| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
| |
Same as with already do with the file operations: keep them in .rodata and
prevents people from doing runtime patching.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Cc: Steven French <sfrench@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is a conversion to make the various file_operations structs in fs/
const. Basically a regexp job, with a few manual fixups
The goal is both to increase correctness (harder to accidentally write to
shared datastructures) and reducing the false sharing of cachelines with
things that get dirty in .data (while .rodata is nicely read only and thus
cache clean)
Signed-off-by: Arjan van de Ven <arjan@infradead.org>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
|
|
|
|
|
|
| |
Add a proper prototype for ext2_get_parent().
Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch converts the inode semaphore to a mutex. I have tested it on
XFS and compiled as much as one can consider on an ia64. Anyway your
luck with it might be different.
Modified-by: Ingo Molnar <mingo@elte.hu>
(finished the conversion)
Signed-off-by: Jes Sorensen <jes@sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
|
|
|
|
|
|
|
| |
Restore old set of ext2 mount options when remounting of a filesystem
fails.
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
|
|
|
|
|
|
|
| |
These are the ext2 related parts. Ext2 now uses the xip_* file operations
along with the get_xip_page aop when mounted with -o xip.
Signed-off-by: Carsten Otte <cotte@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Whilst trying to stress test a Promise SX8 card, we stumbled across
some nasty filesystem corruption in ext2. Our tests involved
creating an ext2 partition, mounting, running several concurrent
fsx's over it, umounting, and fsck'ing, all scripted[1]. The fsck
would always return with errors.
This regression was traced back to a change between 2.6.9 and
2.6.10, which moves the functionality of ext2_put_inode into
ext2_clear_inode. The attached patch reverses this change, and
eliminated the source of corruption.
Mingming Cao <cmm@us.ibm.com> said:
I think his patch for ext2 is correct. The corruption on ext3 is not the same
issue he saw on ext2. I believe that's the race between discard reservation
and reservation in-use that we already fixed it in 2.6.12- rc1.
For the problem related to ext2, at the time when we design reservation for
ext3, we decide we only need to discard the reservation at the last file
close, so we have ext3_discard_reservation on iput_final- >ext3_clear_inode.
The ext2 handle discard preallocation differently at that time, it discard the
preallocation at each iput(), not in input_final(), so we think it's
unnecessary to thrash it so frequently, and the right thing to do, as we did
for ext3 reservation, discard preallocation on last iput(). So we moved the
ext2_discard_preallocation from ext2_put_inode(0 to ext2_clear_inode.
Since ext2 preallocation is doing pre-allocation on disk, so it is possible
that at the unmount time, someone is still hold the reference of the inode, so
the preallocation for a file is not discard yet, so we still mark those blocks
allocated on disk, while they are not actually in the inode's block map, so
fsck will catch/fix that error later.
This is not a issue for ext3, as ext3 reservation(pre-allocation) is done in
memory.
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
|
|
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
|