| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit bcfb84a996f6fa90b5e6e2954b2accb7a4711097 ]
A powerpc build of cifs with gcc v8.2.0 produces this warning:
fs/cifs/cifssmb.c: In function ‘CIFSSMBNegotiate’:
fs/cifs/cifssmb.c:605:3: warning: ‘strncpy’ writing 16 bytes into a region of size 1 overflows the destination [-Wstringop-overflow=]
strncpy(pSMB->DialectsArray+count, protocols[i].name, 16);
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Since we are already doing a strlen() on the source, change the strncpy
to a memcpy().
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Steve French <stfrench@microsoft.com>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit c15e3f19a6d5c89b1209dc94b40e568177cb0921 ]
When a Mac client saves an item containing a backslash to a file server
the backslash is represented in the CIFS/SMB protocol as as U+F026.
Before this change, listing a directory containing an item with a
backslash in its name will return that item with the backslash
represented with a true backslash character (U+005C) because
convert_sfm_character mapped U+F026 to U+005C when interpretting the
CIFS/SMB protocol response. However, attempting to open or stat the
path using a true backslash will result in an error because
convert_to_sfm_char does not map U+005C back to U+F026 causing the
CIFS/SMB request to be made with the backslash represented as U+005C.
This change simply prevents the U+F026 to U+005C conversion from
happenning. This is analogous to how the code does not do any
translation of UNI_SLASH (U+F000).
Signed-off-by: Jon Kuhn <jkuhn@barracuda.com>
Signed-off-by: Steve French <stfrench@microsoft.com>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit bc890a60247171294acc0bd67d211fa4b88d40ba upstream.
If there is a corupted file system where the claimed depth of the
extent tree is -1, this can cause a massive buffer overrun leading to
sadness.
This addresses CVE-2018-10877.
https://bugzilla.kernel.org/show_bug.cgi?id=199417
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
[bwh: Backported to 3.16: return -EIO instead of -EFSCORRUPTED]
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Cc: Greg Hackmann <ghackmann@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit 5b7b15aee641904ae269be9846610a3950cbd64c ]
We're encoding a single op in the reply but leaving the number of ops
zero, so the reply makes no sense.
Somewhat academic as this isn't a case any real client will hit, though
in theory perhaps that could change in a future protocol extension.
Reviewed-by: Jeff Layton <jlayton@kernel.org>
Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit fe18d649891d813964d3aaeebad873f281627fbc upstream.
Marking mmp bh dirty before writing it will make writeback
pick up mmp block later and submit a write, we don't want the
duplicate write as kmmpd thread should have full control of
reading and writing the mmp block.
Another reason is we will also have random I/O error on
the writeback request when blk integrity is enabled, because
kmmpd could modify the content of the mmp block(e.g. setting
new seq and time) while the mmp block is under I/O requested
by writeback.
Signed-off-by: Li Dongyang <dongyangli@ddn.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Reviewed-by: Andreas Dilger <adilger@dilger.ca>
Cc: stable@vger.kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit f0a459dec5495a3580f8d784555e6f8f3bf7f263 upstream.
Avoid growing the file system to an extent so that the last block
group is too small to hold all of the metadata that must be stored in
the block group.
This problem can be triggered with the following reproducer:
umount /mnt
mke2fs -F -m0 -b 4096 -t ext4 -O resize_inode,^has_journal \
-E resize=1073741824 /tmp/foo.img 128M
mount /tmp/foo.img /mnt
truncate --size 1708M /tmp/foo.img
resize2fs /dev/loop0 295400
umount /mnt
e2fsck -fy /tmp/foo.img
Reported-by: Torsten Hilbrich <torsten.hilbrich@secunet.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Cc: stable@vger.kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 4274f516d4bc50648a4d97e4f67ecbd7b65cde4a upstream.
When mounting the superblock, ext4_fill_super() calculates the free
blocks and free inodes and stores them in the superblock. It's not
strictly necessary, since we don't use them any more, but it's nice to
keep them roughly aligned to reality.
Since it's not critical for file system correctness, the code doesn't
call ext4_commit_super(). The problem is that it's in
ext4_commit_super() that we recalculate the superblock checksum. So
if we're not going to call ext4_commit_super(), we need to call
ext4_superblock_csum_set() to make sure the superblock checksum is
consistent.
Most of the time, this doesn't matter, since we end up calling
ext4_commit_super() very soon thereafter, and definitely by the time
the file system is unmounted. However, it doesn't work in this
sequence:
mke2fs -Fq -t ext4 /dev/vdc 128M
mount /dev/vdc /vdc
cp xfstests/git-versions /vdc
godown /vdc
umount /vdc
mount /dev/vdc
tune2fs -l /dev/vdc
With this commit, the "tune2fs -l" no longer fails.
Reported-by: Chengguang Xu <cgxu519@gmx.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Cc: stable@vger.kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 4d982e25d0bdc83d8c64e66fdeca0b89240b3b85 upstream.
A specially crafted file system can trick empty_inline_dir() into
reading past the last valid entry in a inline directory, and then run
into the end of xattr marker. This will trigger a divide by zero
fault. Fix this by using the size of the inline directory instead of
dir->i_size.
Also clean up error reporting in __ext4_check_dir_entry so that the
message is clearer and more understandable --- and avoids the division
by zero trap if the size passed in is zero. (I'm not sure why we
coded it that way in the first place; printing offset % size is
actually more confusing and less useful.)
https://bugzilla.kernel.org/show_bug.cgi?id=200933
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Reported-by: Wen Xu <wen.xu@gatech.edu>
Cc: stable@vger.kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 234b69e3e089d850a98e7b3145bd00e9b52b1111 upstream.
While reading block, it is possible that io error return due to underlying
storage issue, in this case, BH_NeedsValidate was left in the buffer head.
Then when reading the very block next time, if it was already linked into
journal, that will trigger the following panic.
[203748.702517] kernel BUG at fs/ocfs2/buffer_head_io.c:342!
