summaryrefslogtreecommitdiffstats
path: root/fs/btrfs/extent_io.c
Commit message (Collapse)AuthorAgeFilesLines
* btrfs: fix race in read_extent_buffer_pages()Tavian Barnes2024-03-261-0/+13
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | There are reports from tree-checker that detects corrupted nodes, without any obvious pattern so possibly an overwrite in memory. After some debugging it turns out there's a race when reading an extent buffer the uptodate status can be missed. To prevent concurrent reads for the same extent buffer, read_extent_buffer_pages() performs these checks: /* (1) */ if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) return 0; /* (2) */ if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags)) goto done; At this point, it seems safe to start the actual read operation. Once that completes, end_bbio_meta_read() does /* (3) */ set_extent_buffer_uptodate(eb); /* (4) */ clear_bit(EXTENT_BUFFER_READING, &eb->bflags); Normally, this is enough to ensure only one read happens, and all other callers wait for it to finish before returning. Unfortunately, there is a racey interleaving: Thread A | Thread B | Thread C ---------+----------+--------- (1) | | | (1) | (2) | | (3) | | (4) | | | (2) | | | (1) When this happens, thread B kicks of an unnecessary read. Worse, thread C will see UPTODATE set and return immediately, while the read from thread B is still in progress. This race could result in tree-checker errors like this as the extent buffer is concurrently modified: BTRFS critical (device dm-0): corrupted node, root=256 block=8550954455682405139 owner mismatch, have 11858205567642294356 expect [256, 18446744073709551360] Fix it by testing UPTODATE again after setting the READING bit, and if it's been set, skip the unnecessary read. Fixes: d7172f52e993 ("btrfs: use per-buffer locking for extent_buffer reading") Link: https://lore.kernel.org/linux-btrfs/CAHk-=whNdMaN9ntZ47XRKP6DBes2E5w7fi-0U3H2+PS18p+Pzw@mail.gmail.com/ Link: https://lore.kernel.org/linux-btrfs/f51a6d5d7432455a6a858d51b49ecac183e0bbc9.1706312914.git.wqu@suse.com/ Link: https://lore.kernel.org/linux-btrfs/c7241ea4-fcc6-48d2-98c8-b5ea790d6c89@gmx.com/ CC: stable@vger.kernel.org # 6.5+ Reviewed-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Tavian Barnes <tavianator@tavianator.com> Reviewed-by: David Sterba <dsterba@suse.com> [ minor update of changelog ] Signed-off-by: David Sterba <dsterba@suse.com>
* btrfs: reuse cloned extent buffer during fiemap to avoid re-allocationsFilipe Manana2024-03-051-8/+24
| | | | | | | | | | | | | During fiemap we may have to visit multiple leaves of the subvolume's inode tree, and each time we are freeing and allocating an extent buffer to use as a clone of each visited leaf. Optimize this by reusing cloned extent buffers, to avoid the freeing and re-allocation both of the extent buffer structure itself and more importantly of the pages attached to the extent buffer. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
* btrfs: fix race when detecting delalloc ranges during fiemapFilipe Manana2024-03-051-61/+160
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | For fiemap we recently stopped locking the target extent range for the whole duration of the fiemap call, in order to avoid a deadlock in a scenario where the fiemap buffer happens to be a memory mapped range of the same file. This use case is very unlikely to be useful in practice but it may be triggered by fuzz testing (syzbot, etc). This however introduced a race that makes us miss delalloc ranges for file regions that are currently holes, so the caller of fiemap will not be aware that there's data for some file regions. This can be quite serious for some use cases - for example in coreutils versions before 9.0, the cp program used fiemap to detect holes and data in the source file, copying only regions with data (extents or delalloc) from the source file to the destination file in order to preserve holes (see the documentation for its --sparse command line option). This means that if cp was used with a source file that had delalloc in a hole, the destination file could end up without that data, which is effectively a data loss issue, if it happened to hit the race described below. The race happens like this: 1) Fiemap is called, without the FIEMAP_FLAG_SYNC flag, for a file that has delalloc in the file range [64M, 65M[, which is currently a hole; 2) Fiemap locks the inode in shared mode, then starts iterating the inode's subvolume tree searching for file extent items, without having the whole fiemap target range locked in the inode's io tree - the change introduced recently by commit b0ad381fa769 ("btrfs: fix deadlock with fiemap and extent locking"). It only locks ranges in the io tree when it finds a hole or prealloc extent since that commit; 3) Note that fiemap clones each leaf before using it, and this is to avoid deadlocks when locking a file range in the inode's io tree and the fiemap buffer is memory mapped to some file, because writing to the page with btrfs_page_mkwrite() will wait on any ordered extent for the page's range and the ordered extent needs to lock the range and may need to modify the same leaf, therefore leading to a deadlock on the leaf; 4) While iterating the file extent items in the cloned leaf before finding the hole in the range [64M, 65M[, the delalloc in that range is flushed and its ordered extent completes - meaning the corresponding file extent item is in the inode's subvolume tree, but not present in the cloned leaf that fiemap is iterating over; 5) When fiemap finds the hole in the [64M, 65M[ range by seeing the gap in the cloned leaf (or a file extent item with disk_bytenr == 0 in case the NO_HOLES feature is not enabled), it will lock that file range in the inode's io tree and then search for delalloc by checking for the EXTENT_DELALLOC bit in the io tree for that range and ordered extents (with btrfs_find_delalloc_in_range()). But it finds nothing since the delalloc in that range was already flushed and the ordered extent completed and is gone - as a result fiemap will not report that there's delalloc or an extent for the range [64M, 65M[, so user space will be mislead into thinking that there's a hole in that range. This could actually be sporadically triggered with test case generic/094 from fstests, which reports a missing extent/delalloc range like this: generic/094 2s ... - output mismatch (see /home/fdmanana/git/hub/xfstests/results//generic/094.out.bad) --- tests/generic/094.out 2020-06-10 19:29:03.830519425 +0100 +++ /home/fdmanana/git/hub/xfstests/results//generic/094.out.bad 2024-02-28 11:00:00.381071525 +0000 @@ -1,3 +1,9 @@ QA output created by 094 fiemap run with sync fiemap run without sync +ERROR: couldn't find extent at 7 +map is 'HHDDHPPDPHPH' +logical: [ 5.. 6] phys: 301517.. 301518 flags: 0x800 tot: 2 +logical: [ 8.. 8] phys: 301520.. 