| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
| |
This just carries around the bd_buddy_folio so should also be a folio.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Link: https://lore.kernel.org/r/20240416172900.244637-6-willy@infradead.org
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
|
|
|
|
|
|
|
|
| |
This just carries around the bd_bitmap_folio so should also be a folio.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Link: https://lore.kernel.org/r/20240416172900.244637-5-willy@infradead.org
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
|
|
|
|
|
|
|
|
|
|
|
| |
There is no need to make this a multi-page folio, so leave all the
infrastructure around it in pages. But since we're locking it, playing
with its refcount and checking whether it's uptodate, it needs to move
to the folio API.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Link: https://lore.kernel.org/r/20240416172900.244637-3-willy@infradead.org
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
|
|
|
|
|
|
|
|
|
|
|
| |
There is no need to make this a multi-page folio, so leave all the
infrastructure around it in pages. But since we're locking it, playing
with its refcount and checking whether it's uptodate, it needs to move
to the folio API.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Link: https://lore.kernel.org/r/20240416172900.244637-2-willy@infradead.org
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
|
|
|
|
|
|
|
|
|
|
| |
Use correct criteria name instead stale integer number in comment
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Reviewed-by: Ojaswin Mujoo <ojaswin@linux.ibm.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20240424061904.987525-5-shikemeng@huaweicloud.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Now ac_groups_linear_remaining is of type __u16 and s_mb_max_linear_groups
is of type unsigned int, so an overflow occurs when setting a value above
65535 through the mb_max_linear_groups sysfs interface. Therefore, the
type of ac_groups_linear_remaining is set to __u32 to avoid overflow.
Fixes: 196e402adf2e ("ext4: improve cr 0 / cr 1 group scanning")
CC: stable@kernel.org
Signed-off-by: Baokun Li <libaokun1@huawei.com>
Reviewed-by: Zhang Yi <yi.zhang@huawei.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20240319113325.3110393-8-libaokun1@huawei.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
|
|
|
|
|
|
|
|
|
| |
Remove unused ext4_allocation_context::ac_groups_considered
Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20240105092102.496631-5-shikemeng@huaweicloud.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When we use lstart + len to calculate the end of free extent or prealloc
space, it may exceed the maximum value of 4294967295(0xffffffff) supported
by ext4_lblk_t and cause overflow, which may lead to various problems.
Therefore, we add two helper functions, extent_logical_end() and
pa_logical_end(), to limit the type of end to loff_t, and also convert
lstart to loff_t for calculation to avoid overflow.
Signed-off-by: Baokun Li <libaokun1@huawei.com>
Reviewed-by: Ritesh Harjani (IBM) <ritesh.list@gmail.com>
Link: https://lore.kernel.org/r/20230724121059.11834-2-libaokun1@huawei.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
mballoc criterias have historically been called by numbers
like CR0, CR1... however this makes it confusing to understand
what each criteria is about.
Change these criterias from numbers to symbolic names and add
relevant comments. While we are at it, also reformat and add some
comments to ext4_seq_mb_stats_show() for better readability.
Additionally, define CR_FAST which signifies the criteria
below which we can make quicker decisions like:
* quitting early if (free block < requested len)
* avoiding to scan free extents smaller than required len.
* avoiding to initialize buddy cache and work with existing cache
* limiting prefetches
Suggested-by: Jan Kara <jack@suse.cz>
Signed-off-by: Ojaswin Mujoo <ojaswin@linux.ibm.com>
Link: https://lore.kernel.org/r/a2dc6ec5aea5e5e68cf8e788c2a964ffead9c8b0.1685449706.git.ojaswin@linux.ibm.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
CR1_5 aims to optimize allocations which can't be satisfied in CR1. The
fact that we couldn't find a group in CR1 suggests that it would be
difficult to find a continuous extent to compleltely satisfy our
allocations. So before falling to the slower CR2, in CR1.5 we
proactively trim the the preallocations so we can find a group with
(free / fragments) big enough. This speeds up our allocation at the
cost of slightly reduced preallocation.
The patch also adds a new sysfs tunable:
* /sys/fs/ext4/<partition>/mb_cr1_5_max_trim_order
This controls how much CR1.5 can trim a request before falling to CR2.
For example, for a request of order 7 and max trim order 2, CR1.5 can
trim this upto order 5.