[203748.702533] invalid opcode: 0000 [#1] SMP
[203748.702561] Modules linked in: ocfs2 ocfs2_dlmfs ocfs2_stack_o2cb ocfs2_dlm ocfs2_nodemanager ocfs2_stackglue configfs sunrpc dm_switch dm_queue_length dm_multipath bonding be2iscsi iscsi_boot_sysfs bnx2i cnic uio cxgb4i iw_cxgb4 cxgb4 cxgb3i libcxgbi iw_cxgb3 cxgb3 mdio ib_iser rdma_cm ib_cm iw_cm ib_sa ib_mad ib_core ib_addr ipv6 iscsi_tcp libiscsi_tcp libiscsi scsi_transport_iscsi ipmi_devintf iTCO_wdt iTCO_vendor_support dcdbas ipmi_ssif i2c_core ipmi_si ipmi_msghandler acpi_pad pcspkr sb_edac edac_core lpc_ich mfd_core shpchp sg tg3 ptp pps_core ext4 jbd2 mbcache2 sr_mod cdrom sd_mod ahci libahci megaraid_sas wmi dm_mirror dm_region_hash dm_log dm_mod
[203748.703024] CPU: 7 PID: 38369 Comm: touch Not tainted 4.1.12-124.18.6.el6uek.x86_64 #2
[203748.703045] Hardware name: Dell Inc. PowerEdge R620/0PXXHP, BIOS 2.5.2 01/28/2015
[203748.703067] task: ffff880768139c00 ti: ffff88006ff48000 task.ti: ffff88006ff48000
[203748.703088] RIP: 0010:[<ffffffffa05e9f09>] [<ffffffffa05e9f09>] ocfs2_read_blocks+0x669/0x7f0 [ocfs2]
[203748.703130] RSP: 0018:ffff88006ff4b818 EFLAGS: 00010206
[203748.703389] RAX: 0000000008620029 RBX: ffff88006ff4b910 RCX: 0000000000000000
[203748.703885] RDX: 0000000000000001 RSI: 0000000000000000 RDI: 00000000023079fe
[203748.704382] RBP: ffff88006ff4b8d8 R08: 0000000000000000 R09: ffff8807578c25b0
[203748.704877] R10: 000000000f637376 R11: 000000003030322e R12: 0000000000000000
[203748.705373] R13: ffff88006ff4b910 R14: ffff880732fe38f0 R15: 0000000000000000
[203748.705871] FS: 00007f401992c700(0000) GS:ffff880bfebc0000(0000) knlGS:0000000000000000
[203748.706370] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[203748.706627] CR2: 00007f4019252440 CR3: 00000000a621e000 CR4: 0000000000060670
[203748.707124] Stack:
[203748.707371] ffff88006ff4b828 ffffffffa0609f52 ffff88006ff4b838 0000000000000001
[203748.707885] 0000000000000000 0000000000000000 ffff880bf67c3800 ffffffffa05eca00
[203748.708399] 00000000023079ff ffffffff81c58b80 0000000000000000 0000000000000000
[203748.708915] Call Trace:
[203748.709175] [<ffffffffa0609f52>] ? ocfs2_inode_cache_io_unlock+0x12/0x20 [ocfs2]
[203748.709680] [<ffffffffa05eca00>] ? ocfs2_empty_dir_filldir+0x80/0x80 [ocfs2]
[203748.710185] [<ffffffffa05ec0cb>] ocfs2_read_dir_block_direct+0x3b/0x200 [ocfs2]
[203748.710691] [<ffffffffa05f0fbf>] ocfs2_prepare_dx_dir_for_insert.isra.57+0x19f/0xf60 [ocfs2]
[203748.711204] [<ffffffffa065660f>] ? ocfs2_metadata_cache_io_unlock+0x1f/0x30 [ocfs2]
[203748.711716] [<ffffffffa05f4f3a>] ocfs2_prepare_dir_for_insert+0x13a/0x890 [ocfs2]
[203748.712227] [<ffffffffa05f442e>] ? ocfs2_check_dir_for_entry+0x8e/0x140 [ocfs2]
[203748.712737] [<ffffffffa061b2f2>] ocfs2_mknod+0x4b2/0x1370 [ocfs2]
[203748.713003] [<ffffffffa061c385>] ocfs2_create+0x65/0x170 [ocfs2]
[203748.713263] [<ffffffff8121714b>] vfs_create+0xdb/0x150
[203748.713518] [<ffffffff8121b225>] do_last+0x815/0x1210
[203748.713772] [<ffffffff812192e9>] ? path_init+0xb9/0x450
[203748.714123] [<ffffffff8121bca0>] path_openat+0x80/0x600
[203748.714378] [<ffffffff811bcd45>] ? handle_pte_fault+0xd15/0x1620
[203748.714634] [<ffffffff8121d7ba>] do_filp_open+0x3a/0xb0
[203748.714888] [<ffffffff8122a767>] ? __alloc_fd+0xa7/0x130
[203748.715143] [<ffffffff81209ffc>] do_sys_open+0x12c/0x220
[203748.715403] [<ffffffff81026ddb>] ? syscall_trace_enter_phase1+0x11b/0x180
[203748.715668] [<ffffffff816f0c9f>] ? system_call_after_swapgs+0xe9/0x190
[203748.715928] [<ffffffff8120a10e>] SyS_open+0x1e/0x20
[203748.716184] [<ffffffff816f0d5e>] system_call_fastpath+0x18/0xd7
[203748.716440] Code: 00 00 48 8b 7b 08 48 83 c3 10 45 89 f8 44 89 e1 44 89 f2 4c 89 ee e8 07 06 11 e1 48 8b 03 48 85 c0 75 df 8b 5d c8 e9 4d fa ff ff <0f> 0b 48 8b 7d a0 e8 dc c6 06 00 48 b8 00 00 00 00 00 00 00 10
[203748.717505] RIP [<ffffffffa05e9f09>] ocfs2_read_blocks+0x669/0x7f0 [ocfs2]
[203748.717775] RSP <ffff88006ff4b818>
Joesph ever reported a similar panic.
Link: https://oss.oracle.com/pipermail/ocfs2-devel/2013-May/008931.html
Link: http://lkml.kernel.org/r/20180912063207.29484-1-junxiao.bi@oracle.com
Signed-off-by: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Joseph Qi <jiangqi903@gmail.com>
Cc: Mark Fasheh <mark@fasheh.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Changwei Ge <ge.changwei@h3c.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit 2f819db565e82e5f73cd42b39925098986693378 ]
The regset API documented in <linux/regset.h> defines -ENODEV as the
result of the `->active' handler to be used where the feature requested
is not available on the hardware found. However code handling core file
note generation in `fill_thread_core_info' interpretes any non-zero
result from the `->active' handler as the regset requested being active.