301520 flags: 0x800 tot: 1 ... (Run 'diff -u /home/fdmanana/git/hub/xfstests/tests/generic/094.out /home/fdmanana/git/hub/xfstests/results//generic/094.out.bad' to see the entire diff) So in order to fix this, while still avoiding deadlocks in the case where the fiemap buffer is memory mapped to the same file, change fiemap to work like the following: 1) Always lock the whole range in the inode's io tree before starting to iterate the inode's subvolume tree searching for file extent items, just like we did before commit b0ad381fa769 ("btrfs: fix deadlock with fiemap and extent locking"); 2) Now instead of writing to the fiemap buffer every time we have an extent to report, write instead to a temporary buffer (1 page), and when that buffer becomes full, stop iterating the file extent items, unlock the range in the io tree, release the search path, submit all the entries kept in that buffer to the fiemap buffer, and then resume the search for file extent items after locking again the remainder of the range in the io tree. The buffer having a size of a page, allows for 146 entries in a system with 4K pages. This is a large enough value to have a good performance by avoiding too many restarts of the search for file extent items. In other words this preserves the huge performance gains made in the last two years to fiemap, while avoiding the deadlocks in case the fiemap buffer is memory mapped to the same file (useless in practice, but possible and exercised by fuzz testing and syzbot). Fixes: b0ad381fa769 ("btrfs: fix deadlock with fiemap and extent locking") Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
* btrfs: remove SLAB_MEM_SPREAD flag useChengming Zhou2024-03-051-2/+2
| | | | | | | | | | | | | | | The SLAB_MEM_SPREAD flag used to be implemented in SLAB, which was removed as of v6.8-rc1, so it became a dead flag since the commit 16a1d968358a ("mm/slab: remove mm/slab.c and slab_def.h"). And the series[1] went on to mark it obsolete to avoid confusion for users. Here we can just remove all its users, which has no functional change. [1] https://lore.kernel.org/all/20240223-slab-cleanup-flags-v2-1-02f1753e8303@suse.cz/ Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
* btrfs: pass a valid extent map cache pointer to __get_extent_map()David Sterba2024-03-051-3/+10
| | | | | | | | | | | | | | | | | | | We can pass a valid em cache pointer down to __get_extent_map() and drop the validity check. This avoids the special case, the call stacks are simple: btrfs_read_folio btrfs_do_readpage __get_extent_map extent_readahead contiguous_readpages btrfs_do_readpage __get_extent_map Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
* btrfs: hoist fs_info out of loops in end_bbio_data_write and end_bbio_data_readDavid Sterba2024-03-041-5/+4
| | | | | | | | | The fs_info and sectorsize remain the same during the loops, no need to set them on each iteration. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>
* btrfs: add helper to get fs_info from struct inode pointerDavid Sterba2024-03-041-6/+6
| | | | | | | | | | | | Add a convenience helper to get a fs_info from a VFS inode pointer instead of open coding the chain or using btrfs_sb() that in some cases does one more pointer hop. This is implemented as a macro (still with type checking) so we don't need full definitions of struct btrfs_inode, btrfs_root or btrfs_fs_info. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>
* btrfs: add helpers to get fs_info from page/folio pointersDavid Sterba2024-03-041-8/+8
| | | | | | | | | | | | | | Add convenience helpers to get a fs_info from a page or folio pointer instead of open coding the chain or using btrfs_sb() that in some cases does one more pointer hop. This is implemented as a macro (still with type checking) so we don't need full definitions of struct page, folio, btrfs_root and btrfs_fs_info. The latter can't be static inlines as this would create loop between ctree.h <-> fs.h, or the headers would have to be restructured. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>
* btrfs: add helpers to get inode from page/folio pointersDavid Sterba2024-03-041-4/+4
| | | | | | | | | | | Add convenience helpers to get a struct btrfs_inode from a page or folio pointer instead of open coding the chain or intermediate BTRFS_I. This is implemented as a macro (still with type checking) so we don't need full definitions of struct page or address_space. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>
* btrfs: remove unused included headersDavid Sterba2024-03-041-2/+0
| | | | | | | | | | | With help of neovim, LSP and clangd we can identify header files that are not actually needed to be included in the .c files. This is focused only on removal (with minor fixups), further cleanups are possible but will require doing the header files properly with forward declarations, minimized includes and include-what-you-use care. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
* btrfs: replace sb::s_blocksize by fs_info::sectorsizeDavid Sterba2024-03-041-2/+2
| | | | | | | | | | | | | | The block size stored in the super block is used by subsystems outside of btrfs and it's a copy of fs_info::sectorsize. Unify that to always use our sectorsize, with the exception of mount where we first need to use fixed values (4K) until we read the super block and can set the sectorsize. Replace all uses, in most cases it's fewer pointer indirections. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: David Sterba <dsterba@suse.com>
* btrfs: add set_folio_extent_mapped() helperMatthew Wilcox (Oracle)2024-03-041-4/+8
| | | | | | | | | | | Turn set_page_extent_mapped() into a wrapper around this version. Saves a call to compound_head() for callers who already have a folio and removes a couple of users of page->mapping. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
* btrfs: WARN_ON_ONCE() in our leak detection codeJosef Bacik2024-03-041-0/+1
| | | | | | | | | | | | | fstests looks for WARN_ON's in dmesg. Add WARN_ON_ONCE() to our leak detection code (enabled only in debug builds) so that fstests will fail if these things trip at all. This will allow us to easily catch problems with our reference counting that may otherwise go unnoticed. Reviewed-by: Neal Gompa <neal@gompa.dev> Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
* btrfs: cache folio size and shift in extent_bufferQu Wenruo2024-03-041-17/+21
| | | | | | | | | | | | | | | | | | | | | | | After the conversion to folio interfaces (but without the patch to enable larger folio allocation), there is an LTP report about observable performance drop on metadata heavy operations. https://lore.kernel.org/linux-btrfs/202312221750.571925bd-oliver.sang@intel.com/ This drop is caused by the extra code of calculating the folio_size()/folio_shift(), instead of the old hard coded PAGE_SIZE/PAGE_SHIFT. To slightly reduce the overhead, just cache both folio_size and folio_shift in extent_buffer. The two new members (u32 folio_size and u8 folio_shift) are stored inside the holes of extent_buffer. folio_size is shared with len, which is reduced to u32. The size of eb does not change. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
* btrfs: remove unused variable bio_offset from end_bbio_data_read()Qu Wenruo2024-03-041-9/+0
| | | | | | | | | | | | | | | | | | | | | | The variable @bio_offset was introduced in commit 7ffd27e378d2 ("btrfs: pass bio_offset to check_data_csum() directly"), when we are still using the same endio function for both data and metadata. Later we had several changes to data and metadata endio functions: - Data verification is handled by btrfs bio layer - Split data and metadata endio paths Now for data path we no longer do any verification in end_bbio_data_read(), as the verification is handled by btrfs bio layer already. Thus there is no need for such bio_offset variable. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