Suggested-by: Ritesh Harjani (IBM) <ritesh.list@gmail.com>
Signed-off-by: Ojaswin Mujoo <ojaswin@linux.ibm.com>
Reviewed-by: Ritesh Harjani (IBM) <ritesh.list@gmail.com>
Link: https://lore.kernel.org/r/150fdf65c8e4cc4dba71e020ce0859bcf636a5ff.1685449706.git.ojaswin@linux.ibm.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
|
|
|
|
|
|
|
|
|
|
|
|
| |
This gives better visibility into the number of extents scanned in each
particular CR. For example, this information can be used to see how out
block group scanning logic is performing when the BG is fragmented.
Signed-off-by: Ojaswin Mujoo <ojaswin@linux.ibm.com>
Reviewed-by: Ritesh Harjani (IBM) <ritesh.list@gmail.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/55bb6d80f6e22ed2a5a830aa045572bdffc8b1b9.1685449706.git.ojaswin@linux.ibm.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
|
|
|
|
|
|
|
|
|
|
|
|
| |
ext4_mb_stats & ext4_mb_max_to_scan are never used. We use
sbi->s_mb_stats and sbi->s_mb_max_to_scan instead.
Hence kill these extern declarations.
Signed-off-by: Ritesh Harjani (IBM) <ritesh.list@gmail.com>
Signed-off-by: Ojaswin Mujoo <ojaswin@linux.ibm.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/928b3142062172533b6d1b5a94de94700590fef3.1685449706.git.ojaswin@linux.ibm.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Earlier, inode PAs were stored in a linked list. This caused a need to
periodically trim the list down inorder to avoid growing it to a very
large size, as this would severly affect performance during list
iteration.
Recent patches changed this list to an rbtree, and since the tree scales
up much better, we no longer need to have the trim functionality, hence
remove it.
Signed-off-by: Ojaswin Mujoo <ojaswin@linux.ibm.com>
Reviewed-by: Ritesh Harjani (IBM) <ritesh.list@gmail.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/c409addceaa3ade4b40328e28e3b54b2f259689e.1679731817.git.ojaswin@linux.ibm.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently, the kernel uses i_prealloc_list to hold all the inode
preallocations. This is known to cause degradation in performance in
workloads which perform large number of sparse writes on a single file.
This is mainly because functions like ext4_mb_normalize_request() and
ext4_mb_use_preallocated() iterate over this complete list, resulting in
slowdowns when large number of PAs are present.
Patch 27bc446e2 partially fixed this by enforcing a limit of 512 for
the inode preallocation list and adding logic to continually trim the
list if it grows above the threshold, however our testing revealed that
a hardcoded value is not suitable for all kinds of workloads.
To optimize this, add an rbtree to the inode and hold the inode
preallocations in this rbtree. This will make iterating over inode PAs
faster and scale much better than a linked list. Additionally, we also
had to remove the LRU logic that was added during trimming of the list
(in ext4_mb_release_context()) as it will add extra overhead in rbtree.
The discards now happen in the lowest-logical-offset-first order.
** Locking notes **
With the introduction of rbtree to maintain inode PAs, we can't use RCU
to walk the tree for searching since it can result in partial traversals
which might miss some nodes(or entire subtrees) while discards happen
in parallel (which happens under a lock). Hence this patch converts the
ei->i_prealloc_lock spin_lock to rw_lock.
Almost all the codepaths that read/modify the PA rbtrees are protected
by the higher level inode->i_data_sem (except
ext4_mb_discard_group_preallocations() and ext4_clear_inode()) IIUC, the
only place we need lock protection is when one thread is reading
"searching" the PA rbtree (earlier protected under rcu_read_lock()) and
another is "deleting" the PAs in ext4_mb_discard_group_preallocations()
function (which iterates all the PAs using the grp->bb_prealloc_list and
deletes PAs from the tree without taking any inode lock (i_data_sem)).
So, this patch converts all rcu_read_lock/unlock() paths for inode list
PA to use read_lock() and all places where we were using
ei->i_prealloc_lock spinlock will now be using write_lock().
Note that this makes the fast path (searching of the right PA e.g.
ext4_mb_use_preallocated() or ext4_mb_normalize_request()), now use
read_lock() instead of rcu_read_lock/unlock(). Ths also will now block
due to slow discard path (ext4_mb_discard_group_preallocations()) which
uses write_lock().
But this is not as bad as it looks. This is because -
1. The slow path only occurs when the normal allocation failed and we
can say that we are low on disk space. One can argue this scenario
won't be much frequent.
