: deactivate_locked_super+0x2e/0xa0
Sep 07 11:55:32 debian9 kernel: cleanup_mnt+0x100/0x160
Sep 07 11:55:32 debian9 kernel: task_work_run+0x59/0xa0
Sep 07 11:55:32 debian9 kernel: exit_to_user_mode_prepare+0x1a6/0x1b0
Sep 07 11:55:32 debian9 kernel: syscall_exit_to_user_mode+0x16/0x40
Sep 07 11:55:32 debian9 kernel: do_syscall_64+0x48/0x90
Sep 07 11:55:32 debian9 kernel: entry_SYSCALL_64_after_hwframe+0x63/0xcd
Sep 07 11:55:32 debian9 kernel: RIP: 0033:0x7fcde59a57a7
Sep 07 11:55:32 debian9 kernel: RSP: 002b:00007ffe914217c8 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6
Sep 07 11:55:32 debian9 kernel: RAX: 0000000000000000 RBX: 00007fcde5ae8264 RCX: 00007fcde59a57a7
Sep 07 11:55:32 debian9 kernel: RDX: 0000000000000000 RSI: 0000000000000000 RDI: 000055b57556cdd0
Sep 07 11:55:32 debian9 kernel: RBP: 000055b57556cba0 R08: 0000000000000000 R09: 00007ffe91420570
Sep 07 11:55:32 debian9 kernel: R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
Sep 07 11:55:32 debian9 kernel: R13: 000055b57556cdd0 R14: 000055b57556ccb8 R15: 0000000000000000
Sep 07 11:55:32 debian9 kernel: </TASK>
What happens is the following:
1) The cleaner kthread tries to start a transaction to delete an unused
block group, but the metadata reservation can not be satisfied right
away, so a reservation ticket is created and it starts the async
metadata reclaim task (fs_info->async_reclaim_work);
2) Writeback for all the filler inodes with an i_size of 2K starts
(generic/562 creates a lot of 2K files with the goal of filling
metadata space). We try to create an inline extent for them, but we
fail when trying to insert the inline extent with -ENOSPC (at
cow_file_range_inline()) - since this is not critical, we fallback
to non-inline mode (back to cow_file_range()), reserve extents, create
extent maps and create the ordered extents;
3) An unmount starts, enters close_ctree();
4) The async reclaim task is flushing stuff, entering the flush states one
by one, until it reaches RUN_DELAYED_IPUTS. There it runs all current
delayed iputs.
After running the delayed iputs and before calling
btrfs_wait_on_delayed_iputs(), one or more ordered extents complete,
and btrfs_add_delayed_iput() is called for each one through
btrfs_finish_ordered_io() -> btrfs_put_ordered_extent(). This results
in bumping fs_info->nr_delayed_iputs from 0 to some positive value.
So the async reclaim task blocks at btrfs_wait_on_delayed_iputs() waiting
for fs_info->nr_delayed_iputs to become 0;
5) The current transaction is committed by the transaction kthread, we then
start unpinning extents and end up calling btrfs_try_granting_tickets()
through unpin_extent_range(), since we released some space.
This results in satisfying the ticket created by the cleaner kthread at
step 1, waking up the cleaner kthread;
6) At close_ctree() we ask the cleaner kthread to park;
7) The cleaner kthread starts the transaction, deletes the unused block
group, and then calls kthread_should_park(), which returns true, so it
parks. And at this point we have the delayed iputs added by the
completion of the ordered extents still pending;
8) Then later at close_ctree(), when we call:
cancel_work_sync(&fs_info->async_reclaim_work);
We hang forever, since the cleaner was parked and no one else can run
delayed iputs after that, while the reclaim task is waiting for the
remaining delayed iputs to be completed.
Fix this by waiting for all ordered extents to complete and running the
delayed iputs before attempting to stop the async reclaim tasks. Note that
we can not wait for ordered extents with btrfs_wait_ordered_roots() (or
other similar functions) because that waits for the BTRFS_ORDERED_COMPLETE
flag to be set on an ordered extent, but the delayed iput is added after
that, when doing the final btrfs_put_ordered_extent(). So instead wait for
the work queues used for executing ordered extent completion to be empty,
which works because we do the final put on an ordered extent at
btrfs_finish_ordered_io() (while we are in the unmount context).
Fixes: d6fd0ae25c6495 ("Btrfs: fix missing delayed iputs on unmount")
CC: stable@vger.kernel.org # 5.15+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 8a1f1e3d1eecf9d2359a2709e276743a67e145db upstream.
During early unmount, at close_ctree(), we try to stop the block group
reclaim task with cancel_work_sync(), but that may hang if the block group
reclaim task is currently at btrfs_relocate_block_group() waiting for the
flag BTRFS_FS_UNFINISHED_DROPS to be cleared from fs_info->flags. During
unmount we only clear that flag later, after trying to stop the block
group reclaim task.
Fix that by clearing BTRFS_FS_UNFINISHED_DROPS before trying to stop the
block group reclaim task and after setting BTRFS_FS_CLOSING_START, so that
if the reclaim task is waiting on that bit, it will stop immediately after
being woken, because it sees the filesystem is closing (with a call to
btrfs_fs_closing()), and then returns immediately with -EINTR.
Fixes: 31e70e527806c5 ("btrfs: fix hang during unmount when block group reclaim task is running")
CC: stable@vger.kernel.org # 5.15+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit 0a27a0474d146eb79e09ec88bf0d4229f4cfc1b8 ]
These definitions exist in disk-io.c, which is not related to the
locking. Move this over to locking.h/c where it makes more sense.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit f7b12a62f008a3041f42f2426983e59a6a0a3c59 upstream
On zoned filesystem, data write out is limited by max_zone_append_size,
and a large ordered extent is split according the size of a bio. OTOH,
the number of extents to be written is calculated using
BTRFS_MAX_EXTENT_SIZE, and that estimated number is used to reserve the
metadata bytes to update and/or create the metadata items.
The metadata reservation is done at e.g, btrfs_buffered_write() and then
released according to the estimation changes. Thus, if the number of extent
increases massively, the reserved metadata can run out.
The increase of the number of extents easily occurs on zoned filesystem
if BTRFS_MAX_EXTENT_SIZE > max_zone_append_size. And, it causes the
following warning on a small RAM environment with disabling metadata
over-commit (in the following patch).