Consequently processing continues (and hopefully gracefully fails later
on) rather than being abandoned right away for the regset requested.
Fix the problem then by making the code proceed only if a positive
result is returned from the `->active' handler.
Signed-off-by: Maciej W. Rozycki <macro@mips.com>
Signed-off-by: Paul Burton <paul.burton@mips.com>
Fixes: 4206d3aa1978 ("elf core dump: notes user_regset")
Patchwork: https://patchwork.linux-mips.org/patch/19332/
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: James Hogan <jhogan@kernel.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: linux-fsdevel@vger.kernel.org
Cc: linux-mips@linux-mips.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 56446f218af1133c802dad8e9e116f07f381846c upstream.
The problem is that "entryptr + next_offset" and "entryptr + len + size"
can wrap. I ended up changing the type of "entryptr" because it makes
the math easier when we don't have to do so much casting.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Steve French <stfrench@microsoft.com>
Reviewed-by: Aurelien Aptel <aaptel@suse.com>
Reviewed-by: Pavel Shilovsky <pshilov@microsoft.com>
CC: Stable <stable@vger.kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 8ad8aa353524d89fa2e09522f3078166ff78ec42 upstream.
The "old_entry + le32_to_cpu(pDirInfo->NextEntryOffset)" can wrap
around so I have added a check for integer overflow.
Reported-by: Dr Silvio Cesare of InfoSect <silvio.cesare@gmail.com>
Reviewed-by: Ronnie Sahlberg <lsahlber@redhat.com>
Reviewed-by: Aurelien Aptel <aaptel@suse.com>
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Steve French <stfrench@microsoft.com>
CC: Stable <stable@vger.kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 831b624df1b420c8f9281ed1307a8db23afb72df upstream.
persistent_ram_vmap() returns the page start vaddr.
persistent_ram_iomap() supports non-page-aligned mapping.
persistent_ram_buffer_map() always adds offset-in-page to the vaddr
returned from these two functions, which causes incorrect mapping of
non-page-aligned persistent ram buffer.
By default ftrace_size is 4096 and max_ftrace_cnt is nr_cpu_ids. Without
this patch, the zone_sz in ramoops_init_przs() is 4096/nr_cpu_ids which
might not be page aligned. If the offset-in-page > 2048, the vaddr will be
in next page. If the next page is not mapped, it will cause kernel panic:
[ 0.074231] BUG: unable to handle kernel paging request at ffffa19e0081b000
...
[ 0.075000] RIP: 0010:persistent_ram_new+0x1f8/0x39f
...
[ 0.075000] Call Trace:
[ 0.075000] ramoops_init_przs.part.10.constprop.15+0x105/0x260
[ 0.075000] ramoops_probe+0x232/0x3a0
[ 0.075000] platform_drv_probe+0x3e/0xa0
[ 0.075000] driver_probe_device+0x2cd/0x400
[ 0.075000] __driver_attach+0xe4/0x110
[ 0.075000] ? driver_probe_device+0x400/0x400
[ 0.075000] bus_for_each_dev+0x70/0xa0
[ 0.075000] driver_attach+0x1e/0x20
[ 0.075000] bus_add_driver+0x159/0x230
[ 0.075000] ? do_early_param+0x95/0x95
[ 0.075000] driver_register+0x70/0xc0
[ 0.075000] ? init_pstore_fs+0x4d/0x4d
[ 0.075000] __platform_driver_register+0x36/0x40
[ 0.075000] ramoops_init+0x12f/0x131
[ 0.075000] do_one_initcall+0x4d/0x12c
[ 0.075000] ? do_early_param+0x95/0x95
[ 0.075000] kernel_init_freeable+0x19b/0x222
[ 0.075000] ? rest_init+0xbb/0xbb
[ 0.075000] kernel_init+0xe/0xfc
[ 0.075000] ret_from_fork+0x3a/0x50
Signed-off-by: Bin Yang <bin.yang@intel.com>
[kees: add comments describing the mapping differences, updated commit log]
Fixes: 24c3d2f342ed ("staging: android: persistent_ram: Make it possible to use memory outside of bootmem")
Cc: stable@vger.kernel.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit 776125785a87ff05d49938bd5b9f336f2a05bff6 ]
To speed up the common case of appending to a file,
gfs2_write_alloc_required presumes that writing beyond the end of a file
will always require additional blocks to be allocated. This assumption
is incorrect for preallocates files, but there are no negative
consequences as long as *some* space is still left on the filesystem.
One special file that always has some space preallocated beyond the end
of the file is the rindex: when growing a filesystem, gfs2_grow adds one
or more new resource groups and appends records describing those
resource groups to the rindex; the preallocated space ensures that this
is always possible.
However, when a filesystem is completely full, gfs2_write_alloc_required
will indicate that an additional allocation is required, and appending
the next record to the rindex will fail even though space for that
record has already been preallocated. To fix that, skip the incorrect
optimization in gfs2_write_alloc_required, but for the rindex only.
Other writes to preallocated space beyond the end of the file are still
allowed to fail on completely full filesystems.
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Reviewed-by: Bob Peterson <rpeterso@redhat.com>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit c77ec61ca0a49544ca81881cc5d5529858f7e196 ]
This patch adds to do sanity check with {sit,nat}_ver_bitmap_bytesize
during mount, in order to avoid accessing across cache boundary with
this abnormal bitmap size.