* btrfs: remove the pg_offset parameter from btrfs_get_extent()Qu Wenruo2024-03-041-6/+4
| | | | | | | | | | | | | | | The parameter @pg_offset of btrfs_get_extent() is only utilized for inlined extent, and we already have an ASSERT() and tree-checker, to make sure we can only get inline extent at file offset 0. Any invalid inline extent with non-zero file offset would be rejected by tree-checker in the first place. Thus the @pg_offset parameter is not really necessary, just remove it. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
* Merge tag 'for-6.8-rc6-tag' of ↵Linus Torvalds2024-03-011-20/+104
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fixes from David Sterba: - fix freeing allocated id for anon dev when snapshot creation fails - fiemap fixes: - followup for a recent deadlock fix, ranges that fiemap can access can still race with ordered extent completion - make sure fiemap with SYNC flag does not race with writes * tag 'for-6.8-rc6-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: fix double free of anonymous device after snapshot creation failure btrfs: ensure fiemap doesn't race with writes when FIEMAP_FLAG_SYNC is given btrfs: fix race between ordered extent completion and fiemap
| * btrfs: ensure fiemap doesn't race with writes when FIEMAP_FLAG_SYNC is givenFilipe Manana2024-02-291-13/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When FIEMAP_FLAG_SYNC is given to fiemap the expectation is that that are no concurrent writes and we get a stable view of the inode's extent layout. When the flag is given we flush all IO (and wait for ordered extents to complete) and then lock the inode in shared mode, however that leaves open the possibility that a write might happen right after the flushing and before locking the inode. So fix this by flushing again after locking the inode - we leave the initial flushing before locking the inode to avoid holding the lock and blocking other RO operations while waiting for IO and ordered extents to complete. The second flushing while holding the inode's lock will most of the time do nothing or very little since the time window for new writes to have happened is small. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
| * btrfs: fix race between ordered extent completion and fiemapFilipe Manana2024-02-291-7/+96
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | For fiemap we recently stopped locking the target extent range for the whole duration of the fiemap call, in order to avoid a deadlock in a scenario where the fiemap buffer happens to be a memory mapped range of the same file. This use case is very unlikely to be useful in practice but it may be triggered by fuzz testing (syzbot, etc). However by not locking the target extent range for the whole duration of the fiemap call we can race with an ordered extent. This happens like this: 1) The fiemap task finishes processing a file extent item that covers the file range [512K, 1M[, and that file extent item is the last item in the leaf currently being processed; 2) And ordered extent for the file range [768K, 2M[, in COW mode, completes (btrfs_finish_one_ordered()) and the file extent item covering the range [512K, 1M[ is trimmed to cover the range [512K, 768K[ and then a new file extent item for the range [768K, 2M[ is inserted in the inode's subvolume tree; 3) The fiemap task calls fiemap_next_leaf_item(), which then calls btrfs_next_leaf() to find the next leaf / item. This finds that the the next key following the one we previously processed (its type is BTRFS_EXTENT_DATA_KEY and its offset is 512K), is the key corresponding to the new file extent item inserted by the ordered extent, which has a type of BTRFS_EXTENT_DATA_KEY and an offset of 768K; 4) Later the fiemap code ends up at emit_fiemap_extent() and triggers the warning: if (cache->offset + cache->len > offset) { WARN_ON(1); return -EINVAL; } Since we get 1M > 768K, because the previously emitted entry for the old extent covering the file range [512K, 1M[ ends at an offset that is greater than the new extent's start offset (768K). This makes fiemap fail with -EINVAL besides triggering the warning that produces a stack trace like the following: [1621.677651] ------------[ cut here ]------------ [1621.677656] WARNING: CPU: 1 PID: 204366 at fs/btrfs/extent_io.c:2492 emit_fiemap_extent+0x84/0x90 [btrfs] [1621.677899] Modules linked in: btrfs blake2b_generic (...) [1621.677951] CPU: 1 PID: 204366 Comm: pool Not tainted 6.8.0-rc5-btrfs-next-151+ #1 [1621.677954] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.2-0-gea1b7a073390-prebuilt.qemu.org 04/01/2014 [1621.677956] RIP: 0010:emit_fiemap_extent+0x84/0x90 [btrfs] [1621.678033] Code: 2b 4c 89 63 (...) [1621.678035] RSP: 0018:ffffab16089ffd20 EFLAGS: 00010206 [1621.678037] RAX: 00000000004fa000 RBX: ffffab16089ffe08 RCX: 0000000000009000 [1621.678039] RDX: 00000000004f9000 RSI: 00000000004f1000 RDI: ffffab16089ffe90 [1621.678040] RBP: 00000000004f9000 R08: 0000000000001000 R09: 0000000000000000 [1621.678041] R10: 0000000000000000 R11: 0000000000001000 R12: 0000000041d78000 [1621.678043] R13: 0000000000001000 R14: 0000000000000000 R15: ffff9434f0b17850 [1621.678044] FS: 00007fa6e20006c0(0000) GS:ffff943bdfa40000(0000) knlGS:0000000000000000 [1621.678046] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [1621.678048] CR2: 00007fa6b0801000 CR3: 000000012d404002 CR4: 0000000000370ef0 [1621.678053] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [1621.678055] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [1621.678056] Call Trace: [1621.678074] <TASK> [1621.678076] ? __warn+0x80/0x130 [1621.678082] ? emit_fiemap_extent+0x84/0x90 [btrfs] [1621.678159] ? report_bug+0x1f4/0x200 [1621.678164] ? handle_bug+0x42/0x70 [1621.678167] ? exc_invalid_op+0x14/0x70 [1621.678170] ? asm_exc_invalid_op+0x16/0x20 [1621.678178] ? emit_fiemap_extent+0x84/0x90 [btrfs] [1621.678253] extent_fiemap+0x766/0xa30 [btrfs] [1621.678339] btrfs_fiemap+0x45/0x80 [btrfs] [1621.678420] do_vfs_ioctl+0x1e4/0x870 [1621.678431] __x64_sys_ioctl+0x6a/0xc0 [1621.678434] do_syscall_64+0x52/0x120 [1621.678445] entry_SYSCALL_64_after_hwframe+0x6e/0x76 There's also another case where before calling btrfs_next_leaf() we are processing a hole or a prealloc extent and we had several delalloc ranges within that hole or prealloc extent. In that case if the ordered extents complete before we find the next key, we may end up finding an extent item with an offset smaller than (or equals to) the offset in cache->offset. So fix this by changing emit_fiemap_extent() to address these three scenarios like this: 1) For the first case, steps listed above, adjust the length of the previously cached extent so that it does not overlap with the current extent, emit the previous one and cache the current file extent item; 2) For the second case where he had a hole or prealloc extent with multiple delalloc ranges inside the hole or prealloc extent's range, and the current file extent item has an offset that matches the offset in the fiemap cache, just discard what we have in the fiemap