[75721.498492] ------------[ cut here ]------------
[75721.505624] BTRFS: block rsv 1 returned -28
[75721.512230] WARNING: CPU: 24 PID: 2327559 at fs/btrfs/block-rsv.c:537 btrfs_use_block_rsv+0x560/0x760 [btrfs]
[75721.581854] CPU: 24 PID: 2327559 Comm: kworker/u64:10 Kdump: loaded Tainted: G W 5.18.0-rc2-BTRFS-ZNS+ #109
[75721.597200] Hardware name: Supermicro Super Server/H12SSL-NT, BIOS 2.0 02/22/2021
[75721.607310] Workqueue: btrfs-endio-write btrfs_work_helper [btrfs]
[75721.616209] RIP: 0010:btrfs_use_block_rsv+0x560/0x760 [btrfs]
[75721.646649] RSP: 0018:ffffc9000fbdf3e0 EFLAGS: 00010286
[75721.654126] RAX: 0000000000000000 RBX: 0000000000004000 RCX: 0000000000000000
[75721.663524] RDX: 0000000000000004 RSI: 0000000000000008 RDI: fffff52001f7be6e
[75721.672921] RBP: ffffc9000fbdf420 R08: 0000000000000001 R09: ffff889f8d1fc6c7
[75721.682493] R10: ffffed13f1a3f8d8 R11: 0000000000000001 R12: ffff88980a3c0e28
[75721.692284] R13: ffff889b66590000 R14: ffff88980a3c0e40 R15: ffff88980a3c0e8a
[75721.701878] FS: 0000000000000000(0000) GS:ffff889f8d000000(0000) knlGS:0000000000000000
[75721.712601] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[75721.720726] CR2: 000055d12e05c018 CR3: 0000800193594000 CR4: 0000000000350ee0
[75721.730499] Call Trace:
[75721.735166] <TASK>
[75721.739886] btrfs_alloc_tree_block+0x1e1/0x1100 [btrfs]
[75721.747545] ? btrfs_alloc_logged_file_extent+0x550/0x550 [btrfs]
[75721.756145] ? btrfs_get_32+0xea/0x2d0 [btrfs]
[75721.762852] ? btrfs_get_32+0xea/0x2d0 [btrfs]
[75721.769520] ? push_leaf_left+0x420/0x620 [btrfs]
[75721.776431] ? memcpy+0x4e/0x60
[75721.781931] split_leaf+0x433/0x12d0 [btrfs]
[75721.788392] ? btrfs_get_token_32+0x580/0x580 [btrfs]
[75721.795636] ? push_for_double_split.isra.0+0x420/0x420 [btrfs]
[75721.803759] ? leaf_space_used+0x15d/0x1a0 [btrfs]
[75721.811156] btrfs_search_slot+0x1bc3/0x2790 [btrfs]
[75721.818300] ? lock_downgrade+0x7c0/0x7c0
[75721.824411] ? free_extent_buffer.part.0+0x107/0x200 [btrfs]
[75721.832456] ? split_leaf+0x12d0/0x12d0 [btrfs]
[75721.839149] ? free_extent_buffer.part.0+0x14f/0x200 [btrfs]
[75721.846945] ? free_extent_buffer+0x13/0x20 [btrfs]
[75721.853960] ? btrfs_release_path+0x4b/0x190 [btrfs]
[75721.861429] btrfs_csum_file_blocks+0x85c/0x1500 [btrfs]
[75721.869313] ? rcu_read_lock_sched_held+0x16/0x80
[75721.876085] ? lock_release+0x552/0xf80
[75721.881957] ? btrfs_del_csums+0x8c0/0x8c0 [btrfs]
[75721.888886] ? __kasan_check_write+0x14/0x20
[75721.895152] ? do_raw_read_unlock+0x44/0x80
[75721.901323] ? _raw_write_lock_irq+0x60/0x80
[75721.907983] ? btrfs_global_root+0xb9/0xe0 [btrfs]
[75721.915166] ? btrfs_csum_root+0x12b/0x180 [btrfs]
[75721.921918] ? btrfs_get_global_root+0x820/0x820 [btrfs]
[75721.929166] ? _raw_write_unlock+0x23/0x40
[75721.935116] ? unpin_extent_cache+0x1e3/0x390 [btrfs]
[75721.942041] btrfs_finish_ordered_io.isra.0+0xa0c/0x1dc0 [btrfs]
[75721.949906] ? try_to_wake_up+0x30/0x14a0
[75721.955700] ? btrfs_unlink_subvol+0xda0/0xda0 [btrfs]
[75721.962661] ? rcu_read_lock_sched_held+0x16/0x80
[75721.969111] ? lock_acquire+0x41b/0x4c0
[75721.974982] finish_ordered_fn+0x15/0x20 [btrfs]
[75721.981639] btrfs_work_helper+0x1af/0xa80 [btrfs]
[75721.988184] ? _raw_spin_unlock_irq+0x28/0x50
[75721.994643] process_one_work+0x815/0x1460
[75722.000444] ? pwq_dec_nr_in_flight+0x250/0x250
[75722.006643] ? do_raw_spin_trylock+0xbb/0x190
[75722.013086] worker_thread+0x59a/0xeb0
[75722.018511] kthread+0x2ac/0x360
[75722.023428] ? process_one_work+0x1460/0x1460
[75722.029431] ? kthread_complete_and_exit+0x30/0x30
[75722.036044] ret_from_fork+0x22/0x30
[75722.041255] </TASK>
[75722.045047] irq event stamp: 0
[75722.049703] hardirqs last enabled at (0): [<0000000000000000>] 0x0
[75722.057610] hardirqs last disabled at (0): [<ffffffff8118a94a>] copy_process+0x1c1a/0x66b0
[75722.067533] softirqs last enabled at (0): [<ffffffff8118a989>] copy_process+0x1c59/0x66b0
[75722.077423] softirqs last disabled at (0): [<0000000000000000>] 0x0
[75722.085335] ---[ end trace 0000000000000000 ]---
To fix the estimation, we need to introduce fs_info->max_extent_size to
replace BTRFS_MAX_EXTENT_SIZE, which allow setting the different size for
regular vs zoned filesystem.
Set fs_info->max_extent_size to BTRFS_MAX_EXTENT_SIZE by default. On zoned
filesystem, it is set to fs_info->max_zone_append_size.
CC: stable@vger.kernel.org # 5.12+
Fixes: d8e3fb106f39 ("btrfs: zoned: use ZONE_APPEND write for zoned mode")
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit e26b04c4c91925dba57324db177a24e18e2d0013 ]
Commit 6f93e834fa7c seemingly inadvertently moved the code responsible
for flagging the filesystem as having BIG_METADATA to a place where
setting the flag was essentially lost. This means that
filesystems created with kernels containing this bug (starting with 5.15)
can potentially be mounted by older (pre-3.4) kernels. In reality
chances for this happening are low because there are other incompat
flags introduced in the mean time. Still the correct behavior is to set
INCOMPAT_BIG_METADATA flag and persist this in the superblock.
Fixes: 6f93e834fa7c ("btrfs: fix upper limit for max_inline for page size 64K")
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit dc4d31684974d140250f3ee612c3f0cab13b3146 upstream.
[BUG]
If we have a btrfs image with dirty log, along with an unsupported RO
compatible flag:
log_root 30474240
...
compat_flags 0x0
compat_ro_flags 0x40000003
( FREE_SPACE_TREE |
FREE_SPACE_TREE_VALID |
unknown flag: 0x40000000 )
Then even if we can only mount it RO, we will still cause metadata
update for log replay:
BTRFS info (device dm-1): flagging fs with big metadata feature
BTRFS info (device dm-1): using free space tree
BTRFS info (device dm-1): has skinny extents
BTRFS info (device dm-1): start tree-log replay
This is definitely against RO compact flag requirement.
[CAUSE]
RO compact flag only forces us to do RO mount, but we will still do log
replay for plain RO mount.
Thus this will result us to do log replay and update metadata.
This can be very problematic for new RO compat flag, for example older
kernel can not understand v2 cache, and if we allow metadata update on
RO mount and invalidate/corrupt v2 cache.
[FIX]
Just reject the mount unless rescue=nologreplay is provided:
BTRFS error (device dm-1): cannot replay dirty log with unsupport optional features (0x40000000), try rescue=nologreplay instead
We don't want to set rescue=nologreply directly, as this would make the
end user to read the old data, and cause confusion.
Since the such case is really rare, we're mostly fine to just reject the
mount with an error message, which also includes the proper workaround.
CC: stable@vger.kernel.org #4.9+
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit 5f0addf7b89085f8e0a2593faa419d6111612b9b ]
Currently, we use btrfs_inode_{lock,unlock}() to grant an exclusive
writeback of the relocation data inode in
btrfs_zoned_data_reloc_{lock,unlock}(). However, that can cause a deadlock
in the following path.
Thread A takes btrfs_inode_lock() and waits for metadata reservation by
e.g, waiting for writeback:
prealloc_file_extent_cluster()
- btrfs_inode_lock(&inode->vfs_inode, 0);
- btrfs_prealloc_file_range()
...
- btrfs_replace_file_extents()
- btrfs_start_transaction
...
- btrfs_reserve_metadata_bytes()
Thread B (e.g, doing a writeback work) needs to wait for the inode lock to
continue writeback process:
do_writepages
- btrfs_writepages
- extent_writpages
- btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
- btrfs_inode_lock()
The deadlock is caused by relying on the vfs_inode's lock. By using it, we
introduced unnecessary exclusion of writeback and
btrfs_prealloc_file_range(). Also, the lock at this point is useless as we
don't have any dirty pages in the inode yet.
Introduce fs_info->zoned_data_reloc_io_lock and use it for the exclusive
writeback.
Fixes: 35156d852762 ("btrfs: zoned: only allow one process to add pages to a relocation inode")
CC: stable@vger.kernel.org # 5.16.x: 869f4cdc73f9: btrfs: zoned: encapsulate inode locking for zoned relocation
CC: stable@vger.kernel.org # 5.16.x
CC: stable@vger.kernel.org # 5.17
Cc: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 31e70e527806c546a72262f2fc3d982ee23c42d3 upstream.