- Overview
buffer overrun in build_sit_info() when mounting a crafted f2fs image
- Reproduce
- Kernel message
[ 548.580867] F2FS-fs (loop0): Invalid log blocks per segment (8201)
[ 548.580877] F2FS-fs (loop0): Can't find valid F2FS filesystem in 1th superblock
[ 548.584979] ==================================================================
[ 548.586568] BUG: KASAN: use-after-free in kmemdup+0x36/0x50
[ 548.587715] Read of size 64 at addr ffff8801e9c265ff by task mount/1295
[ 548.589428] CPU: 1 PID: 1295 Comm: mount Not tainted 4.18.0-rc1+ #4
[ 548.589432] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014
[ 548.589438] Call Trace:
[ 548.589474] dump_stack+0x7b/0xb5
[ 548.589487] print_address_description+0x70/0x290
[ 548.589492] kasan_report+0x291/0x390
[ 548.589496] ? kmemdup+0x36/0x50
[ 548.589509] check_memory_region+0x139/0x190
[ 548.589514] memcpy+0x23/0x50
[ 548.589518] kmemdup+0x36/0x50
[ 548.589545] f2fs_build_segment_manager+0x8fa/0x3410
[ 548.589551] ? __asan_loadN+0xf/0x20
[ 548.589560] ? f2fs_sanity_check_ckpt+0x1be/0x240
[ 548.589566] ? f2fs_flush_sit_entries+0x10c0/0x10c0
[ 548.589587] ? __put_user_ns+0x40/0x40
[ 548.589604] ? find_next_bit+0x57/0x90
[ 548.589610] f2fs_fill_super+0x194b/0x2b40
[ 548.589617] ? f2fs_commit_super+0x1b0/0x1b0
[ 548.589637] ? set_blocksize+0x90/0x140
[ 548.589651] mount_bdev+0x1c5/0x210
[ 548.589655] ? f2fs_commit_super+0x1b0/0x1b0
[ 548.589667] f2fs_mount+0x15/0x20
[ 548.589672] mount_fs+0x60/0x1a0
[ 548.589683] ? alloc_vfsmnt+0x309/0x360
[ 548.589688] vfs_kern_mount+0x6b/0x1a0
[ 548.589699] do_mount+0x34a/0x18c0
[ 548.589710] ? lockref_put_or_lock+0xcf/0x160
[ 548.589716] ? copy_mount_string+0x20/0x20
[ 548.589728] ? memcg_kmem_put_cache+0x1b/0xa0
[ 548.589734] ? kasan_check_write+0x14/0x20
[ 548.589740] ? _copy_from_user+0x6a/0x90
[ 548.589744] ? memdup_user+0x42/0x60
[ 548.589750] ksys_mount+0x83/0xd0
[ 548.589755] __x64_sys_mount+0x67/0x80
[ 548.589781] do_syscall_64+0x78/0x170
[ 548.589797] entry_SYSCALL_64_after_hwframe+0x44/0xa9
[ 548.589820] RIP: 0033:0x7f76fc331b9a
[ 548.589821] Code: 48 8b 0d 01 c3 2b 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 49 89 ca b8 a5 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d ce c2 2b 00 f7 d8 64 89 01 48
[ 548.589880] RSP: 002b:00007ffd4f0a0e48 EFLAGS: 00000206 ORIG_RAX: 00000000000000a5
[ 548.589890] RAX: ffffffffffffffda RBX: 000000000146c030 RCX: 00007f76fc331b9a
[ 548.589892] RDX: 000000000146c210 RSI: 000000000146df30 RDI: 0000000001474ec0
[ 548.589895] RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000013
[ 548.589897] R10: 00000000c0ed0000 R11: 0000000000000206 R12: 0000000001474ec0
[ 548.589900] R13: 000000000146c210 R14: 0000000000000000 R15: 0000000000000003
[ 548.590242] The buggy address belongs to the page:
[ 548.591243] page:ffffea0007a70980 count:0 mapcount:0 mapping:0000000000000000 index:0x0
[ 548.592886] flags: 0x2ffff0000000000()
[ 548.593665] raw: 02ffff0000000000 dead000000000100 dead000000000200 0000000000000000
[ 548.595258] raw: 0000000000000000 0000000000000000 00000000ffffffff 0000000000000000
[ 548.603713] page dumped because: kasan: bad access detected
[ 548.605203] Memory state around the buggy address:
[ 548.606198] ffff8801e9c26480: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
[ 548.607676] ffff8801e9c26500: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
[ 548.609157] >ffff8801e9c26580: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
[ 548.610629] ^
[ 548.612088] ffff8801e9c26600: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
[ 548.613674] ffff8801e9c26680: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
[ 548.615141] ==================================================================
[ 548.616613] Disabling lock debugging due to kernel taint
[ 548.622871] WARNING: CPU: 1 PID: 1295 at mm/page_alloc.c:4065 __alloc_pages_slowpath+0xe4a/0x1420
[ 548.622878] Modules linked in: snd_hda_codec_generic snd_hda_intel snd_hda_codec snd_hwdep snd_hda_core snd_pcm snd_timer snd mac_hid i2c_piix4 soundcore ib_iser rdma_cm iw_cm ib_cm ib_core iscsi_tcp libiscsi_tcp libiscsi scsi_transport_iscsi raid10 raid456 async_raid6_recov async_memcpy async_pq async_xor async_tx raid1 raid0 multipath linear 8139too crct10dif_pclmul crc32_pclmul qxl drm_kms_helper syscopyarea aesni_intel sysfillrect sysimgblt fb_sys_fops ttm drm aes_x86_64 crypto_simd cryptd 8139cp glue_helper mii pata_acpi floppy
[ 548.623217] CPU: 1 PID: 1295 Comm: mount Tainted: G B 4.18.0-rc1+ #4