cache and assign the current file extent item to the cache, since it's more up to date; 3) For the third case where he had a hole or prealloc extent with multiple delalloc ranges inside the hole or prealloc extent's range and the offset of the file extent item we just found is smaller than what we have in the cache, just skip the current file extent item if its range end at or behind the cached extent's end, because we may have emitted (to the fiemap user space buffer) delalloc ranges that overlap with the current file extent item's range. If the file extent item's range goes beyond the end offset of the cached extent, just emit the cached extent and cache a subrange of the file extent item, that goes from the end offset of the cached extent to the end offset of the file extent item. Dealing with those cases in those ways makes everything consistent by reflecting the current state of file extent items in the btree and without emitting extents that have overlapping ranges (which would be confusing and violating expectations). This issue could be triggered often with test case generic/561, and was also hit and reported by Wang Yugui. Reported-by: Wang Yugui <wangyugui@e16-tech.com> Link: https://lore.kernel.org/linux-btrfs/20240223104619.701F.409509F4@e16-tech.com/ Fixes: b0ad381fa769 ("btrfs: fix deadlock with fiemap and extent locking") Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
* | Merge tag 'for-6.8-rc5-tag' of ↵Linus Torvalds2024-02-211-17/+45
|\| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs fixes from David Sterba: - Fix a deadlock in fiemap. There was a big lock around the whole operation that can interfere with a page fault and mkwrite. Reducing the lock scope can also speed up fiemap - Fix range condition for extent defragmentation which could lead to worse layout in some cases * tag 'for-6.8-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: btrfs: fix deadlock with fiemap and extent locking btrfs: defrag: avoid unnecessary defrag caused by incorrect extent size
| * btrfs: fix deadlock with fiemap and extent lockingJosef Bacik2024-02-191-17/+45
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | While working on the patchset to remove extent locking I got a lockdep splat with fiemap and pagefaulting with my new extent lock replacement lock. This deadlock exists with our normal code, we just don't have lockdep annotations with the extent locking so we've never noticed it. Since we're copying the fiemap extent to user space on every iteration we have the chance of pagefaulting. Because we hold the extent lock for the entire range we could mkwrite into a range in the file that we have mmap'ed. This would deadlock with the following stack trace [<0>] lock_extent+0x28d/0x2f0 [<0>] btrfs_page_mkwrite+0x273/0x8a0 [<0>] do_page_mkwrite+0x50/0xb0 [<0>] do_fault+0xc1/0x7b0 [<0>] __handle_mm_fault+0x2fa/0x460 [<0>] handle_mm_fault+0xa4/0x330 [<0>] do_user_addr_fault+0x1f4/0x800 [<0>] exc_page_fault+0x7c/0x1e0 [<0>] asm_exc_page_fault+0x26/0x30 [<0>] rep_movs_alternative+0x33/0x70 [<0>] _copy_to_user+0x49/0x70 [<0>] fiemap_fill_next_extent+0xc8/0x120 [<0>] emit_fiemap_extent+0x4d/0xa0 [<0>] extent_fiemap+0x7f8/0xad0 [<0>] btrfs_fiemap+0x49/0x80 [<0>] __x64_sys_ioctl+0x3e1/0xb50 [<0>] do_syscall_64+0x94/0x1a0 [<0>] entry_SYSCALL_64_after_hwframe+0x6e/0x76 I wrote an fstest to reproduce this deadlock without my replacement lock and verified that the deadlock exists with our existing locking. To fix this simply don't take the extent lock for the entire duration of the fiemap. This is safe in general because we keep track of where we are when we're searching the tree, so if an ordered extent updates in the middle of our fiemap call we'll still emit the correct extents because we know what offset we were on before. The only place we maintain the lock is searching delalloc. Since the delalloc stuff can change during writeback we want to lock the extent range so we have a consistent view of delalloc at the time we're checking to see if we need to set the delalloc flag. With this patch applied we no longer deadlock with my testcase. CC: stable@vger.kernel.org # 6.1+ Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
* | Merge tag 'for-6.8-tag' of ↵Linus Torvalds2024-01-101-418/+633
|\| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux Pull btrfs updates from David Sterba: "There are no exciting changes for users, it's been mostly API conversions and some fixes or refactoring. The mount API conversion is a base for future improvements that would come with VFS. Metadata processing has been converted to folios, not yet enabling the large folios but it's one patch away once everything gets tested enough. Core changes: - convert extent buffers to folios: - direct API conversion where possible - performance can drop by a few percent on metadata heavy workloads, the folio sizes are not constant and the calculations add up in the item helpers - both regular and subpage modes - data cannot be converted yet, we need to port that to iomap and there are some other generic changes required - convert mount to the new API, should not be user visible: - options deprecated long time ago have been removed: inode_cache, recovery - the new logic that splits mount to two phases slightly changes timing of device scanning for multi-device filesystems - LSM options will now work (like for selinux) - convert delayed nodes radix tree to xarray, preserving the preload-like logic that still allows to allocate with GFP_NOFS - more validation of sysfs value of scrub_speed_max - refactor chunk map structure, reduce size and improve performance - extent map refactoring, smaller data structures, improved performance - reduce size of struct extent_io_tree, embedded in several structures - temporary pages used for compression are cached and attached to a shrinker, this may slightly improve performance - in zoned mode, remove redirty extent buffer tracking, zeros are written in case an out-of-order is detected and proper data are written to the actual write pointer - cleanups, refactoring, error message improvements, updated tests - verify and update branch name or tag - remove unwanted text" * tag 'for-6.8-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux: (89 commits) btrfs: pass btrfs_io_geometry into btrfs_max_io_len btrfs: pass struct btrfs_io_geometry to set_io_stripe btrfs: open code set_io_stripe for RAID56 btrfs: change block mapping to switch/case in btrfs_map_block btrfs: factor out block mapping for single profiles btrfs: factor out block mapping for RAID5/6 btrfs: reduce scope of data_stripes in btrfs_map_block btrfs: factor out block mapping for RAID10 btrfs: factor out block mapping for DUP profiles btrfs: factor out RAID1 block mapping btrfs: factor out block-mapping for RAID0 btrfs: re-introduce struct btrfs_io_geometry btrfs: factor out helper for single device IO check btrfs: migrate btrfs_repair_io_failure() to folio interfaces btrfs: migrate eb_bitmap_offset() to folio interfaces btrfs: migrate various end io functions to folios btrfs: migrate subpage code to folio interfaces btrfs: migrate get_eb_page_index() and get_eb_offset_in_page() to folios btrfs: don't double put our subpage reference in alloc_extent_buffer btrfs: cleanup metadata page pointer usage ...