2. ext4_mb_discard_group_preallocations(), locks and unlocks the rwlock
for deleting every individual PA. This gives enough opportunity for
the fast path to acquire the read_lock for searching the PA inode
list.
Suggested-by: Ritesh Harjani (IBM) <ritesh.list@gmail.com>
Signed-off-by: Ojaswin Mujoo <ojaswin@linux.ibm.com>
Reviewed-by: Ritesh Harjani (IBM) <ritesh.list@gmail.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/4137bce8f6948fedd8bae134dabae24acfe699c6.1679731817.git.ojaswin@linux.ibm.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
** Splitting pa->pa_inode_list **
Currently, we use the same pa->pa_inode_list to add a pa to either
the inode preallocation list or the locality group preallocation list.
For better clarity, split this list into a union of 2 list_heads and use
either of the them based on the type of pa.
** Splitting pa->pa_obj_lock **
Currently, pa->pa_obj_lock is either assigned &ei->i_prealloc_lock for
inode PAs or lg_prealloc_lock for lg PAs, and is then used to lock the
lists containing these PAs. Make the distinction between the 2 PA types
clear by changing this lock to a union of 2 locks. Explicitly use the
pa_lock_node.inode_lock for inode PAs and pa_lock_node.lg_lock for lg
PAs.
This patch is required so that the locality group preallocation code
remains the same as in upcoming patches we are going to make changes to
inode preallocation code to move from list to rbtree based
implementation. This patch also makes it easier to review the upcoming
patches.
There are no functional changes in this patch.
Suggested-by: Ritesh Harjani (IBM) <ritesh.list@gmail.com>
Signed-off-by: Ojaswin Mujoo <ojaswin@linux.ibm.com>
Reviewed-by: Ritesh Harjani (IBM) <ritesh.list@gmail.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/1d7ac0557e998c3fc7eef422b52e4bc67bdef2b0.1679731817.git.ojaswin@linux.ibm.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Using rbtree for sorting groups by average fragment size is relatively
expensive (needs rbtree update on every block freeing or allocation) and
leads to wide spreading of allocations because selection of block group
is very sentitive both to changes in free space and amount of blocks
allocated. Furthermore selecting group with the best matching average
fragment size is not necessary anyway, even more so because the
variability of fragment sizes within a group is likely large so average
is not telling much. We just need a group with large enough average
fragment size so that we have high probability of finding large enough
free extent and we don't want average fragment size to be too big so
that we are likely to find free extent only somewhat larger than what we
need.
So instead of maintaing rbtree of groups sorted by fragment size keep
bins (lists) or groups where average fragment size is in the interval
[2^i, 2^(i+1)). This structure requires less updates on block allocation
/ freeing, generally avoids chaotic spreading of allocations into block
groups, and still is able to quickly (even faster that the rbtree)
provide a block group which is likely to have a suitably sized free
space extent.
This patch reduces number of block groups used when untarring archive
with medium sized files (size somewhat above 64k which is default
mballoc limit for avoiding locality group preallocation) to about half
and thus improves write speeds for eMMC flash significantly.
Fixes: 196e402adf2e ("ext4: improve cr 0 / cr 1 group scanning")
CC: stable@kernel.org
Reported-and-tested-by: Stefan Wahren <stefan.wahren@i2se.com>
Tested-by: Ojaswin Mujoo <ojaswin@linux.ibm.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Reviewed-by: Ritesh Harjani (IBM) <ritesh.list@gmail.com>
Link: https://lore.kernel.org/all/0d81a7c2-46b7-6010-62a4-3e6cfc1628d6@i2se.com/
Link: https://lore.kernel.org/r/20220908092136.11770-5-jack@suse.cz
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
|
|
|
|
|
|
| |
Signed-off-by: Bhaskar Chowdhury <unixbhaskar@gmail.com>
Link: https://lore.kernel.org/r/cover.1616840203.git.unixbhaskar@gmail.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Instead of traversing through groups linearly, scan groups in specific
orders at cr 0 and cr 1. At cr 0, we want to find groups that have the
largest free order >= the order of the request. So, with this patch,
we maintain lists for each possible order and insert each group into a
list based on the largest free order in its buddy bitmap. During cr 0
allocation, we traverse these lists in the increasing order of largest
free orders. This allows us to find a group with the best available cr
0 match in constant time. If nothing can be found, we fallback to cr 1
immediately.