[ 548.623219] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Ubuntu-1.8.2-1ubuntu1 04/01/2014
[ 548.623226] RIP: 0010:__alloc_pages_slowpath+0xe4a/0x1420
[ 548.623227] Code: ff ff 01 89 85 c8 fe ff ff e9 91 fc ff ff 41 89 c5 e9 5c fc ff ff 0f 0b 89 f8 25 ff ff f7 ff 89 85 8c fe ff ff e9 d5 f2 ff ff <0f> 0b e9 65 f2 ff ff 65 8b 05 38 81 d2 47 f6 c4 01 74 1c 65 48 8b
[ 548.623281] RSP: 0018:ffff8801f28c7678 EFLAGS: 00010246
[ 548.623284] RAX: 0000000000000000 RBX: 00000000006040c0 RCX: ffffffffb82f73b7
[ 548.623287] RDX: 1ffff1003e518eeb RSI: 000000000000000c RDI: 0000000000000000
[ 548.623290] RBP: ffff8801f28c7880 R08: 0000000000000000 R09: ffffed0047fff2c5
[ 548.623292] R10: 0000000000000001 R11: ffffed0047fff2c4 R12: ffff8801e88de040
[ 548.623295] R13: 00000000006040c0 R14: 000000000000000c R15: ffff8801f28c7938
[ 548.623299] FS: 00007f76fca51840(0000) GS:ffff8801f6f00000(0000) knlGS:0000000000000000
[ 548.623302] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 548.623304] CR2: 00007f19b9171760 CR3: 00000001ed952000 CR4: 00000000000006e0
[ 548.623317] Call Trace:
[ 548.623325] ? kasan_check_read+0x11/0x20
[ 548.623330] ? __zone_watermark_ok+0x92/0x240
[ 548.623336] ? get_page_from_freelist+0x1c3/0x1d90
[ 548.623347] ? _raw_spin_lock_irqsave+0x2a/0x60
[ 548.623353] ? warn_alloc+0x250/0x250
[ 548.623358] ? save_stack+0x46/0xd0
[ 548.623361] ? kasan_kmalloc+0xad/0xe0
[ 548.623366] ? __isolate_free_page+0x2a0/0x2a0
[ 548.623370] ? mount_fs+0x60/0x1a0
[ 548.623374] ? vfs_kern_mount+0x6b/0x1a0
[ 548.623378] ? do_mount+0x34a/0x18c0
[ 548.623383] ? ksys_mount+0x83/0xd0
[ 548.623387] ? __x64_sys_mount+0x67/0x80
[ 548.623391] ? do_syscall_64+0x78/0x170
[ 548.623396] ? entry_SYSCALL_64_after_hwframe+0x44/0xa9
[ 548.623401] __alloc_pages_nodemask+0x3c5/0x400
[ 548.623407] ? __alloc_pages_slowpath+0x1420/0x1420
[ 548.623412] ? __mutex_lock_slowpath+0x20/0x20
[ 548.623417] ? kvmalloc_node+0x31/0x80
[ 548.623424] alloc_pages_current+0x75/0x110
[ 548.623436] kmalloc_order+0x24/0x60
[ 548.623442] kmalloc_order_trace+0x24/0xb0
[ 548.623448] __kmalloc_track_caller+0x207/0x220
[ 548.623455] ? f2fs_build_node_manager+0x399/0xbb0
[ 548.623460] kmemdup+0x20/0x50
[ 548.623465] f2fs_build_node_manager+0x399/0xbb0
[ 548.623470] f2fs_fill_super+0x195e/0x2b40
[ 548.623477] ? f2fs_commit_super+0x1b0/0x1b0
[ 548.623481] ? set_blocksize+0x90/0x140
[ 548.623486] mount_bdev+0x1c5/0x210
[ 548.623489] ? f2fs_commit_super+0x1b0/0x1b0
[ 548.623495] f2fs_mount+0x15/0x20
[ 548.623498] mount_fs+0x60/0x1a0
[ 548.623503] ? alloc_vfsmnt+0x309/0x360
[ 548.623508] vfs_kern_mount+0x6b/0x1a0
[ 548.623513] do_mount+0x34a/0x18c0
[ 548.623518] ? lockref_put_or_lock+0xcf/0x160
[ 548.623523] ? copy_mount_string+0x20/0x20
[ 548.623528] ? memcg_kmem_put_cache+0x1b/0xa0
[ 548.623533] ? kasan_check_write+0x14/0x20
[ 548.623537] ? _copy_from_user+0x6a/0x90
[ 548.623542] ? memdup_user+0x42/0x60
[ 548.623547] ksys_mount+0x83/0xd0
[ 548.623552] __x64_sys_mount+0x67/0x80
[ 548.623557] do_syscall_64+0x78/0x170
[ 548.623562] entry_SYSCALL_64_after_hwframe+0x44/0xa9
[ 548.623566] RIP: 0033:0x7f76fc331b9a
[ 548.623567] Code: 48 8b 0d 01 c3 2b 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 49 89 ca b8 a5 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d ce c2 2b 00 f7 d8 64 89 01 48
[ 548.623632] RSP: 002b:00007ffd4f0a0e48 EFLAGS: 00000206 ORIG_RAX: 00000000000000a5
[ 548.623636] RAX: ffffffffffffffda RBX: 000000000146c030 RCX: 00007f76fc331b9a
[ 548.623639] RDX: 000000000146c210 RSI: 000000000146df30 RDI: 0000000001474ec0
[ 548.623641] RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000013
[ 548.623643] R10: 00000000c0ed0000 R11: 0000000000000206 R12: 0000000001474ec0
[ 548.623646] R13: 000000000146c210 R14: 0000000000000000 R15: 0000000000000003
[ 548.623650] ---[ end trace 4ce02f25ff7d3df5 ]---
[ 548.623656] F2FS-fs (loop0): Failed to initialize F2FS node manager
[ 548.627936] F2FS-fs (loop0): Invalid log blocks per segment (8201)
[ 548.627940] F2FS-fs (loop0): Can't find valid F2FS filesystem in 1th superblock
[ 548.635835] F2FS-fs (loop0): Failed to initialize F2FS node manager
- Location
https://elixir.bootlin.com/linux/v4.18-rc1/source/fs/f2fs/segment.c#L3578
sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
Buffer overrun happens when doing memcpy. I suspect there is missing (inconsistent) checks on bitmap_size.
Reported by Wen Xu (wen.xu@gatech.edu) from SSLab, Gatech.