| * btrfs: migrate eb_bitmap_offset() to folio interfacesQu Wenruo2023-12-151-12/+10
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | [BUG] Test case btrfs/002 would fail if larger folios are enabled for metadata: assertion failed: folio, in fs/btrfs/extent_io.c:4358 ------------[ cut here ]------------ kernel BUG at fs/btrfs/extent_io.c:4358! invalid opcode: 0000 [#1] PREEMPT SMP NOPTI CPU: 1 PID: 30916 Comm: fsstress Tainted: G OE 6.7.0-rc3-custom+ #128 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS unknown 2/2/2022 RIP: 0010:assert_eb_folio_uptodate+0x98/0xe0 [btrfs] Call Trace: <TASK> extent_buffer_test_bit+0x3c/0x70 [btrfs] free_space_test_bit+0xcd/0x140 [btrfs] modify_free_space_bitmap+0x27a/0x430 [btrfs] add_to_free_space_tree+0x8d/0x160 [btrfs] __btrfs_free_extent.isra.0+0xef1/0x13c0 [btrfs] __btrfs_run_delayed_refs+0x786/0x13c0 [btrfs] btrfs_run_delayed_refs+0x33/0x120 [btrfs] btrfs_commit_transaction+0xa2/0x1350 [btrfs] iterate_supers+0x77/0xe0 ksys_sync+0x60/0xa0 __do_sys_sync+0xa/0x20 do_syscall_64+0x3f/0xf0 entry_SYSCALL_64_after_hwframe+0x6e/0x76 </TASK> [CAUSE] The function extent_buffer_test_bit() is not folio compatible. It still assumes the old fixed page size, when an extent buffer with large folio passed in, only eb->folios[0] is populated. Then if the target bit range falls in the 2nd page of the folio, then we would check eb->folios[1], and trigger the ASSERT(). [FIX] Just migrate eb_bitmap_offset() to folio interfaces, using the folio_size() to replace PAGE_SIZE. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
| * btrfs: migrate various end io functions to foliosQu Wenruo2023-12-151-73/+77
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | If we still go the old page based iterator functions, like bio_for_each_segment_all(), we can hit middle pages of a folio (compound page). In that case if we set any page flag on those middle pages, we can easily trigger VM_BUG_ON(), as for compound page flags, they should follow their flag policies (normally only set on leading or tail pages). To avoid such problem in the future full folio migration, here we do: - Change from bio_for_each_segment_all() to bio_for_each_folio_all() This completely removes the ability to access the middle page. - Add extra ASSERT()s for data read/write paths To ensure we only get single paged folio for data now. - Rename those end io functions to follow a certain schema * end_bbio_compressed_read() * end_bbio_compressed_write() These two endio functions don't set any page flags, as they use pages not mapped to any address space. They can be very good candidates for higher order folio testing. And they are shared between compression and encoded IO. * end_bbio_data_read() * end_bbio_data_write() * end_bbio_meta_read() * end_bbio_meta_write() The old function names are not unified: - end_bio_extent_writepage() - end_bio_extent_readpage() - extent_buffer_write_end_io() - extent_buffer_read_end_io() They share no schema on where the "end_*io" string should be, nor can be confusing just using "extent_buffer" and "extent" to distinguish data and metadata paths. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
| * btrfs: migrate subpage code to folio interfacesQu Wenruo2023-12-151-51/+54
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Although subpage itself is conflicting with higher folio, since subpage (sectorsize < PAGE_SIZE and nodesize < PAGE_SIZE) means we will never need higher order folio, there is a hidden pitfall: - btrfs_page_*() helpers Those helpers are an abstraction to handle both subpage and non-subpage cases, which means we're going to pass pages pointers to those helpers. And since those helpers are shared between data and metadata paths, it's unavoidable to let them to handle folios, including higher order folios). Meanwhile for true subpage case, we should only have a single page backed folios anyway, thus add a new ASSERT() for btrfs_subpage_assert() to ensure that. Also since those helpers are shared between both data and metadata, add some extra ASSERT()s for data path to make sure we only get single page backed folio for now. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
| * btrfs: migrate get_eb_page_index() and get_eb_offset_in_page() to foliosQu Wenruo2023-12-151-63/+62
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | These two functions are still using the old page based code, which is not going to handle larger folios at all. The migration itself is going to involve the following changes: - PAGE_SIZE -> folio_size() - PAGE_SHIFT -> folio_shift() - get_eb_page_index() -> get_eb_folio_index() - get_eb_offset_in_page() -> get_eb_offset_in_folio() And since we're going to support larger folios, although above straight conversion is good enough, this patch would add extra comments in the involved functions to explain why the same single line code can now cover 3 cases: - folio_size == PAGE_SIZE, sectorsize == PAGE_SIZE, nodesize >= PAGE_SIZE The common, non-subpage case with per-page folio. - folio_size > PAGE_SIZE, sectorsize == PAGE_SIZE, nodesize >= PAGE_SIZE The incoming larger folio, non-subpage case. - folio_size == PAGE_SIZE, sectorsize < PAGE_SIZE, nodesize < PAGE_SIZE The existing subpage case, we won't larger folio anyway. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
| * btrfs: don't double put our subpage reference in alloc_extent_bufferJosef Bacik2023-12-151-3/+19
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This fixes as case in "btrfs: refactor alloc_extent_buffer() to allocate-then-attach method". We have been seeing panics in the CI for the subpage stuff recently, it happens on btrfs/187 but could potentially happen anywhere. In the subpage case, if we race with somebody else inserting the same extent buffer, the error case will end up calling detach_extent_buffer_page() on the page twice. This is done first in the bit for (int i = 0; i < attached; i++) detach_extent_buffer_page(eb, eb->pages[i]; and then again in btrfs_release_extent_buffer(). This works fine for !subpage because we're the only person who ever has ourselves on the private, and so when we do the initial detach_extent_buffer_page() we know we've completely removed it. However for subpage we could be using this page private elsewhere, so this results in a double put on the subpage, which can result in an early freeing. The fix here is to clear eb->pages[i] for everything we detach. Then anything still attached to the eb is freed in btrfs_release_extent_buffer(). Because of this change we must update btrfs_release_extent_buffer_pages() to not use num_extent_folios, because it assumes eb->folio[0] is set properly. Since this is only interested in freeing any pages we have on the extent buffer we can simply use INLINE_EXTENT_BUFFER_PAGES. Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
| * btrfs: cleanup metadata page pointer usageQu Wenruo2023-12-151-147/+172