When we start an unmount, at close_ctree(), if we have the reclaim task
running and in the middle of a data block group relocation, we can trigger
a deadlock when stopping an async reclaim task, producing a trace like the
following:
[629724.498185] task:kworker/u16:7 state:D stack: 0 pid:681170 ppid: 2 flags:0x00004000
[629724.499760] Workqueue: events_unbound btrfs_async_reclaim_metadata_space [btrfs]
[629724.501267] Call Trace:
[629724.501759] <TASK>
[629724.502174] __schedule+0x3cb/0xed0
[629724.502842] schedule+0x4e/0xb0
[629724.503447] btrfs_wait_on_delayed_iputs+0x7c/0xc0 [btrfs]
[629724.504534] ? prepare_to_wait_exclusive+0xc0/0xc0
[629724.505442] flush_space+0x423/0x630 [btrfs]
[629724.506296] ? rcu_read_unlock_trace_special+0x20/0x50
[629724.507259] ? lock_release+0x220/0x4a0
[629724.507932] ? btrfs_get_alloc_profile+0xb3/0x290 [btrfs]
[629724.508940] ? do_raw_spin_unlock+0x4b/0xa0
[629724.509688] btrfs_async_reclaim_metadata_space+0x139/0x320 [btrfs]
[629724.510922] process_one_work+0x252/0x5a0
[629724.511694] ? process_one_work+0x5a0/0x5a0
[629724.512508] worker_thread+0x52/0x3b0
[629724.513220] ? process_one_work+0x5a0/0x5a0
[629724.514021] kthread+0xf2/0x120
[629724.514627] ? kthread_complete_and_exit+0x20/0x20
[629724.515526] ret_from_fork+0x22/0x30
[629724.516236] </TASK>
[629724.516694] task:umount state:D stack: 0 pid:719055 ppid:695412 flags:0x00004000
[629724.518269] Call Trace:
[629724.518746] <TASK>
[629724.519160] __schedule+0x3cb/0xed0
[629724.519835] schedule+0x4e/0xb0
[629724.520467] schedule_timeout+0xed/0x130
[629724.521221] ? lock_release+0x220/0x4a0
[629724.521946] ? lock_acquired+0x19c/0x420
[629724.522662] ? trace_hardirqs_on+0x1b/0xe0
[629724.523411] __wait_for_common+0xaf/0x1f0
[629724.524189] ? usleep_range_state+0xb0/0xb0
[629724.524997] __flush_work+0x26d/0x530
[629724.525698] ? flush_workqueue_prep_pwqs+0x140/0x140
[629724.526580] ? lock_acquire+0x1a0/0x310
[629724.527324] __cancel_work_timer+0x137/0x1c0
[629724.528190] close_ctree+0xfd/0x531 [btrfs]
[629724.529000] ? evict_inodes+0x166/0x1c0
[629724.529510] generic_shutdown_super+0x74/0x120
[629724.530103] kill_anon_super+0x14/0x30
[629724.530611] btrfs_kill_super+0x12/0x20 [btrfs]
[629724.531246] deactivate_locked_super+0x31/0xa0
[629724.531817] cleanup_mnt+0x147/0x1c0
[629724.532319] task_work_run+0x5c/0xa0
[629724.532984] exit_to_user_mode_prepare+0x1a6/0x1b0
[629724.533598] syscall_exit_to_user_mode+0x16/0x40
[629724.534200] do_syscall_64+0x48/0x90
[629724.534667] entry_SYSCALL_64_after_hwframe+0x44/0xae
[629724.535318] RIP: 0033:0x7fa2b90437a7
[629724.535804] RSP: 002b:00007ffe0b7e4458 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6
[629724.536912] RAX: 0000000000000000 RBX: 00007fa2b9182264 RCX: 00007fa2b90437a7
[629724.538156] RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000555d6cf20dd0
[629724.539053] RBP: 0000555d6cf20ba0 R08: 0000000000000000 R09: 00007ffe0b7e3200
[629724.539956] R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
[629724.540883] R13: 0000555d6cf20dd0 R14: 0000555d6cf20cb0 R15: 0000000000000000
[629724.541796] </TASK>
This happens because:
1) Before entering close_ctree() we have the async block group reclaim
task running and relocating a data block group;
2) There's an async metadata (or data) space reclaim task running;
3) We enter close_ctree() and park the cleaner kthread;
4) The async space reclaim task is at flush_space() and runs all the
existing delayed iputs;
5) Before the async space reclaim task calls
btrfs_wait_on_delayed_iputs(), the block group reclaim task which is
doing the data block group relocation, creates a delayed iput at
replace_file_extents() (called when COWing leaves that have file extent
items pointing to relocated data extents, during the merging phase
of relocation roots);
6) The async reclaim space reclaim task blocks at
btrfs_wait_on_delayed_iputs(), since we have a new delayed iput;
7) The task at close_ctree() then calls cancel_work_sync() to stop the
async space reclaim task, but it blocks since that task is waiting for
the delayed iput to be run;
8) The delayed iput is never run because the cleaner kthread is parked,
and no one else runs delayed iputs, resulting in a hang.
So fix this by stopping the async block group reclaim task before we
park the cleaner kthread.
Fixes: 18bb8bbf13c183 ("btrfs: zoned: automatically reclaim zones")
CC: stable@vger.kernel.org # 5.15+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit d5321a0fa8bc49f11bea0b470800962c17d92d8f upstream.
The following error message lack the "0x" obviously:
cannot mount because of unsupported optional features (4000)
Add the prefix to make it less confusing. This can happen on older
kernels that try to mount a filesystem with newer features so it makes
sense to backport to older trees.
CC: stable@vger.kernel.org # 4.14+
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 9f73f1aef98b2fa7252c0a89be64840271ce8ea0 upstream.
[BUG]
For a 4K sector sized btrfs with v1 cache enabled and only mounted on
systems with 4K page size, if it's mounted on subpage (64K page size)
systems, it can cause the following warning on v1 space cache:
BTRFS error (device dm-1): csum mismatch on free space cache
BTRFS warning (device dm-1): failed to load free space cache for block group 84082688, rebuilding it now
Although not a big deal, as kernel can rebuild it without problem, such
warning will bother end users, especially if they want to switch the
same btrfs seamlessly between different page sized systems.
[CAUSE]
V1 free space cache is still using fixed PAGE_SIZE for various bitmap,
like BITS_PER_BITMAP.
Such hard-coded PAGE_SIZE usage will cause various mismatch, from v1
cache size to checksum.
Thus kernel will always reject v1 cache with a different PAGE_SIZE with
csum mismatch.
[FIX]
Although we should fix v1 cache, it's already going to be marked
deprecated soon.
And we have v2 cache based on metadata (which is already fully subpage
compatible), and it has almost everything superior than v1 cache.
So just force subpage mount to use v2 cache on mount.
Reported-by: Matt Corallo <blnxfsl@bluematt.me>
CC: stable@vger.kernel.org # 5.15+
Link: https://lore.kernel.org/linux-btrfs/61aa27d1-30fc-c1a9-f0f4-9df544395ec3@bluematt.me/
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 168a2f776b9762f4021421008512dd7ab7474df1 upstream.
In btrfs_get_root_ref(), when btrfs_insert_fs_root() fails,
btrfs_put_root() can happen for two reasons:
- the root already exists in the tree, in that case it returns the
reference obtained in btrfs_lookup_fs_root()
- another error so the cleanup is done in the fail label
Calling btrfs_put_root() unconditionally would lead to double decrement
of the root reference possibly freeing it in the second case.
Reported-by: TOTE Robot <oslab@tsinghua.edu.cn>
Fixes: bc44d7c4b2b1 ("btrfs: push btrfs_grab_fs_root into btrfs_get_fs_root")
CC: stable@vger.kernel.org # 5.10+
Signed-off-by: Jia-Ju Bai <baijiaju1990@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 3777369ff1518b579560611a0d0c33f930154f64 upstream.
[BUG]
There is a bug report that a bitflip in the transid part of an extent
buffer makes btrfs to reject certain tree blocks:
BTRFS error (device dm-0): parent transid verify failed on 1382301696 wanted 262166 found 22
[CAUSE]
Note the failed transid check, hex(262166) = 0x40016, while
hex(22) = 0x16.
It's an obvious bitflip.
Furthermore, the reporter also confirmed the bitflip is from the
hardware, so it's a real hardware caused bitflip, and such problem can
not be detected by the existing tree-checker framework.
As tree-checker can only verify the content inside one tree block, while
generation of a tree block can only be verified against its parent.
So such problem remain undetected.
[FIX]
Although tree-checker can not verify it at write-time, we still have a
quick (but not the most accurate) way to catch such obvious corruption.
Function csum_one_extent_buffer() is called before we submit metadata
write.
Thus it means, all the extent buffer passed in should be dirty tree
blocks, and should be newer than last committed transaction.
Using that we can catch the above bitflip.
Although it's not a perfect solution, as if the corrupted generation is
higher than the correct value, we have no way to catch it at all.
Reported-by: Christoph Anton Mitterer <calestyo@scientia.org>
Link: https://lore.kernel.org/linux-btrfs/2dfcbc130c55cc6fd067b93752e90bd2b079baca.camel@scientia.org/
CC: stable@vger.kernel.org # 5.15+
Signed-off-by: Qu Wenruo <wqu@sus,ree.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit d96b34248c2f4ea8cd09286090f2f6f77102eaab upstream.