Reported-by: Wen Xu <wen.xu@gatech.edu>
Signed-off-by: Chao Yu <yuchao0@huawei.com>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit 43794446548730ac8461be30bbe47d5d027d1d16 ]
[BUG]
Under certain KVM load and LTP tests, it is possible to hit the
following calltrace if quota is enabled:
BTRFS critical (device vda2): unable to find logical 8820195328 length 4096
BTRFS critical (device vda2): unable to find logical 8820195328 length 4096
WARNING: CPU: 0 PID: 49 at ../block/blk-core.c:172 blk_status_to_errno+0x1a/0x30
CPU: 0 PID: 49 Comm: kworker/u2:1 Not tainted 4.12.14-15-default #1 SLE15 (unreleased)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.0.0-prebuilt.qemu-project.org 04/01/2014
Workqueue: btrfs-endio-write btrfs_endio_write_helper [btrfs]
task: ffff9f827b340bc0 task.stack: ffffb4f8c0304000
RIP: 0010:blk_status_to_errno+0x1a/0x30
Call Trace:
submit_extent_page+0x191/0x270 [btrfs]
? btrfs_create_repair_bio+0x130/0x130 [btrfs]
__do_readpage+0x2d2/0x810 [btrfs]
? btrfs_create_repair_bio+0x130/0x130 [btrfs]
? run_one_async_done+0xc0/0xc0 [btrfs]
__extent_read_full_page+0xe7/0x100 [btrfs]
? run_one_async_done+0xc0/0xc0 [btrfs]
read_extent_buffer_pages+0x1ab/0x2d0 [btrfs]
? run_one_async_done+0xc0/0xc0 [btrfs]
btree_read_extent_buffer_pages+0x94/0xf0 [btrfs]
read_tree_block+0x31/0x60 [btrfs]
read_block_for_search.isra.35+0xf0/0x2e0 [btrfs]
btrfs_search_slot+0x46b/0xa00 [btrfs]
? kmem_cache_alloc+0x1a8/0x510
? btrfs_get_token_32+0x5b/0x120 [btrfs]
find_parent_nodes+0x11d/0xeb0 [btrfs]
? leaf_space_used+0xb8/0xd0 [btrfs]
? btrfs_leaf_free_space+0x49/0x90 [btrfs]
? btrfs_find_all_roots_safe+0x93/0x100 [btrfs]
btrfs_find_all_roots_safe+0x93/0x100 [btrfs]
btrfs_find_all_roots+0x45/0x60 [btrfs]
btrfs_qgroup_trace_extent_post+0x20/0x40 [btrfs]
btrfs_add_delayed_data_ref+0x1a3/0x1d0 [btrfs]
btrfs_alloc_reserved_file_extent+0x38/0x40 [btrfs]
insert_reserved_file_extent.constprop.71+0x289/0x2e0 [btrfs]
btrfs_finish_ordered_io+0x2f4/0x7f0 [btrfs]
? pick_next_task_fair+0x2cd/0x530
? __switch_to+0x92/0x4b0
btrfs_worker_helper+0x81/0x300 [btrfs]
process_one_work+0x1da/0x3f0
worker_thread+0x2b/0x3f0
? process_one_work+0x3f0/0x3f0
kthread+0x11a/0x130
? kthread_create_on_node+0x40/0x40
ret_from_fork+0x35/0x40
BTRFS critical (device vda2): unable to find logical 8820195328 length 16384
BTRFS: error (device vda2) in btrfs_finish_ordered_io:3023: errno=-5 IO failure
BTRFS info (device vda2): forced readonly
BTRFS error (device vda2): pending csums is 2887680
[CAUSE]
It's caused by race with block group auto removal:
- There is a meta block group X, which has only one tree block
The tree block belongs to fs tree 257.
- In current transaction, some operation modified fs tree 257
The tree block gets COWed, so the block group X is empty, and marked
as unused, queued to be deleted.
- Some workload (like fsync) wakes up cleaner_kthread()
Which will call btrfs_delete_unused_bgs() to remove unused block
groups.
So block group X along its chunk map get removed.
- Some delalloc work finished for fs tree 257
Quota needs to get the original reference of the extent, which will
read tree blocks of commit root of 257.
Then since the chunk map gets removed, the above warning gets
triggered.
[FIX]
Just let btrfs_delete_unused_bgs() skip block group which still has
pinned bytes.
However there is a minor side effect: currently we only queue empty
blocks at update_block_group(), and such empty block group with pinned
bytes won't go through update_block_group() again, such block group
won't be removed, until it gets new extent allocated and removed.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
initialized
[ Upstream commit 389305b2aa68723c754f88d9dbd268a400e10664 ]
Invalid reloc tree can cause kernel NULL pointer dereference when btrfs
does some cleanup of the reloc roots.
It turns out that fs_info::reloc_ctl can be NULL in
btrfs_recover_relocation() as we allocate relocation control after all
reloc roots have been verified.
So when we hit: note, we haven't called set_reloc_control() thus
fs_info::reloc_ctl is still NULL.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=199833
Reported-by: Xu Wen <wen.xu@gatech.edu>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Tested-by: Gu Jinxiang <gujx@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit 1e7e1f9e3aba00c9b9c323bfeeddafe69ff21ff6 ]
on-disk devs stats value is updated in btrfs_run_dev_stats(),
which is called during commit transaction, if device->dev_stats_ccnt
is not zero.
Since current replace operation does not touch dev_stats_ccnt,
on-disk dev stats value is not updated. Therefore "btrfs device stats"
may return old device's value after umount/mount
(Example: See "btrfs ins dump-t -t DEV $DEV" after btrfs/100 finish).
Fix this by just incrementing dev_stats_ccnt in
btrfs_dev_replace_finishing() when replace is succeeded and this will
update the values.
Signed-off-by: Misono Tomohiro <misono.tomohiro@jp.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit 289131e1f1e6ad8c661ec05e176b8f0915672059 ]
For SMB2/SMB3 the number of requests sent was not displayed
in /proc/fs/cifs/Stats unless CONFIG_CIFS_STATS2 was
enabled (only number of failed requests displayed). As
with earlier dialects, we should be displaying these
counters if CONFIG_CIFS_STATS is enabled. They
are important for debugging.
e.g. when you cat /proc/fs/cifs/Stats (before the patch)
Resources in use
CIFS Session: 1
Share (unique mount targets): 2
SMB Request/Response Buffer: 1 Pool size: 5
SMB Small Req/Resp Buffer: 1 Pool size: 30
Operations (MIDs): 0
0 session 0 share reconnects
Total vfs operations: 690 maximum at one time: 2
1) \\localhost\test
SMBs: 975
Negotiates: 0 sent 0 failed
SessionSetups: 0 sent 0 failed
Logoffs: 0 sent 0 failed
TreeConnects: 0 sent 0 failed
TreeDisconnects: 0 sent 0 failed
Creates: 0 sent 2 failed
Closes: 0 sent 0 failed
Flushes: 0 sent 0 failed
Reads: 0 sent 0 failed
Writes: 0 sent 0 failed
Locks: 0 sent 0 failed
IOCTLs: 0 sent 1 failed
Cancels: 0 sent 0 failed
Echos: 0 sent 0 failed
QueryDirectories: 0 sent 63 failed
Signed-off-by: Steve French <stfrench@microsoft.com>
Reviewed-by: Aurelien Aptel <aaptel@suse.com>
Reviewed-by: Pavel Shilovsky <pshilov@microsoft.com>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit c281bc0c7412308c7ec0888904f7c99353da4796 ]
echo 0 > /proc/fs/cifs/Stats is supposed to reset the stats
but there were four (see example below) that were not reset
(bytes read and witten, total vfs ops and max ops
at one time).
...
0 session 0 share reconnects
Total vfs operations: 100 maximum at one time: 2
1) \\localhost\test
SMBs: 0
Bytes read: 502092 Bytes written: 31457286
TreeConnects: 0 total 0 failed
TreeDisconnects: 0 total 0 failed
...