At CR1, the story is slightly different. We want to traverse in the
order of increasing average fragment size. For CR1, we maintain a rb
tree of groupinfos which is sorted by average fragment size. Instead
of traversing linearly, at CR1, we traverse in the order of increasing
average fragment size, starting at the most optimal group. This brings
down cr 1 search complexity to log(num groups).
For cr >= 2, we just perform the linear search as before. Also, in
case of lock contention, we intermittently fallback to linear search
even in CR 0 and CR 1 cases. This allows us to proceed during the
allocation path even in case of high contention.
There is an opportunity to do optimization at CR2 too. That's because
at CR2 we only consider groups where bb_free counter (number of free
blocks) is greater than the request extent size. That's left as future
work.
All the changes introduced in this patch are protected under a new
mount option "mb_optimize_scan".
With this patchset, following experiment was performed:
Created a highly fragmented disk of size 65TB. The disk had no
contiguous 2M regions. Following command was run consecutively for 3
times:
time dd if=/dev/urandom of=file bs=2M count=10
Here are the results with and without cr 0/1 optimizations introduced
in this patch:
|---------+------------------------------+---------------------------|
| | Without CR 0/1 Optimizations | With CR 0/1 Optimizations |
|---------+------------------------------+---------------------------|
| 1st run | 5m1.871s | 2m47.642s |
| 2nd run | 2m28.390s | 0m0.611s |
| 3rd run | 2m26.530s | 0m1.255s |
|---------+------------------------------+---------------------------|
Signed-off-by: Harshad Shirwadkar <harshadshirwadkar@gmail.com>
Reported-by: kernel test robot <lkp@intel.com>
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Reviewed-by: Andreas Dilger <adilger@dilger.ca>
Link: https://lore.kernel.org/r/20210401172129.189766-6-harshadshirwadkar@gmail.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
A few arrays in mballoc.c use the total number of valid orders as
their size. Currently, this value is set as "sb->s_blocksize_bits +
2". This makes code harder to read. So, instead add a new macro
MB_NUM_ORDERS(sb) to make the code more readable.
Signed-off-by: Harshad Shirwadkar <harshadshirwadkar@gmail.com>
Reviewed-by: Andreas Dilger <adilger@dilger.ca>
Reviewed-by: Ritesh Harjani <ritesh.list@gmail.com>
Link: https://lore.kernel.org/r/20210401172129.189766-5-harshadshirwadkar@gmail.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In the scenario of writing sparse files, the per-inode prealloc list may
be very long, resulting in high overhead for ext4_mb_use_preallocated().
To circumvent this problem, we limit the maximum length of per-inode
prealloc list to 512 and allow users to modify it.
After patching, we observed that the sys ratio of cpu has dropped, and
the system throughput has increased significantly. We created a process
to write the sparse file, and the running time of the process on the
fixed kernel was significantly reduced, as follows:
Running time on unfixed kernel:
[root@TENCENT64 ~]# time taskset 0x01 ./sparse /data1/sparce.dat
real 0m2.051s
user 0m0.008s
sys 0m2.026s
Running time on fixed kernel:
[root@TENCENT64 ~]# time taskset 0x01 ./sparse /data1/sparce.dat
real 0m0.471s
user 0m0.004s
sys 0m0.395s
Signed-off-by: Chunguang Xu <brookxu@tencent.com>
Link: https://lore.kernel.org/r/d7a98178-056b-6db5-6bce-4ead23f4a257@gmail.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
mb_debug() msg had only 1 control level for all type of msgs.
And if we enable mballoc_debug then all of those msgs would be enabled.
Instead of adding multiple debug levels for mb_debug() msgs, use
pr_debug() with which we could have finer control to print msgs at all
of different levels (i.e. at file, func, line no.).
Also add process name/pid, superblk id, and other info in mb_debug()
msg. This also kills the mballoc_debug module parameter, since it is
not needed any more.
Signed-off-by: Ritesh Harjani <riteshh@linux.ibm.com>
Link: https://lore.kernel.org/r/f0c660cbde9e2edbe95c67942ca9ad80dd2231eb.1589086800.git.riteshh@linux.ibm.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
A number of ext4 source files were skipped due because their copyright
permission statements didn't match the expected text used by the
automated conversion utilities. I've added SPDX tags for the rest.
While looking at some of these files, I've noticed that we have quite
a bit of variation on the licenses that were used --- in particular
some of the Red Hat licenses on the jbd2 files use a GPL2+ license,
and we have some files that have a LGPL-2.1 license (which was quite
surprising).