We don't allow send and balance/relocation to run in parallel in order
to prevent send failing or silently producing some bad stream. This is
because while send is using an extent (specially metadata) or about to
read a metadata extent and expecting it belongs to a specific parent
node, relocation can run, the transaction used for the relocation is
committed and the extent gets reallocated while send is still using the
extent, so it ends up with a different content than expected. This can
result in just failing to read a metadata extent due to failure of the
validation checks (parent transid, level, etc), failure to find a
backreference for a data extent, and other unexpected failures. Besides
reallocation, there's also a similar problem of an extent getting
discarded when it's unpinned after the transaction used for block group
relocation is committed.
The restriction between balance and send was added in commit 9e967495e0e0
("Btrfs: prevent send failures and crashes due to concurrent relocation"),
kernel 5.3, while the more general restriction between send and relocation
was added in commit 1cea5cf0e664 ("btrfs: ensure relocation never runs
while we have send operations running"), kernel 5.14.
Both send and relocation can be very long running operations. Relocation
because it has to do a lot of IO and expensive backreference lookups in
case there are many snapshots, and send due to read IO when operating on
very large trees. This makes it inconvenient for users and tools to deal
with scheduling both operations.
For zoned filesystem we also have automatic block group relocation, so
send can fail with -EAGAIN when users least expect it or send can end up
delaying the block group relocation for too long. In the future we might
also get the automatic block group relocation for non zoned filesystems.
This change makes it possible for send and relocation to run in parallel.
This is achieved the following way:
1) For all tree searches, send acquires a read lock on the commit root
semaphore;
2) After each tree search, and before releasing the commit root semaphore,
the leaf is cloned and placed in the search path (struct btrfs_path);
3) After releasing the commit root semaphore, the changed_cb() callback
is invoked, which operates on the leaf and writes commands to the pipe
(or file in case send/receive is not used with a pipe). It's important
here to not hold a lock on the commit root semaphore, because if we did
we could deadlock when sending and receiving to the same filesystem
using a pipe - the send task blocks on the pipe because it's full, the
receive task, which is the only consumer of the pipe, triggers a
transaction commit when attempting to create a subvolume or reserve
space for a write operation for example, but the transaction commit
blocks trying to write lock the commit root semaphore, resulting in a
deadlock;
4) Before moving to the next key, or advancing to the next change in case
of an incremental send, check if a transaction used for relocation was
committed (or is about to finish its commit). If so, release the search
path(s) and restart the search, to where we were before, so that we
don't operate on stale extent buffers. The search restarts are always
possible because both the send and parent roots are RO, and no one can
add, remove of update keys (change their offset) in RO trees - the
only exception is deduplication, but that is still not allowed to run
in parallel with send;
5) Periodically check if there is contention on the commit root semaphore,
which means there is a transaction commit trying to write lock it, and
release the semaphore and reschedule if there is contention, so as to
avoid causing any significant delays to transaction commits.
This leaves some room for optimizations for send to have less path
releases and re searching the trees when there's relocation running, but
for now it's kept simple as it performs quite well (on very large trees
with resulting send streams in the order of a few hundred gigabytes).
Test case btrfs/187, from fstests, stresses relocation, send and
deduplication attempting to run in parallel, but without verifying if send
succeeds and if it produces correct streams. A new test case will be added
that exercises relocation happening in parallel with send and then checks
that send succeeds and the resulting streams are correct.
A final note is that for now this still leaves the mutual exclusion
between send operations and deduplication on files belonging to a root
used by send operations. A solution for that will be slightly more complex
but it will eventually be built on top of this change.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit b4be6aefa73c9a6899ef3ba9c5faaa8a66e333ef upstream.
We hit a bug with a recovering relocation on mount for one of our file
systems in production. I reproduced this locally by injecting errors
into snapshot delete with balance running at the same time. This
presented as an error while looking up an extent item
WARNING: CPU: 5 PID: 1501 at fs/btrfs/extent-tree.c:866 lookup_inline_extent_backref+0x647/0x680
CPU: 5 PID: 1501 Comm: btrfs-balance Not tainted 5.16.0-rc8+ #8
RIP: 0010:lookup_inline_extent_backref+0x647/0x680
RSP: 0018:ffffae0a023ab960 EFLAGS: 00010202
RAX: 0000000000000001 RBX: 0000000000000000 RCX: 0000000000000000
RDX: 0000000000000000 RSI: 000000000000000c RDI: 0000000000000000
RBP: ffff943fd2a39b60 R08: 0000000000000000 R09: 0000000000000001
R10: 0001434088152de0 R11: 0000000000000000 R12: 0000000001d05000
R13: ffff943fd2a39b60 R14: ffff943fdb96f2a0 R15: ffff9442fc923000
FS: 0000000000000000(0000) GS:ffff944e9eb40000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f1157b1fca8 CR3: 000000010f092000 CR4: 0000000000350ee0
Call Trace:
<TASK>
insert_inline_extent_backref+0x46/0xd0
__btrfs_inc_extent_ref.isra.0+0x5f/0x200
? btrfs_merge_delayed_refs+0x164/0x190
__btrfs_run_delayed_refs+0x561/0xfa0
? btrfs_search_slot+0x7b4/0xb30
? btrfs_update_root+0x1a9/0x2c0
btrfs_run_delayed_refs+0x73/0x1f0
? btrfs_update_root+0x1a9/0x2c0
btrfs_commit_transaction+0x50/0xa50
? btrfs_update_reloc_root+0x122/0x220
prepare_to_merge+0x29f/0x320
relocate_block_group+0x2b8/0x550
btrfs_relocate_block_group+0x1a6/0x350
btrfs_relocate_chunk+0x27/0xe0
btrfs_balance+0x777/0xe60
balance_kthread+0x35/0x50
? btrfs_balance+0xe60/0xe60
kthread+0x16b/0x190
? set_kthread_struct+0x40/0x40
ret_from_fork+0x22/0x30
</TASK>
Normally snapshot deletion and relocation are excluded from running at
the same time by the fs_info->cleaner_mutex. However if we had a
pending balance waiting to get the ->cleaner_mutex, and a snapshot
deletion was running, and then the box crashed, we would come up in a
state where we have a half deleted snapshot.
Again, in the normal case the snapshot deletion needs to complete before
relocation can start, but in this case relocation could very well start
before the snapshot deletion completes, as we simply add the root to the
dead roots list and wait for the next time the cleaner runs to clean up
the snapshot.
Fix this by setting a bit on the fs_info if we have any DEAD_ROOT's that
had a pending drop_progress key. If they do then we know we were in the
middle of the drop operation and set a flag on the fs_info. Then
balance can wait until this flag is cleared to start up again.
If there are DEAD_ROOT's that don't have a drop_progress set then we're
safe to start balance right away as we'll be properly protected by the
cleaner_mutex.
CC: stable@vger.kernel.org # 5.10+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 16beac87e95e2fb278b552397c8260637f8a63f7 upstream.
When mounting a device, we are reporting the zones twice: once for
checking the zone attributes in btrfs_get_dev_zone_info and once for
loading block groups' zone info in
btrfs_load_block_group_zone_info(). With a lot of block groups, that
leads to a lot of REPORT ZONE commands and slows down the mount
process.
This patch introduces a zone info cache in struct
btrfs_zoned_device_info. The cache is populated while in
btrfs_get_dev_zone_info() and used for
btrfs_load_block_group_zone_info() to reduce the number of REPORT ZONE
commands. The zone cache is then released after loading the block
groups, as it will not be much effective during the run time.
Benchmark: Mount an HDD with 57,007 block groups
Before patch: 171.368 seconds
After patch: 64.064 seconds
While it still takes a minute due to the slowness of loading all the
block groups, the patch reduces the mount time by 1/3.
Link: https://lore.kernel.org/linux-btrfs/CAHQ7scUiLtcTqZOMMY5kbWUBOhGRwKo6J6wYPT5WY+C=cD49nQ@mail.gmail.com/
Fixes: 5b316468983d ("btrfs: get zone information of zoned block devices")
CC: stable@vger.kernel.org
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 33fab972497ae66822c0b6846d4f9382938575b6 upstream.
When creating a subvolume, at create_subvol(), we allocate an anonymous
device and later call btrfs_get_new_fs_root(), which in turn just calls
btrfs_get_root_ref(). There we call btrfs_init_fs_root() which assigns
the anonymous device to the root, but if after that call there's an error,
when we jump to 'fail' label, we call btrfs_put_root(), which frees the
anonymous device and then returns an error that is propagated back to
create_subvol(). Than create_subvol() frees the anonymous device again.
When this happens, if the anonymous device was not reallocated after
the first time it was freed with btrfs_put_root(), we get a kernel
message like the following:
(...)
[13950.282466] BTRFS: error (device dm-0) in create_subvol:663: errno=-5 IO failure
[13950.283027] ida_free called for id=65 which is not allocated.
[13950.285974] BTRFS info (device dm-0): forced readonly
(...)