This patch fixes cifs_stats_proc_write to properly reset
those four.
Signed-off-by: Steve French <stfrench@microsoft.com>
Reviewed-by: Aurelien Aptel <aaptel@suse.com>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit 0afa9626667c3659ef8bd82d42a11e39fedf235c ]
On corrupted FATfs may have invalid ->i_start. To handle it, this checks
->i_start before using, and return proper error code.
Link: http://lkml.kernel.org/r/87o9f8y1t5.fsf_-_@mail.parknet.co.jp
Signed-off-by: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp>
Reported-by: Anatoly Trosinenko <anatoly.trosinenko@gmail.com>
Tested-by: Anatoly Trosinenko <anatoly.trosinenko@gmail.com>
Cc: Alan Cox <gnomes@lxorguk.ukuu.org.uk>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit 8b73ce6a4bae4fe12bcb2c361c0da4183c2e1b6f ]
This uses the deprecated time_t type but is write-only, and could be
removed, but as Jeff explains, having a timestamp can be usefule for
post-mortem analysis in crash dumps.
In order to remove one of the last instances of time_t, this changes the
type to time64_t, same as j_trans_start_time.
Link: http://lkml.kernel.org/r/20180622133315.221210-1-arnd@arndb.de
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Cc: Jan Kara <jack@suse.cz>
Cc: Jeff Mahoney <jeffm@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit dc2572791d3a41bab94400af2b6bca9d71ccd303 ]
hfs_find_exit() expects fd->bnode to be NULL after a search has failed.
hfs_brec_insert() may instead set it to an error-valued pointer. Fix
this to prevent a crash.
Link: http://lkml.kernel.org/r/53d9749a029c41b4016c495fc5838c9dba3afc52.1530294815.git.ernesto.mnd.fernandez@gmail.com
Signed-off-by: Ernesto A. Fernández <ernesto.mnd.fernandez@gmail.com>
Cc: Anatoly Trosinenko <anatoly.trosinenko@gmail.com>
Cc: Viacheslav Dubeyko <slava@dubeyko.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit 7464726cb5998846306ed0a7d6714afb2e37b25d ]
syzbot is reporting NULL pointer dereference at mount_fs() [1]. This is
because hfsplus_fill_super() is by error returning 0 when
hfsplus_fill_super() detected invalid filesystem image, and mount_bdev()
is returning NULL because dget(s->s_root) == NULL if s->s_root == NULL,
and mount_fs() is accessing root->d_sb because IS_ERR(root) == false if
root == NULL. Fix this by returning -EINVAL when hfsplus_fill_super()
detected invalid filesystem image.
[1] https://syzkaller.appspot.com/bug?id=21acb6850cecbc960c927229e597158cf35f33d0
Link: http://lkml.kernel.org/r/d83ce31a-874c-dd5b-f790-41405983a5be@I-love.SAKURA.ne.jp
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Reported-by: syzbot <syzbot+01ffaf5d9568dd1609f7@syzkaller.appspotmail.com>
Reviewed-by: Ernesto A. Fernández <ernesto.mnd.fernandez@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit e6c47dd0da1e3a484e778046fc10da0b20606a86 ]
Some SMB2/3 servers, Win2016 but possibly others too, adds padding
not only between PDUs in a compound but also to the final PDU.
This padding extends the PDU to a multiple of 8 bytes.
Check if the unexpected length looks like this might be the case
and avoid triggering the log messages for :
"SMB2 server sent bad RFC1001 len %d not %d\n"
Signed-off-by: Ronnie Sahlberg <lsahlber@redhat.com>
Signed-off-by: Steve French <stfrench@microsoft.com>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 82c9a927bc5df6e06b72d206d24a9d10cced4eb5 upstream.
When running in a container with a user namespace, if you call getxattr
with name = "system.posix_acl_access" and size % 8 != 4, then getxattr
silently skips the user namespace fixup that it normally does resulting in
un-fixed-up data being returned.
This is caused by posix_acl_fix_xattr_to_user() being passed the total
buffer size and not the actual size of the xattr as returned by
vfs_getxattr().
This commit passes the actual length of the xattr as returned by
vfs_getxattr() down.
A reproducer for the issue is:
touch acl_posix
setfacl -m user:0:rwx acl_posix
and the compile:
#define _GNU_SOURCE
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <unistd.h>
#include <attr/xattr.h>
/* Run in user namespace with nsuid 0 mapped to uid != 0 on the host. */
int main(int argc, void **argv)
{
ssize_t ret1, ret2;
char buf1[128], buf2[132];
int fret = EXIT_SUCCESS;
char *file;
if (argc < 2) {
fprintf(stderr,
"Please specify a file with "
"\"system.posix_acl_access\" permissions set\n");
_exit(EXIT_FAILURE);
}
file = argv[1];
ret1 = getxattr(file, "system.posix_acl_access",
buf1, sizeof(buf1));
if (ret1 < 0) {
fprintf(stderr, "%s - Failed to retrieve "
"\"system.posix_acl_access\" "
"from \"%s\"\n", strerror(errno), file);
_exit(EXIT_FAILURE);
}
ret2 = getxattr(file, "system.posix_acl_access",
buf2, sizeof(buf2));
if (ret2 < 0) {
fprintf(stderr, "%s - Failed to retrieve "
"\"system.posix_acl_access\" "
"from \"%s\"\n", strerror(errno), file);
_exit(EXIT_FAILURE);
}
if (ret1 != ret2) {
fprintf(stderr, "The value of \"system.posix_acl_"
"access\" for file \"%s\" changed "
"between two successive calls\n", file);
_exit(EXIT_FAILURE);
}
for (ssize_t i = 0; i < ret2; i++) {
if (buf1[i] == buf2[i])
continue;
fprintf(stderr,
"Unexpected different in byte %zd: "
"%02x != %02x\n", i, buf1[i], buf2[i]);
fret = EXIT_FAILURE;
}
if (fret == EXIT_SUCCESS)
fprintf(stderr, "Test passed\n");
else
fprintf(stderr, "Test failed\n");
_exit(fret);
}
and run:
./tester acl_posix
On a non-fixed up kernel this should return something like:
root@c1:/# ./t
Unexpected different in byte 16: ffffffa0 != 00
Unexpected different in byte 17: ffffff86 != 00
Unexpected different in byte 18: 01 != 00
and on a fixed kernel:
root@c1:~# ./t
Test passed
Cc: stable@vger.kernel.org
Fixes: 2f6f0654ab61 ("userns: Convert vfs posix_acl support to use kuids and kgids")
Link: https://bugzilla.kernel.org/show_bug.cgi?id=199945
Reported-by: Colin Watson <cjwatson@ubuntu.com>
Signed-off-by: Christian Brauner <christian@brauner.io>
Acked-by: Serge Hallyn <serge@hallyn.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 59965593205fa4044850d35ee3557cf0b7edcd14 upstream.