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Although we have migrated extent_buffer::pages[] to folios[], we're still mostly using the folio_page() help to grab the page. This patch would do the following cleanups for metadata: - Introduce num_extent_folios() helper This is to replace most num_extent_pages() callers. - Use num_extent_folios() to iterate future large folios This allows us to use things like bio_add_folio()/bio_add_folio_nofail(), and only set the needed flags for the folio (aka the leading/tailing page), which reduces the loop iteration to 1 for large folios. - Change metadata related functions to use folio pointers Including their function name, involving: * attach_extent_buffer_page() * detach_extent_buffer_page() * page_range_has_eb() * btrfs_release_extent_buffer_pages() * btree_clear_page_dirty() * btrfs_page_inc_eb_refs() * btrfs_page_dec_eb_refs() - Change btrfs_is_subpage() to accept an address_space pointer This is to allow both page->mapping and folio->mapping to be utilized. As data is still using the old per-page code, and may keep so for a while. - Special corner case place holder for future order mismatches between extent buffer and inode filemap For now it's just a block of comments and a dead ASSERT(), no real handling yet. The subpage code would still go page, just because subpage and large folio are conflicting conditions, thus we don't need to bother subpage with higher order folios at all. Just folio_page(folio, 0) would be enough. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ minor styling tweaks ] Signed-off-by: David Sterba <dsterba@suse.com>
| * btrfs: migrate extent_buffer::pages[] to folioQu Wenruo2023-12-151-52/+73
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | For now extent_buffer::pages[] are still only accepting single page pointer, thus we can migrate to folios pretty easily. As for single page, page and folio are 1:1 mapped, including their page flags. This patch would just do the conversion from struct page to struct folio, providing the first step to higher order folio in the future. This conversion is pretty simple: - extent_buffer::pages[] -> extent_buffer::folios[] - page_address(eb->pages[i]) -> folio_address(eb->pages[i]) - eb->pages[i] -> folio_page(eb->folios[i], 0) There would be more specific cleanups preparing for the incoming higher order folio support. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
| * btrfs: refactor alloc_extent_buffer() to allocate-then-attach methodQu Wenruo2023-12-151-39/+115
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently alloc_extent_buffer() utilizes find_or_create_page() to allocate one page a time for an extent buffer. This method has the following disadvantages: - find_or_create_page() is the legacy way of allocating new pages With the new folio infrastructure, find_or_create_page() is just redirected to filemap_get_folio(). - Lacks the way to support higher order (order >= 1) folios As we can not yet let filemap give us a higher order folio. This patch would change the workflow by the following way: Old | new -----------------------------------+------------------------------------- | ret = btrfs_alloc_page_array(); for (i = 0; i < num_pages; i++) { | for (i = 0; i < num_pages; i++) { p = find_or_create_page(); | ret = filemap_add_folio(); /* Attach page private */ | /* Reuse page cache if needed */ /* Reused eb if needed */ | | /* Attach page private and | reuse eb if needed */ | } By this we split the page allocation and private attaching into two parts, allowing future updates to each part more easily, and migrate to folio interfaces (especially for possible higher order folios). Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
| * btrfs: fix typos found by codespellDavid Sterba2023-12-151-1/+1
| | | | | | | | Signed-off-by: David Sterba <dsterba@suse.com>
| * btrfs: use the flags of an extent map to identify the compression typeFilipe Manana2023-12-151-7/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently, in struct extent_map, we use an unsigned int (32 bits) to identify the compression type of an extent and an unsigned long (64 bits on a 64 bits platform, 32 bits otherwise) for flags. We are only using 6 different flags, so an unsigned long is excessive and we can use flags to identify the compression type instead of using a dedicated 32 bits field. We can easily have tens or hundreds of thousands (or more) of extent maps on busy and large filesystems, specially with compression enabled or many or large files with tons of small extents. So it's convenient to have the extent_map structure as small as possible in order to use less memory. So remove the compression type field from struct extent_map, use flags to identify the compression type and shorten the flags field from an unsigned long to a u32. This saves 8 bytes (on 64 bits platforms) and reduces the size of the structure from 136 bytes down to 128 bytes, using now only two cache lines, and increases the number of extent maps we can have per 4K page from 30 to 32. By using a u32 for the flags instead of an unsigned long, we no longer use test_bit(), set_bit() and clear_bit(), but that level of atomicity is not needed as most flags are never cleared once set (before adding an extent map to the tree), and the ones that can be cleared or set after an extent map is added to the tree, are always performed while holding the write lock on the extent map tree, while the reader holds a lock on the tree or tests for a flag that never changes once the extent map is in the tree (such as compression flags). Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
| * btrfs: allow extent buffer helpers to skip cross-page handlingQu Wenruo2023-12-151-0/+54
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently btrfs extent buffer helpers are doing all the cross-page handling, as there is no guarantee that all those eb pages are contiguous. However on systems with enough memory, there is a very high chance the page cache for btree_inode are allocated with physically contiguous pages. In that case, we can skip all the complex cross-page handling, thus speeding up the code. This patch adds a new member, extent_buffer::addr, which is only set to non-NULL if all the extent buffer pages are physically contiguous. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
| * btrfs: use memset_page instead of opencoding itJohannes Thumshirn2023-12-151-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | Use memset_page() in memset_extent_buffer() instead of opencoding it. This does not not change any functionality. Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
| * btrfs: zoned: don't clear dirty flag of extent bufferJohannes Thumshirn2023-12-151-2/+14
| | | | | | | | | | | | | | | | | | | | | | | | | | One a zoned filesystem, never clear the dirty flag of an extent buffer, but instead mark it as zeroout. On writeout, when encountering a marked extent_buffer, zero it out. Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
| * btrfs: rename EXTENT_BUFFER_NO_CHECK to EXTENT_BUFFER_ZONED_ZEROOUTJohannes Thumshirn2023-12-151-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | EXTENT_BUFFER_ZONED_ZEROOUT better describes the state of the extent buffer, namely it is written as all zeros. This is needed in zoned mode, to preserve I/O ordering. Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
| * btrfs: migrate to use folio private instead of page privateQu Wenruo2023-12-151-47/+55