If the anonymous device gets reallocated by another btrfs filesystem
or any other kernel subsystem, then bad things can happen.
So fix this by setting the root's anonymous device to 0 at
btrfs_get_root_ref(), before we call btrfs_put_root(), if an error
happened.
Fixes: 2dfb1e43f57dd3 ("btrfs: preallocate anon block device at first phase of snapshot creation")
CC: stable@vger.kernel.org # 5.10+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Commit d24fa5c1da08026be9959baca309fa0adf8708bf upstream.
In preparation to fix a bug in btrfs_show_devname().
Convert fs_devices::latest_bdev type from struct block_device to struct
btrfs_device and, rename the member to fs_devices::latest_dev.
So that btrfs_show_devname() can use fs_devices::latest_dev::name.
Tested-by: Su Yue <l@damenly.su>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit a91cf0ffbc244792e0b3ecf7d0fddb2f344b461f ]
When a disk has write caching disabled, we skip submission of a bio with
flush and sync requests before writing the superblock, since it's not
needed. However when the integrity checker is enabled, this results in
reports that there are metadata blocks referred by a superblock that
were not properly flushed. So don't skip the bio submission only when
the integrity checker is enabled for the sake of simplicity, since this
is a debug tool and not meant for use in non-debug builds.
fstests/btrfs/220 trigger a check-integrity warning like the following
when CONFIG_BTRFS_FS_CHECK_INTEGRITY=y and the disk with WCE=0.
btrfs: attempt to write superblock which references block M @5242880 (sdb2/5242880/0) which is not flushed out of disk's write cache (block flush_gen=1, dev->flush_gen=0)!
------------[ cut here ]------------
WARNING: CPU: 28 PID: 843680 at fs/btrfs/check-integrity.c:2196 btrfsic_process_written_superblock+0x22a/0x2a0 [btrfs]
CPU: 28 PID: 843680 Comm: umount Not tainted 5.15.0-0.rc5.39.el8.x86_64 #1
Hardware name: Dell Inc. Precision T7610/0NK70N, BIOS A18 09/11/2019
RIP: 0010:btrfsic_process_written_superblock+0x22a/0x2a0 [btrfs]
RSP: 0018:ffffb642afb47940 EFLAGS: 00010246
RAX: 0000000000000000 RBX: 0000000000000002 RCX: 0000000000000000
RDX: 00000000ffffffff RSI: ffff8b722fc97d00 RDI: ffff8b722fc97d00
RBP: ffff8b5601c00000 R08: 0000000000000000 R09: c0000000ffff7fff
R10: 0000000000000001 R11: ffffb642afb476f8 R12: ffffffffffffffff
R13: ffffb642afb47974 R14: ffff8b5499254c00 R15: 0000000000000003
FS: 00007f00a06d4080(0000) GS:ffff8b722fc80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fff5cff5ff0 CR3: 00000001c0c2a006 CR4: 00000000001706e0
Call Trace:
btrfsic_process_written_block+0x2f7/0x850 [btrfs]
__btrfsic_submit_bio.part.19+0x310/0x330 [btrfs]
? bio_associate_blkg_from_css+0xa4/0x2c0
btrfsic_submit_bio+0x18/0x30 [btrfs]
write_dev_supers+0x81/0x2a0 [btrfs]
? find_get_pages_range_tag+0x219/0x280
? pagevec_lookup_range_tag+0x24/0x30
? __filemap_fdatawait_range+0x6d/0xf0
? __raw_callee_save___native_queued_spin_unlock+0x11/0x1e
? find_first_extent_bit+0x9b/0x160 [btrfs]
? __raw_callee_save___native_queued_spin_unlock+0x11/0x1e
write_all_supers+0x1b3/0xa70 [btrfs]
? __raw_callee_save___native_queued_spin_unlock+0x11/0x1e
btrfs_commit_transaction+0x59d/0xac0 [btrfs]
close_ctree+0x11d/0x339 [btrfs]
generic_shutdown_super+0x71/0x110
kill_anon_super+0x14/0x30
btrfs_kill_super+0x12/0x20 [btrfs]
deactivate_locked_super+0x31/0x70
cleanup_mnt+0xb8/0x140
task_work_run+0x6d/0xb0
exit_to_user_mode_prepare+0x1f0/0x200
syscall_exit_to_user_mode+0x12/0x30
do_syscall_64+0x46/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xae
RIP: 0033:0x7f009f711dfb
RSP: 002b:00007fff5cff7928 EFLAGS: 00000246 ORIG_RAX: 00000000000000a6
RAX: 0000000000000000 RBX: 000055b68c6c9970 RCX: 00007f009f711dfb
RDX: 0000000000000001 RSI: 0000000000000000 RDI: 000055b68c6c9b50
RBP: 0000000000000000 R08: 000055b68c6ca900 R09: 00007f009f795580
R10: 0000000000000000 R11: 0000000000000246 R12: 000055b68c6c9b50
R13: 00007f00a04bf184 R14: 0000000000000000 R15: 00000000ffffffff
---[ end trace 2c4b82abcef9eec4 ]---
S-65536(sdb2/65536/1)
-->
M-1064960(sdb2/1064960/1)
Reviewed-by: Filipe Manana <fdmanana@gmail.com>
Signed-off-by: Wang Yugui <wangyugui@e16-tech.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit c2707a25562343511bf9a3a6a636a16a822204eb upstream
Relocation in a zoned filesystem can fail with a transaction abort with
error -22 (EINVAL). This happens because the relocation code assumes that
the extents we relocated the data to have the same size the source extents
had and ensures this by preallocating the extents.
But in a zoned filesystem we currently can't preallocate the extents as
this would break the sequential write required rule. Therefore it can
happen that the writeback process kicks in while we're still adding pages
to a delalloc range and starts writing out dirty pages.
This then creates destination extents that are smaller than the source
extents, triggering the following safety check in get_new_location():
1034 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1035 ret = -EINVAL;
1036 goto out;
1037 }
Temporarily create a dedicated block group for the relocation process, so
no non-relocation data writes can interfere with the relocation writes.
This is needed that we can switch the relocation process on a zoned
filesystem from the REQ_OP_ZONE_APPEND writing we use for data to a scheme
like in a non-zoned filesystem using REQ_OP_WRITE and preallocation.
Fixes: 32430c614844 ("btrfs: zoned: enable relocation on a zoned filesystem")
Reviewed-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 37f00a6d2e9c97d6e7b5c3d47c49b714c3d0b99f upstream
There are several places in our codebase where we check if a root is the
root of the data reloc tree and subsequent patches will introduce more.
Factor out the check into a small helper function instead of open coding
it multiple times.
Reviewed-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 5c78a5e7aa835c4f08a7c90fe02d19f95a776f29 upstream.
In open_ctree() in btrfs_check_rw_degradable() [1], we check each block
group individually if at least the minimum number of devices is available
for that profile. If all the devices are available, then we don't have to
check degradable.
[1]
open_ctree()
::
3559 if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info, NULL)) {
Also before calling btrfs_check_rw_degradable() in open_ctee() at the
line number shown below [2] we call btrfs_read_chunk_tree() and down to
add_missing_dev() to record number of missing devices.
[2]
open_ctree()
::
3454 ret = btrfs_read_chunk_tree(fs_info);
btrfs_read_chunk_tree()
read_one_chunk() / read_one_dev()
add_missing_dev()
So, check if there is any missing device before btrfs_check_rw_degradable()
in open_ctree().
Also, with this the mount command could save ~16ms.[3] in the most
common case, that is no device is missing.
[3]
1) * 16934.96 us | btrfs_check_rw_degradable [btrfs]();
CC: stable@vger.kernel.org # 4.19+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The mount option max_inline ranges from 0 to the sectorsize (which is
now equal to page size). But we parse the mount options too early and
before the actual sectorsize is read from the superblock. So the upper
limit of max_inline is unaware of the actual sectorsize and is limited
by the temporary sectorsize 4096, even on a system where the default
sectorsize is 64K.
Fix this by reading the superblock sectorsize before the mount option
parse.
Reported-by: Alexander Tsvetkov <alexander.tsvetkov@oracle.com>
CC: stable@vger.kernel.org # 5.4+
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Since now we support data and metadata read-write for subpage, remove
the RO requirement for subpage mount.
There are some extra limitations though:
- For now, subpage RW mount is still considered experimental
Thus that mount warning will still be there.
- No compression support
There are still quite some PAGE_SIZE hard coded and quite some call
sites use extent_clear_unlock_delalloc() to unlock locked_page.
This will screw up subpage helpers.
Now for subpage RW mount, no matter what mount option or inode attr is
set, all writes will not be compressed. Although reading compressed
data has no problem.