I've not attempted to do any license changes. Even if it is perfectly
legal to relicense to GPL 2.0-only for consistency's sake, that should
be done with ext4 developer community discussion.
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Now, when we mount ext4 filesystem with '-o discard' option, we have to
issue all the discard commands for the blocks to be deallocated and
wait for the completion of the commands on the commit complete phase.
Because this procedure might involve a lot of sequential combinations of
issuing discard commands and waiting for that, the delay of this
procedure might be too much long, even to 17.0s in our test,
and it results in long commit delay and fsync() performance degradation.
To reduce this kind of delay, instead of adding callback for each
extent and handling all of them in a sequential manner on commit phase,
we instead add a separate list of extents to free to the superblock and
then process this list at once after transaction commits so that
we can issue all the discard commands in a parallel manner like XFS
filesystem.
Finally, we could enhance the discard command handling performance.
The result was such that 17.0s delay of a single commit in the worst
case has been enhanced to 4.8s.
Signed-off-by: Daeho Jeong <daeho.jeong@samsung.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Tested-by: Hobin Woo <hobin.woo@samsung.com>
Tested-by: Kitae Lee <kitae87.lee@samsung.com>
Reviewed-by: Jan Kara <jack@suse.cz>
|
|
|
|
|
|
|
|
|
|
| |
Support the GETFSMAP ioctls so that we can use the xfs free space
management tools to probe ext4 as well. Note that this is a partial
implementation -- we only report fixed-location metadata and free space;
everything else is reported as "unknown".
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Recent commits require line continuing printks to always use
pr_cont or KERN_CONT. Add these markings to a few more printks.
Miscellaneaous:
o Integrate the ea_idebug and ea_bdebug macros to use a single
call to printk(KERN_DEBUG instead of 3 separate printks
o Use the more common varargs macro style
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Andreas Dilger <adilger@dilger.ca>
|
|
|
|
|
|
|
|
|
|
|
|
| |
the error is:
fs/ext4/mballoc.c:475:43: error: 'struct ext4_group_info' has
no member named 'bb_bitmap'.
so, the definition of macro DOUBLE_CHECK should before
'struct ext4_group_info', I fixed it, and I moved the macro
AGGRESSIVE_CHECK together, because I think they shoule be together.
Signed-off-by: Aihua Zhang <zhangaihua1@huawei.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When looking at a bug report with:
> kernel: EXT4-fs: 0 scanned, 0 found
I thought wow, 0 scanned, that's odd? But it's not odd; it's printing
a variable that is initialized to 0 and never touched again.
It's never been used since the original merge, so I don't really even
know what the original intent was, either.
If anyone knows how to hook it up, speak now via patch, otherwise just
yank it so it's not making a confusing situation more confusing in
kernel logs.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When !defined(CONFIG_EXT4_DEBUG), mb_debug() should be defined as a
no_printk() statement instead of an empty statement in order to suppress
the following compiler warning:
fs/ext4/mballoc.c: In function ‘ext4_mb_cleanup_pa’:
fs/ext4/mballoc.c:2659:47: warning: suggest braces around empty body in an ‘if’ statement [-Wempty-body]
mb_debug(1, "mballoc: %u PAs left\n", count);
Signed-off-by: Patrick Palka <patrick@parcs.ath.cx>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There are multiple reasons to move away from debugfs. First of all,
we are only using it for a single parameter, and it is much more
complicated to set up (some 30 lines of code compared to 3), and one
more thing that might fail while loading the ext4 module.
Secondly, as a module paramter it can be specified as a boot option if
ext4 is built into the kernel, or as a parameter when the module is
loaded, and it can also be manipulated dynamically under
/sys/module/ext4/parameters/mballoc_debug. So it is more flexible.
Ultimately we want to move away from using mb_debug() towards
tracepoints, but for now this is still a useful simplification of the
code base.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
|
|
|
|
|
| |
Signed-off-by: Robin Dong <sanbai@taobao.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
|
|
|
|
|
|
|
| |
The EXT4_MB_BITMAP and EXT4_MB_BUDDY macros obfuscate more than they
provide any abstraction. So remove them.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
|
|
|
|
|
|
|
|
|
|
|
| |
The per-commit callback was used by mballoc code to manage free space
bitmaps after deleted blocks have been released. This patch expands
it to support multiple different callbacks, to allow other things to
be done after the commit has been completed.
Signed-off-by: Bobi Jam <bobijam@whamcloud.com>
Signed-off-by: Andreas Dilger <adilger@whamcloud.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
|
|
|
|
|
|
|
| |
This patch changes "bext" to "best".