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | As a cleanup and preparation for future folio migration, this patch would replace all page->private to folio version. This includes: - PagePrivate() -> folio_test_private() - page->private -> folio_get_private() - attach_page_private() -> folio_attach_private() - detach_page_private() -> folio_detach_private() Since we're here, also remove the forced cast on page->private, since it's (void *) already, we don't really need to do the cast. For now even if we missed some call sites, it won't cause any problem yet, as we're only using order 0 folio (single page), thus all those folio/page flags should be synced. But for the future conversion to utilize higher order folio, the page <-> folio flag sync is no longer guaranteed, thus we have to migrate to utilize folio flags. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
* | Merge tag 'vfs-6.8.misc' of ↵Linus Torvalds2024-01-081-26/+26
|\ \ | |/ |/| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs Pull misc vfs updates from Christian Brauner: "This contains the usual miscellaneous features, cleanups, and fixes for vfs and individual fses. Features: - Add Jan Kara as VFS reviewer - Show correct device and inode numbers in proc/<pid>/maps for vma files on stacked filesystems. This is now easily doable thanks to the backing file work from the last cycles. This comes with selftests Cleanups: - Remove a redundant might_sleep() from wait_on_inode() - Initialize pointer with NULL, not 0 - Clarify comment on access_override_creds() - Rework and simplify eventfd_signal() and eventfd_signal_mask() helpers - Process aio completions in batches to avoid needless wakeups - Completely decouple struct mnt_idmap from namespaces. We now only keep the actual idmapping around and don't stash references to namespaces - Reformat maintainer entries to indicate that a given subsystem belongs to fs/ - Simplify fput() for files that were never opened - Get rid of various pointless file helpers - Rename various file helpers - Rename struct file members after SLAB_TYPESAFE_BY_RCU switch from last cycle - Make relatime_need_update() return bool - Use GFP_KERNEL instead of GFP_USER when allocating superblocks - Replace deprecated ida_simple_*() calls with their current ida_*() counterparts Fixes: - Fix comments on user namespace id mapping helpers. They aren't kernel doc comments so they shouldn't be using /** - s/Retuns/Returns/g in various places - Add missing parameter documentation on can_move_mount_beneath() - Rename i_mapping->private_data to i_mapping->i_private_data - Fix a false-positive lockdep warning in pipe_write() for watch queues - Improve __fget_files_rcu() code generation to improve performance - Only notify writer that pipe resizing has finished after setting pipe->max_usage otherwise writers are never notified that the pipe has been resized and hang - Fix some kernel docs in hfsplus - s/passs/pass/g in various places - Fix kernel docs in ntfs - Fix kcalloc() arguments order reported by gcc 14 - Fix uninitialized value in reiserfs" * tag 'vfs-6.8.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs: (36 commits) reiserfs: fix uninit-value in comp_keys watch_queue: fix kcalloc() arguments order ntfs: dir.c: fix kernel-doc function parameter warnings fs: fix doc comment typo fs tree wide selftests/overlayfs: verify device and inode numbers in /proc/pid/maps fs/proc: show correct device and inode numbers in /proc/pid/maps eventfd: Remove usage of the deprecated ida_simple_xx() API fs: super: use GFP_KERNEL instead of GFP_USER for super block allocation fs/hfsplus: wrapper.c: fix kernel-doc warnings fs: add Jan Kara as reviewer fs/inode: Make relatime_need_update return bool pipe: wakeup wr_wait after setting max_usage file: remove __receive_fd() file: stop exposing receive_fd_user() fs: replace f_rcuhead with f_task_work file: remove pointless wrapper file: s/close_fd_get_file()/file_close_fd()/g Improve __fget_files_rcu() code generation (and thus __fget_light()) file: massage cleanup of files that failed to open fs/pipe: Fix lockdep false-positive in watchqueue pipe_write() ...
| * fs: Rename mapping private membersMatthew Wilcox (Oracle)2023-11-211-26/+26
| | | | | | | | | | | | | | | | | | | | | | | | | | | | It is hard to find where mapping->private_lock, mapping->private_list and mapping->private_data are used, due to private_XXX being a relatively common name for variables and structure members in the kernel. To fit with other members of struct address_space, rename them all to have an i_ prefix. Tested with an allmodconfig build. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Link: https://lore.kernel.org/r/20231117215823.2821906-1-willy@infradead.org Acked-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: Christian Brauner <brauner@kernel.org>
* | btrfs: don't clear qgroup reserved bit in release_folioBoris Burkov2023-12-061-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The EXTENT_QGROUP_RESERVED bit is used to "lock" regions of the file for duplicate reservations. That is two writes to that range in one transaction shouldn't create two reservations, as the reservation will only be freed once when the write finally goes down. Therefore, it is never OK to clear that bit without freeing the associated qgroup reserve. At this point, we don't want to be freeing the reserve, so mask off the bit. CC: stable@vger.kernel.org # 5.15+ Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Boris Burkov <boris@bur.io> Signed-off-by: David Sterba <dsterba@suse.com>
* | btrfs: free the allocated memory if btrfs_alloc_page_array() failsQu Wenruo2023-11-241-3/+8
|/ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | [BUG] If btrfs_alloc_page_array() fail to allocate all pages but part of the slots, then the partially allocated pages would be leaked in function btrfs_submit_compressed_read(). [CAUSE] As explicitly stated, if btrfs_alloc_page_array() returned -ENOMEM, caller is responsible to free the partially allocated pages. For the existing call sites, most of them are fine: - btrfs_raid_bio::stripe_pages Handled by free_raid_bio(). - extent_buffer::pages[] Handled btrfs_release_extent_buffer_pages(). - scrub_stripe::pages[] Handled by release_scrub_stripe(). But there is one exception in btrfs_submit_compressed_read(), if btrfs_alloc_page_array() failed, we didn't cleanup the array and freed the array pointer directly. Initially there is still the error handling in commit dd137dd1f2d7 ("btrfs: factor out allocating an array of pages"), but later in commit 544fe4a903ce ("btrfs: embed a btrfs_bio into struct compressed_bio"), the error handling is removed, leading to the possible memory leak. [FIX] This patch would add back the error handling first, then to prevent such situation from happening again, also Make btrfs_alloc_page_array() to free the allocated pages as a extra safety net, then we don't need to add the error handling to btrfs_submit_compressed_read(). Fixes: 544fe4a903ce ("btrfs: embed a btrfs_bio into struct compressed_bio") CC: stable@vger.kernel.org # 6.4+ Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
* btrfs: change test_range_bit to scan the whole rangeDavid Sterba2023-10-121-1/+1
| | | | | | | | | The semantics of test_range_bit() with filled == 0 is now in it's own helper so test_range_bit will check the whole range unconditionally. The detection logic is flipped and assumes success by default and catches exceptions. Signed-off-by: David Sterba <dsterba@suse.com>