- No defrag for subpage case
The defrag support for subpage case will come in later patches, which
will also rework the defrag workflow.
- No inline extent will be created
This is mostly due to the fact that filemap_fdatawrite_range() will
trigger more write than the range specified.
In fallocate calls, this behavior can make us to writeback which can
be inlined, before we enlarge the i_size.
This is a very special corner case, and even current btrfs check won't
report error on such inline extent + regular extent.
But considering how much effort has been put to prevent such inline +
regular, I'd prefer to cut off inline extent completely until we have
a good solution.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
| |
RAID56 is not only unsafe due to its write-hole problem, but also has
tons of hardcoded PAGE_SIZE.
Disable it for subpage support for now.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Building with -Warray-bounds on systems with 64K pages there's a
warning:
fs/btrfs/disk-io.c: In function ‘csum_tree_block’:
fs/btrfs/disk-io.c:226:34: warning: array subscript 1 is above array bounds of ‘struct page *[1]’ [-Warray-bounds]
226 | kaddr = page_address(buf->pages[i]);
| ~~~~~~~~~~^~~
./include/linux/mm.h:1630:48: note: in definition of macro ‘page_address’
1630 | #define page_address(page) lowmem_page_address(page)
| ^~~~
In file included from fs/btrfs/ctree.h:32,
from fs/btrfs/disk-io.c:23:
fs/btrfs/extent_io.h:98:15: note: while referencing ‘pages’
98 | struct page *pages[1];
| ^~~~~
The compiler has no way to know that in that case the nodesize is exactly
PAGE_SIZE, so the resulting number of pages will be correct (1).
Let's use num_extent_pages that makes the case nodesize == PAGE_SIZE
explicitly 1.
Reported-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
| |
We used this in may_commit_transaction() in order to determine if we
needed to commit the transaction. However we no longer have that logic
and thus have no use of this counter anymore, so delete it.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When doing a send we don't expect the task to ever start a transaction
after the initial check that verifies if commit roots match the regular
roots. This is because after that we set current->journal_info with a
stub (special value) that signals we are in send context, so that we take
a read lock on an extent buffer when reading it from disk and verifying
it is valid (its generation matches the generation stored in the parent).
This stub was introduced in 2014 by commit a26e8c9f75b0bf ("Btrfs: don't
clear uptodate if the eb is under IO") in order to fix a concurrency issue
between send and balance.
However there is one particular exception where we end up needing to start
a transaction and when this happens it results in a crash with a stack
trace like the following:
[60015.902283] kernel: WARNING: CPU: 3 PID: 58159 at arch/x86/include/asm/kfence.h:44 kfence_protect_page+0x21/0x80
[60015.902292] kernel: Modules linked in: uinput rfcomm snd_seq_dummy (...)
[60015.902384] kernel: CPU: 3 PID: 58159 Comm: btrfs Not tainted 5.12.9-300.fc34.x86_64 #1
[60015.902387] kernel: Hardware name: Gigabyte Technology Co., Ltd. To be filled by O.E.M./F2A88XN-WIFI, BIOS F6 12/24/2015
[60015.902389] kernel: RIP: 0010:kfence_protect_page+0x21/0x80
[60015.902393] kernel: Code: ff 0f 1f 84 00 00 00 00 00 55 48 89 fd (...)
[60015.902396] kernel: RSP: 0018:ffff9fb583453220 EFLAGS: 00010246
[60015.902399] kernel: RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffff9fb583453224
[60015.902401] kernel: RDX: ffff9fb583453224 RSI: 0000000000000000 RDI: 0000000000000000
[60015.902402] kernel: RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000000
[60015.902404] kernel: R10: 0000000000000000 R11: 0000000000000000 R12: 0000000000000002
[60015.902406] kernel: R13: ffff9fb583453348 R14: 0000000000000000 R15: 0000000000000001
[60015.902408] kernel: FS: 00007f158e62d8c0(0000) GS:ffff93bd37580000(0000) knlGS:0000000000000000
[60015.902410] kernel: CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[60015.902412] kernel: CR2: 0000000000000039 CR3: 00000001256d2000 CR4: 00000000000506e0
[60015.902414] kernel: Call Trace:
[60015.902419] kernel: kfence_unprotect+0x13/0x30
[60015.902423] kernel: page_fault_oops+0x89/0x270
[60015.902427] kernel: ? search_module_extables+0xf/0x40
[60015.902431] kernel: ? search_bpf_extables+0x57/0x70
[60015.902435] kernel: kernelmode_fixup_or_oops+0xd6/0xf0
[60015.902437] kernel: __bad_area_nosemaphore+0x142/0x180
[60015.902440] kernel: exc_page_fault+0x67/0x150
[60015.902445] kernel: asm_exc_page_fault+0x1e/0x30
[60015.902450] kernel: RIP: 0010:start_transaction+0x71/0x580
[60015.902454] kernel: Code: d3 0f 84 92 00 00 00 80 e7 06 0f 85 63 (...)
[60015.902456] kernel: RSP: 0018:ffff9fb5834533f8 EFLAGS: 00010246
[60015.902458] kernel: RAX: 0000000000000001 RBX: 0000000000000001 RCX: 0000000000000000
[60015.902460] kernel: RDX: 0000000000000801 RSI: 0000000000000000 RDI: 0000000000000039
[60015.902462] kernel: RBP: ffff93bc0a7eb800 R08: 0000000000000001 R09: 0000000000000000
[60015.902463] kernel: R10: 0000000000098a00 R11: 0000000000000001 R12: 0000000000000001
[60015.902464] kernel: R13: 0000000000000000 R14: ffff93bc0c92b000 R15: ffff93bc0c92b000
[60015.902468] kernel: btrfs_commit_inode_delayed_inode+0x5d/0x120
[60015.902473] kernel: btrfs_evict_inode+0x2c5/0x3f0
[60015.902476] kernel: evict+0xd1/0x180
[60015.902480] kernel: inode_lru_isolate+0xe7/0x180
[60015.902483] kernel: __list_lru_walk_one+0x77/0x150
[60015.902487] kernel: ? iput+0x1a0/0x1a0
[60015.902489] kernel: ? iput+0x1a0/0x1a0
[60015.902491] kernel: list_lru_walk_one+0x47/0x70
[60015.902495] kernel: prune_icache_sb+0x39/0x50
[60015.902497] kernel: super_cache_scan+0x161/0x1f0
[60015.902501] kernel: do_shrink_slab+0x142/0x240
[60015.902505] kernel: shrink_slab+0x164/0x280
[60015.902509] kernel: shrink_node+0x2c8/0x6e0
[60015.902512] kernel: do_try_to_free_pages+0xcb/0x4b0
[60015.902514] kernel: try_to_free_pages+0xda/0x190
[60015.902516] kernel: __alloc_pages_slowpath.constprop.0+0x373/0xcc0
[60015.902521] kernel: ? __memcg_kmem_charge_page+0xc2/0x1e0
[60015.902525] kernel: __alloc_pages_nodemask+0x30a/0x340
[60015.902528] kernel: pipe_write+0x30b/0x5c0
[60015.902531] kernel: ? set_next_entity+0xad/0x1e0
[60015.902534] kernel: ? switch_mm_irqs_off+0x58/0x440
[60015.902538] kernel: __kernel_write+0x13a/0x2b0
[60015.902541] kernel: kernel_write+0x73/0x150
[60015.902543] kernel: send_cmd+0x7b/0xd0
[60015.902545] kernel: send_extent_data+0x5a3/0x6b0
[60015.902549] kernel: process_extent+0x19b/0xed0
[60015.902551] kernel: btrfs_ioctl_send+0x1434/0x17e0
[60015.902554] kernel: ? _btrfs_ioctl_send+0xe1/0x100
[60015.902557] kernel: _btrfs_ioctl_send+0xbf/0x100
[60015.902559] kernel: ? enqueue_entity+0x18c/0x7b0
[60015.902562] kernel: btrfs_ioctl+0x185f/0x2f80
[60015.902564] kernel: ? psi_task_change+0x84/0xc0
[60015.902569] kernel: ? _flat_send_IPI_mask+0x21/0x40
[60015.902572] kernel: ? check_preempt_curr+0x2f/0x70
[60015.902576] kernel: ? selinux_file_ioctl+0x137/0x1e0
[60015.902579] kernel: ? expand_files+0x1cb/0x1d0
[60015.902582] kernel: ? __x64_sys_ioctl+0x82/0xb0
[60015.902585] kernel: __x64_sys_ioctl+0x82/0xb0
[60015.902588] kernel: do_syscall_64+0x33/0x40
[60015.902591] kernel: entry_SYSCALL_64_after_hwframe+0x44/0xae
[60015.902595] kernel: RIP: 0033:0x7f158e38f0ab
[60015.902599] kernel: Code: ff ff ff 85 c0 79 9b (...)