Signed-off-by: Robin Dong <sanbai@taobao.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The ext4_free_blocks() function now has two new flags that indicate
whether a partial cluster at the beginning or the end of the block
extents should be freed or not. That will be up the caller (i.e.,
truncate), who can figure out whether partial clusters at the
beginning or the end of a block range can be freed.
We also have to update the ext4_mb_free_metadata() and
release_blocks_on_commit() machinery to be cluster-based, since it is
used by ext4_free_blocks().
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In most of mballoc.c, we do everything in units of clusters, since the
block allocation bitmaps and buddy bitmaps are all denominated in
clusters. The one place where we do deal with absolute block numbers
is in the code that handles the preallocation regions, since in the
case of inode-based preallocation regions, the start of the
preallocation region can't be relative to the beginning of the group.
So this adds a bit of complexity, where pa_pstart and pa_lstart are
block numbers, while pa_free, pa_len, and fe_len are denominated in
units of clusters.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
|
|
|
|
|
|
|
|
|
| |
Certain parts of the ext4 code base, primarily in mballoc.c, use a
block group number and offset from the beginning of the block group.
This offset is invariably used to index into the allocation bitmap, so
change the offset to be denominated in units of clusters.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
|
|
|
|
|
|
|
| |
ac_repeats isn't referenced in the mballoc code. So remove it.
Signed-off-by: Tao Ma <boyu.mt@taobao.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
|
|
|
|
|
|
|
|
| |
After taking care of all group init races, all that remains is to
remove alloc_semp from ext4_allocation_context and ext4_buddy structs.
Signed-off-by: Amir Goldstein <amir73il@users.sf.net>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
|
|
|
|
|
|
| |
Signed-off-by: Coly Li <bosong.ly@taobao.com>
Cc: Alex Tomas <alex@clusterfs.com>
Cc: Theodore Tso <tytso@google.com>
|
|
|
|
|
|
|
|
|
|
| |
There are duplicate macro definitions of in_range() in mballoc.h and
balloc.c. This consolidates these two definitions into ext4.h, and
changes extents.c to use in_range() as well.
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Cc: Andreas Dilger <adilger@sun.com>
|
|
|
|
|
|
|
|
|
|
|
| |
This is a cleanup and simplification patch which takes some open-coded
calculations to calculate the first block number of a group and
converts them to use the (already defined) ext4_group_first_block_no()
function.
Signed-off-by: Akinobu Mita <akinobu.mita@gmail.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Cc: Andreas Dilger <adilger@sun.com>
|
|
|
|
|
|
|
|
|
| |
Remove unused #include <linux/version.h>('s) in
fs/ext4/block_validity.c
fs/ext4/mballoc.h
Signed-off-by: Huang Weiyi <weiyi.huang@gmail.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The /proc/fs/ext4/<dev>/mb_history was maintained manually, and had a
number of problems: it required a largish amount of memory to be
allocated for each ext4 filesystem, and the s_mb_history_lock
introduced a CPU contention problem.
By ripping out the mb_history code and replacing it with ftrace
tracepoints, and we get more functionality: timestamps, event
filtering, the ability to correlate mballoc history with other ext4
tracepoints, etc.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
|
|
|
|
|
|
|
|
|
|
|
| |
There are a number of kernel printk's which are printed when an ext4
filesystem is mounted and unmounted. Disable them to economize space
in the system logs. In addition, disabling the mballoc stats by
default saves a number of unneeded atomic operations for every block
allocation or deallocation.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
unsigned short is potentially too small to track blocks within
a group; today it is safe due to restrictions in e2fsprogs but
we have _lo / _hi bits for group blocks with the intent to go
up to 32 bits, so clean this up now.
There are many more places where we use unsigned/int/unsigned int
to contain a group block but this should at least fix all the
short types.
I added a few comments to the struct ext4_group_info definition
as well.
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
|
|
|
|
|
|
|
| |
Allow mballoc debugging to be enabled at run-time instead of just at
compile time.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
|
|
|
|
| |
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
|
|
|
|
|
|
|
| |
Move the function prototypes in group.h into ext4.h so they are all
defined in one place.
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
|
|
|
|
|
|
|
|
|
|
|
| |
Impact: code cleanup
This patch rename pa_linear to pa_type and add MB_INODE_PA
and MB_GROUP_PA to indicate inode and group prealloc space.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Reviewed-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
|