* btrfs: add specific helper for range bit test existsDavid Sterba2023-10-121-4/+4
| | | | | | | | | | | | The existing helper test_range_bit works in two ways, checks if the whole range contains all the bits, or stop on the first occurrence. By adding a specific helper for the latter case, the inner loop can be simplified and contains fewer conditionals, making it a bit faster. There's no caller that uses the cached state pointer so this reduces the argument count further. Signed-off-by: David Sterba <dsterba@suse.com>
* btrfs: warn on tree blocks which are not nodesize alignedQu Wenruo2023-10-121-0/+6
| | | | | | | | | | | | | | | | | | | | | | | | | A long time ago, we had some metadata chunks which started at sector boundary but not aligned to nodesize boundary. This led to some older filesystems which can have tree blocks only aligned to sectorsize, but not nodesize. Later 'btrfs check' gained the ability to detect and warn about such tree blocks, and kernel fixed the chunk allocation behavior, nowadays those tree blocks should be pretty rare. But in the future, if we want to migrate metadata to folio, we cannot have such tree blocks, as filemap_add_folio() requires the page index to be aligned with the folio number of pages. Such unaligned tree blocks can lead to VM_BUG_ON(). So this patch adds extra warning for those unaligned tree blocks, as a preparation for the future folio migration. Reviewed-by: Anand Jain <anand.jain@oracle.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
* btrfs: check-integrity: remove btrfsic_unmount() functionQu Wenruo2023-10-121-1/+0
| | | | | | | | | | | | | | The function btrfsic_mount() is part of the deprecated check-integrity functionality. Now let's remove the main entry point of check-integrity, and thankfully most of the check-integrity code is self-contained inside check-integrity.c, we can safely remove the function without huge changes to btrfs code base. Signed-off-by: Qu Wenruo <wqu@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
* btrfs: reformat remaining kdoc style commentsDavid Sterba2023-10-121-10/+12
| | | | | | | | | Function name in the comment does not bring much value to code not exposed as API and we don't stick to the kdoc format anymore. Update formatting of parameter descriptions. Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
* btrfs: reset destination buffer when read_extent_buffer() gets invalid rangeQu Wenruo2023-09-201-1/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | Commit f98b6215d7d1 ("btrfs: extent_io: do extra check for extent buffer read write functions") changed how we handle invalid extent buffer range for read_extent_buffer(). Previously if the range is invalid we just set the destination to zero, but after the patch we do nothing and error out. This can lead to smatch static checker errors like: fs/btrfs/print-tree.c:186 print_uuid_item() error: uninitialized symbol 'subvol_id'. fs/btrfs/tests/extent-io-tests.c:338 check_eb_bitmap() error: uninitialized symbol 'has'. fs/btrfs/tests/extent-io-tests.c:353 check_eb_bitmap() error: uninitialized symbol 'has'. fs/btrfs/uuid-tree.c:203 btrfs_uuid_tree_remove() error: uninitialized symbol 'read_subid'. fs/btrfs/uuid-tree.c:353 btrfs_uuid_tree_iterate() error: uninitialized symbol 'subid_le'. fs/btrfs/uuid-tree.c:72 btrfs_uuid_tree_lookup() error: uninitialized symbol 'data'. fs/btrfs/volumes.c:7415 btrfs_dev_stats_value() error: uninitialized symbol 'val'. Fix those warnings by reverting back to the old memset() behavior. By this we keep the static checker happy and would still make a lot of noise when such invalid ranges are passed in. Reported-by: Dan Carpenter <dan.carpenter@linaro.org> Fixes: f98b6215d7d1 ("btrfs: extent_io: do extra check for extent buffer read write functions") Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
* btrfs: don't clear uptodate on write errorsJosef Bacik2023-09-131-8/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | We have been consistently seeing hangs with generic/648 in our subpage GitHub CI setup. This is a classic deadlock, we are calling btrfs_read_folio() on a folio, which requires holding the folio lock on the folio, and then finding a ordered extent that overlaps that range and calling btrfs_start_ordered_extent(), which then tries to write out the dirty page, which requires taking the folio lock and then we deadlock. The hang happens because we're writing to range [1271750656, 1271767040), page index [77621, 77622], and page 77621 is !Uptodate. It is also Dirty, so we call btrfs_read_folio() for 77621 and which does btrfs_lock_and_flush_ordered_range() for that range, and we find an ordered extent which is [1271644160, 1271746560), page index [77615, 77621]. The page indexes overlap, but the actual bytes don't overlap. We're holding the page lock for 77621, then call btrfs_lock_and_flush_ordered_range() which tries to flush the dirty page, and tries to lock 77621 again and then we deadlock. The byte ranges do not overlap, but with subpage support if we clear uptodate on any portion of the page we mark the entire thing as not uptodate. We have been clearing page uptodate on write errors, but no other file system does this, and is in fact incorrect. This doesn't hurt us in the !subpage case because we can't end up with overlapped ranges that don't also overlap on the page. Fix this by not clearing uptodate when we have a write error. The only thing we should be doing in this case is setting the mapping error and carrying on. This makes it so we would no longer call btrfs_read_folio() on the page as it's uptodate and eliminates the deadlock. With this patch we're now able to make it through a full fstests run on our subpage blocksize VMs. Note for stable backports: this probably goes beyond 6.1 but the code has been cleaned up and clearing the uptodate bit must be verified on each version independently. CC: stable@vger.kernel.org # 6.1+ Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Josef Bacik <josef@toxicpanda.com> Signed-off-by: David Sterba <dsterba@suse.com>
* btrfs: zoned: defer advancing meta write pointerNaohiro Aota2023-08-211-4/+3
| | | | | | | | | | | | | | | | | | | | | | We currently advance the meta_write_pointer in btrfs_check_meta_write_pointer(). That makes it necessary to revert it when locking the buffer failed. Instead, we can advance it just before sending the buffer. Also, this is necessary for the following commit. In the commit, it needs to release the zoned_meta_io_lock to allow IOs to come in and wait for them to fill the currently active block group. If we advance the meta_write_pointer before locking the extent buffer, the following extent buffer can pass the meta_write_pointer check, resulting in an unaligned write failure. Advancing the pointer is still thread-safe as the extent buffer is locked. Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
* btrfs: zoned: return int from btrfs_check_meta_write_pointerNaohiro Aota2023-08-211-8/+3
| | | | | | | | | | | | Now that we have writeback_control passed to btrfs_check_meta_write_pointer(), we can move the wbc condition in submit_eb_page() to btrfs_check_meta_write_pointer() and return int. Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>