[60015.902602] kernel: RSP: 002b:00007ffcb2519bf8 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
[60015.902605] kernel: RAX: ffffffffffffffda RBX: 00007ffcb251ae00 RCX: 00007f158e38f0ab
[60015.902607] kernel: RDX: 00007ffcb2519cf0 RSI: 0000000040489426 RDI: 0000000000000004
[60015.902608] kernel: RBP: 0000000000000004 R08: 00007f158e297640 R09: 00007f158e297640
[60015.902610] kernel: R10: 0000000000000008 R11: 0000000000000246 R12: 0000000000000000
[60015.902612] kernel: R13: 0000000000000002 R14: 00007ffcb251aee0 R15: 0000558c1a83e2a0
[60015.902615] kernel: ---[ end trace 7bbc33e23bb887ae ]---
This happens because when writing to the pipe, by calling kernel_write(),
we end up doing page allocations using GFP_HIGHUSER | __GFP_ACCOUNT as the
gfp flags, which allow reclaim to happen if there is memory pressure. This
allocation happens at fs/pipe.c:pipe_write().
If the reclaim is triggered, inode eviction can be triggered and that in
turn can result in starting a transaction if the inode has a link count
of 0. The transaction start happens early on during eviction, when we call
btrfs_commit_inode_delayed_inode() at btrfs_evict_inode(). This happens if
there is currently an open file descriptor for an inode with a link count
of 0 and the reclaim task gets a reference on the inode before that
descriptor is closed, in which case the reclaim task ends up doing the
final iput that triggers the inode eviction.
When we have assertions enabled (CONFIG_BTRFS_ASSERT=y), this triggers
the following assertion at transaction.c:start_transaction():
/* Send isn't supposed to start transactions. */
ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
And when assertions are not enabled, it triggers a crash since after that
assertion we cast current->journal_info into a transaction handle pointer
and then dereference it:
if (current->journal_info) {
WARN_ON(type & TRANS_EXTWRITERS);
h = current->journal_info;
refcount_inc(&h->use_count);
(...)
Which obviously results in a crash due to an invalid memory access.
The same type of issue can happen during other memory allocations we
do directly in the send code with kmalloc (and friends) as they use
GFP_KERNEL and therefore may trigger reclaim too, which started to
happen since 2016 after commit e780b0d1c1523e ("btrfs: send: use
GFP_KERNEL everywhere").
The issue could be solved by setting up a NOFS context for the entire
send operation so that reclaim could not be triggered when allocating
memory or pages through kernel_write(). However that is not very friendly
and we can in fact get rid of the send stub because:
1) The stub was introduced way back in 2014 by commit a26e8c9f75b0bf
("Btrfs: don't clear uptodate if the eb is under IO") to solve an
issue exclusive to when send and balance are running in parallel,
however there were other problems between balance and send and we do
not allow anymore to have balance and send run concurrently since
commit 9e967495e0e0ae ("Btrfs: prevent send failures and crashes due
to concurrent relocation"). More generically the issues are between
send and relocation, and that last commit eliminated only the
possibility of having send and balance run concurrently, but shrinking
a device also can trigger relocation, and on zoned filesystems we have
relocation of partially used block groups triggered automatically as
well. The previous patch that has a subject of:
"btrfs: ensure relocation never runs while we have send operations running"
Addresses all the remaining cases that can trigger relocation.
2) We can actually allow starting and even committing transactions while
in a send context if needed because send is not holding any locks that
would block the start or the commit of a transaction.
So get rid of all the logic added by commit a26e8c9f75b0bf ("Btrfs: don't
clear uptodate if the eb is under IO"). We can now always call
clear_extent_buffer_uptodate() at verify_parent_transid() since send is
the only case that uses commit roots without having a transaction open or
without holding the commit_root_sem.
Reported-by: Chris Murphy <lists@colorremedies.com>
Link: https://lore.kernel.org/linux-btrfs/CAJCQCtRQ57=qXo3kygwpwEBOU_CA_eKvdmjP52sU=eFvuVOEGw@mail.gmail.com/
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Relocation and send do not play well together because while send is
running a block group can be relocated, a transaction committed and
the respective disk extents get re-allocated and written to or discarded
while send is about to do something with the extents.
This was explained in commit 9e967495e0e0ae ("Btrfs: prevent send failures
and crashes due to concurrent relocation"), which prevented balance and
send from running in parallel but it did not address one remaining case
where chunk relocation can happen: shrinking a device (and device deletion
which shrinks a device's size to 0 before deleting the device).
We also have now one more case where relocation is triggered: on zoned
filesystems partially used block groups get relocated by a background
thread, introduced in commit 18bb8bbf13c183 ("btrfs: zoned: automatically
reclaim zones").
So make sure that instead of preventing balance from running when there
are ongoing send operations, we prevent relocation from happening.
This uses the infrastructure recently added by a patch that has the
subject: "btrfs: add cancellable chunk relocation support".
Also it adds a spinlock used exclusively for the exclusivity between
send and relocation, as before fs_info->balance_mutex was used, which
would make an attempt to run send to block waiting for balance to
finish, which can take a lot of time on large filesystems.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
| |
Subjectively, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA is quite long and
calling it CHECK_INTEGRITY_DATA still keeps the meaning and matches the
mount option name.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
| |
Fix typos that have snuck in since the last round. Found by codespell.
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add support code that will allow canceling relocation on the chunk
granularity. This is different and independent of balance, that also
uses relocation but is a higher level operation and manages it's own
state and pause/cancellation requests.
Relocation is used for resize (shrink) and device deletion so this will
be a common point to implement cancellation for both. The context is
entirely in btrfs_relocate_block_group and btrfs_recover_relocation,
enclosing one chunk relocation. The status bit is set and unset between
the chunks. As relocation can take long, the effects may not be
immediate and the request and actual action can slightly race.
The fs_info::reloc_cancel_req is only supposed to be increased and does
not pair with decrement like fs_info::balance_cancel_req.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
The verification copies the calculated checksum bytes to a temporary
buffer but this is not necessary. We can map the eb header on the first
page and use the checksum bytes directly.
This saves at least one function call and boundary checks so it could
lead to a minor performance improvement.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
| |
The s_id is already printed by message helpers.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The 'check_async_write' function is a helper used in
'btrfs_submit_metadata_bio' and it checks if asynchronous writing can be
used for metadata.
Make the function return bool and get rid of the local variable async in
btrfs_submit_metadata_bio storing the result of check_async_write's
tests.
As this is touching all function call sites, also rename it to
should_async_write as this is more in line with the naming we use.
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Syzbot managed to trigger this assert while performing its fuzzing.
Turns out it's better to have those asserts turned into full-fledged
checks so that in case buggy btrfs images are mounted the users gets
an error and mounting is stopped. Alternatively with CONFIG_BTRFS_ASSERT
disabled such image would have been erroneously allowed to be mounted.
Reported-by: syzbot+a6bf271c02e4fe66b4e4@syzkaller.appspotmail.com
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add uuids to the messages ]
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When a file gets deleted on a zoned file system, the space freed is not
returned back into the block group's free space, but is migrated to
zone_unusable.
As this zone_unusable space is behind the current write pointer it is not
possible to use it for new allocations. In the current implementation a
zone is reset once all of the block group's space is accounted as zone
unusable.
This behaviour can lead to premature ENOSPC errors on a busy file system.
Instead of only reclaiming the zone once it is completely unusable,
kick off a reclaim job once the amount of unusable bytes exceeds a user
configurable threshold between 51% and 100%. It can be set per mounted
filesystem via the sysfs tunable bg_reclaim_threshold which is set to 75%
by default.
Similar to reclaiming unused block groups, these dirty block groups are
added to a to_reclaim list and then on a transaction commit, the reclaim
process is triggered but after we deleted unused block groups, which will
free space for the relocation process.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
| |
As a preparation for extending the block group deletion use case, rename
the unused_bgs_mutex to reclaim_bgs_lock.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add a new helper, csum_dirty_subpage_buffers(), to iterate through all
dirty extent buffers in one bvec.
Also extract the code of calculating csum for one extent buffer into
csum_one_extent_buffer(), so that both the existing csum_dirty_buffer()
and the new csum_dirty_subpage_buffers() can reuse the same routine.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
For btree_set_page_dirty(), we should also check the extent buffer
sanity for subpage support.
Unlike the regular sector size case, since one page can contain multiple
extent buffers, we need to make sure there is at least one dirty extent
buffer in the page.
So this patch will iterate through the btrfs_subpage::dirty_bitmap
to get the extent buffers, and check if any dirty extent buffer in the page
range has EXTENT_BUFFER_DIRTY and proper refs.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"Fixes for issues that have some user visibility and are simple enough
for this time of development cycle:
- a few fixes for rescue= mount option, adding more checks for
missing trees
- fix sleeping in atomic context on qgroup deletion
- fix subvolume deletion on mount
- fix build with M= syntax
- fix checksum mismatch error message for direct io"
* tag 'for-5.12-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: fix check_data_csum() error message for direct I/O
btrfs: fix sleep while in non-sleep context during qgroup removal
btrfs: fix subvolume/snapshot deletion not triggered on mount
btrfs: fix build when using M=fs/btrfs
btrfs: do not initialize dev replace for bad dev root
btrfs: initialize device::fs_info always
btrfs: do not initialize dev stats if we have no dev_root
btrfs: zoned: remove outdated WARN_ON in direct IO
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
During the mount procedure we are calling btrfs_orphan_cleanup() against
the root tree, which will find all orphans items in this tree. When an
orphan item corresponds to a deleted subvolume/snapshot (instead of an
inode space cache), it must not delete the orphan item, because that will
cause btrfs_find_orphan_roots() to not find the orphan item and therefore
not add the corresponding subvolume root to the list of dead roots, which
results in the subvolume's tree never being deleted by the cleanup thread.
The same applies to the remount from RO to RW path.
Fix this by making btrfs_find_orphan_roots() run before calling
btrfs_orphan_cleanup() against the root tree.
A test case for fstests will follow soon.
Reported-by: Robbie Ko <robbieko@synology.com>
Link: https://lore.kernel.org/linux-btrfs/b19f4310-35e0-606e-1eea-2dd84d28c5da@synology.com/
Fixes: 638331fa56caea ("btrfs: fix transaction leak and crash after cleaning up orphans on RO mount")
CC: stable@vger.kernel.org # 5.11+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Neal reported a panic trying to use -o rescue=all
BUG: kernel NULL pointer dereference, address: 0000000000000030
PGD 0 P4D 0
Oops: 0000 [#1] SMP NOPTI
CPU: 0 PID: 696 Comm: mount Tainted: G W 5.12.0-rc2+ #296
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014
RIP: 0010:btrfs_device_init_dev_stats+0x1d/0x200
RSP: 0018:ffffafaec1483bb8 EFLAGS: 00010286
RAX: 0000000000000000 RBX: ffff9a5715bcb298 RCX: 0000000000000070
RDX: ffff9a5703248000 RSI: ffff9a57052ea150 RDI: ffff9a5715bca400
RBP: ffff9a57052ea150 R08: 0000000000000070 R09: ffff9a57052ea150
R10: 000130faf0741c10 R11: 0000000000000000 R12: ffff9a5703700000
R13: 0000000000000000 R14: ffff9a5715bcb278 R15: ffff9a57052ea150
FS: 00007f600d122c40(0000) GS:ffff9a577bc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000030 CR3: 0000000112a46005 CR4: 0000000000370ef0
Call Trace:
? btrfs_init_dev_stats+0x1f/0xf0
? kmem_cache_alloc+0xef/0x1f0
btrfs_init_dev_stats+0x5f/0xf0
open_ctree+0x10cb/0x1720
btrfs_mount_root.cold+0x12/0xea
legacy_get_tree+0x27/0x40
vfs_get_tree+0x25/0xb0
vfs_kern_mount.part.0+0x71/0xb0
btrfs_mount+0x10d/0x380
legacy_get_tree+0x27/0x40
vfs_get_tree+0x25/0xb0
path_mount+0x433/0xa00
__x64_sys_mount+0xe3/0x120
do_syscall_64+0x33/0x40
entry_SYSCALL_64_after_hwframe+0x44/0xae
This happens because when we call btrfs_init_dev_stats we do
device->fs_info->dev_root. However device->fs_info isn't initialized
because we were only calling btrfs_init_devices_late() if we properly
read the device root. However we don't actually need the device root to
init the devices, this function simply assigns the devices their
->fs_info pointer properly, so this needs to be done unconditionally
always so that we can properly dereference device->fs_info in rescue
cases.
Reported-by: Neal Gompa <ngompa13@gmail.com>
CC: stable@vger.kernel.org # 5.11+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|\|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs updates from David Sterba:
"This brings updates of space handling, performance improvements or bug
fixes. The subpage block size and zoned mode features have reached
state where they're usable but with limitations.
Performance or related:
- do not block on deleted block group mutex in the cleaner, avoids
some long stalls
- improved flushing: make it work better with ticket space
reservations and avoid excessive transaction commits in some
scenarios, slightly improves throughput for random write load
- preemptive background flushing: separate the logic from ticket
reservations, improve the accounting and decisions when to flush in
low space conditions
- less lock contention related to running delayed refs, let just one
thread do the flushing when there are many inside transaction
commit
- dbench workload improvements: avoid unnecessary work when logging
inodes, fewer fallbacks to transaction commit and thus less waiting
for it (+7% throughput, -20% latency)
Core:
- subpage block size
- currently read-only support
- refactor and generalize code where sectorsize is assumed to be
page size, add the subpage handling everywhere
- the read-write support is on the way, page sizes are still
limited to 4K or 64K
- zoned mode, first working version but with limitations
- SMR/ZBC/ZNS friendly allocation mode, utilizing the "no fixed
location for structures" and chunked allocation
- superblock as the only fixed data structure needs special
handling, uses 2 consecutive zones as a ring buffer
- tree-log support with a dedicated block group to avoid unordered
writes
- emulated zones on non-zoned devices
- not yet working
- all non-single block group profiles, requires more zone write
pointer synchronization between the multiple block groups
- fitrim due to dependency on space cache, can be implemented
Fixes:
- ref-verify: proper tree owner and node level tracking
- fix pinned byte accounting, causing some early ENOSPC now more
likely due to other changes in delayed refs
Other:
- error handling fixes and improvements
- more error injection points
- more function documentation
- more and updated tracepoints
- subset of W=1 checked by default
- update comments to allow more automatic kdoc parameter checks"
* tag 'for-5.12-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (144 commits)
btrfs: zoned: enable to mount ZONED incompat flag
btrfs: zoned: deal with holes writing out tree-log pages
btrfs: zoned: reorder log node allocation on zoned filesystem
btrfs: zoned: serialize log transaction on zoned filesystems
btrfs: zoned: extend zoned allocator to use dedicated tree-log block group
btrfs: split alloc_log_tree()
btrfs: zoned: relocate block group to repair IO failure in zoned filesystems
btrfs: zoned: enable relocation on a zoned filesystem
btrfs: zoned: support dev-replace in zoned filesystems
btrfs: zoned: implement copying for zoned device-replace
btrfs: zoned: implement cloning for zoned device-replace
btrfs: zoned: mark block groups to copy for device-replace
btrfs: zoned: do not use async metadata checksum on zoned filesystems
btrfs: zoned: wait for existing extents before truncating
btrfs: zoned: serialize metadata IO
btrfs: zoned: introduce dedicated data write path for zoned filesystems
btrfs: zoned: enable zone append writing for direct IO
btrfs: zoned: use ZONE_APPEND write for zoned mode
btrfs: save irq flags when looking up an ordered extent
btrfs: zoned: cache if block group is on a sequential zone
...
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
This is the 3/3 patch to enable tree-log on zoned filesystems.
The allocation order of nodes of "fs_info->log_root_tree" and nodes of
"root->log_root" is not the same as the writing order of them. So, the
writing causes unaligned write errors.
Reorder the allocation of them by delaying allocation of the root node of
"fs_info->log_root_tree," so that the node buffers can go out sequentially
to devices.
Cc: Filipe Manana <fdmanana@gmail.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
This is the 1/3 patch to enable tree log on zoned filesystems.
The tree-log feature does not work on a zoned filesystem as is. Blocks for
a tree-log tree are allocated mixed with other metadata blocks and btrfs
writes and syncs the tree-log blocks to devices at the time of fsync(),
which has a different timing than a global transaction commit. As a
result, both writing tree-log blocks and writing other metadata blocks
become non-sequential writes that zoned filesystems must avoid.
Introduce a dedicated block group for tree-log blocks, so that tree-log
blocks and other metadata blocks can be separate write streams. As a
result, each write stream can now be written to devices separately.
"fs_info->treelog_bg" tracks the dedicated block group and assigns
"treelog_bg" on-demand on tree-log block allocation time.
This commit extends the zoned block allocator to use the block group.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
This is a preparation patch for the next patch. Split alloc_log_tree()
into two parts. The first one allocating the tree structure, remains in
alloc_log_tree() and the second part allocating the tree node, which is
moved into btrfs_alloc_log_tree_node().
Also export the latter part is to be used in the next patch.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|