In ubifs_jnl_update() we sync parent and child inodes to the flash,
in case of xattrs, the parent inode (AKA host inode) has a non-zero
data_len. Therefore we need to adjust synced_i_size too.
This issue was reported by ubifs self tests unter a xattr related work
load.
UBIFS error (ubi0:0 pid 1896): dbg_check_synced_i_size: ui_size is 4, synced_i_size is 0, but inode is clean
UBIFS error (ubi0:0 pid 1896): dbg_check_synced_i_size: i_ino 65, i_mode 0x81a4, i_size 4
Cc: <stable@vger.kernel.org>
Fixes: 1e51764a3c2a ("UBIFS: add new flash file system")
Signed-off-by: Richard Weinberger <richard@nod.at>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 08acbdd6fd736b90f8d725da5a0de4de2dd6de62 upstream.
This reverts commit 353748a359f1821ee934afc579cf04572406b420.
It bypassed the linux-mtd review process and fixes the issue not as it
should.
Cc: Kees Cook <keescook@chromium.org>
Cc: Silvio Cesare <silvio.cesare@gmail.com>
Cc: stable@vger.kernel.org
Signed-off-by: Richard Weinberger <richard@nod.at>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit eef19816ada3abd56d9f20c88794cc2fea83ebb2 upstream.
Allocate the buffer after we return early.
Otherwise memory is being leaked.
Cc: <stable@vger.kernel.org>
Fixes: 1e51764a3c2a ("UBIFS: add new flash file system")
Signed-off-by: Richard Weinberger <richard@nod.at>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 0914bb965e38a055e9245637aed117efbe976e91 upstream.
"dev->nr_children" is the number of children which were parsed
successfully in bl_parse_stripe(). It could be all of them and then, in
that case, it is equal to v->stripe.volumes_count. Either way, the >
should be >= so that we don't go beyond the end of what we're supposed
to.
Fixes: 5c83746a0cf2 ("pnfs/blocklayout: in-kernel GETDEVICEINFO XDR parsing")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: stable@vger.kernel.org # 3.17+
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 2afc9166f79b8f6da5f347f48515215ceee4ae37 upstream.
Introduce these two functions and export them such that the next patch
can add calls to these functions from the SCSI core.
Signed-off-by: Bart Van Assche <bart.vanassche@wdc.com>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 109728ccc5933151c68d1106e4065478a487a323 upstream.
The above error path returns with page unlocked, so this place seems also
to behave the same.
Fixes: f8dbdf81821b ("fuse: rework fuse_readpages()")
Signed-off-by: Kirill Tkhai <ktkhai@virtuozzo.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit a2477b0e67c52f4364a47c3ad70902bc2a61bd4c upstream.
fuse_dev_splice_write() reads pipe->buffers to determine the size of
'bufs' array before taking the pipe_lock(). This is not safe as
another thread might change the 'pipe->buffers' between the allocation
and taking the pipe_lock(). So we end up with too small 'bufs' array.
Move the bufs allocations inside pipe_lock()/pipe_unlock() to fix this.
Fixes: dd3bb14f44a6 ("fuse: support splice() writing to fuse device")
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: <stable@vger.kernel.org> # v2.6.35
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit f39b3f45dbcb0343822cce31ea7636ad66e60bc2 upstream.
When ext4_find_entry() falls back to "searching the old fashioned
way" due to a corrupt dx dir, it needs to reset the error code
to NULL so that the nonstandard ERR_BAD_DX_DIR code isn't returned
to userspace.
https://bugzilla.kernel.org/show_bug.cgi?id=199947
Reported-by: Anatoly Trosinenko <anatoly.trosinenko@yandex.com>
Reviewed-by: Andreas Dilger <adilger@dilger.ca>
Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Cc: stable@vger.kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 4559b0a71749c442d34f7cfb9e72c9e58db83948 upstream.
If we're trying to make a data reservation and we have to allocate a
data chunk we could leak ret == 1, as do_chunk_alloc() will return 1 if
it allocated a chunk. Since the end of the function is the success path
just return 0.
CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit c2412ac45a8f8f1cd582723c1a139608694d410d ]
If we meet a conflicting object that is marked FSCACHE_OBJECT_IS_LIVE in
the active object tree, we have been emitting a BUG after logging
information about it and the new object.
Instead, we should wait for the CACHEFILES_OBJECT_ACTIVE flag to be cleared
on the old object (or return an error). The ACTIVE flag should be cleared
after it has been removed from the active object tree. A timeout of 60s is
used in the wait, so we shouldn't be able to get stuck there.
Fixes: 9ae326a69004 ("CacheFiles: A cache that backs onto a mounted filesystem")
Signed-off-by: Kiran Kumar Modukuri <kiran.modukuri@gmail.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit 934140ab028713a61de8bca58c05332416d037d1 ]
cachefiles_read_waiter() has the right to access a 'monitor' object by
virtue of being called under the waitqueue lock for one of the pages in its
purview. However, it has no ref on that monitor object or on the
associated operation.
What it is allowed to do is to move the monitor object to the operation's
to_do list, but once it drops the work_lock, it's actually no longer
permitted to access that object. However, it is trying to enqueue the
retrieval operation for processing - but it can only do this via a pointer
in the monitor object, something it shouldn't be doing.
If it doesn't enqueue the operation, the operation may not get processed.
If the order is flipped so that the enqueue is first, then it's possible
for the work processor to look at the to_do list before the monitor is
enqueued upon it.
Fix this by getting a ref on the operation so that we can trust that it
will still be there once we've added the monitor to the to_do list and
dropped the work_lock. The op can then be enqueued after the lock is
dropped.
The bug can manifest in one of a couple of ways. The first manifestation
looks like:
FS-Cache:
FS-Cache: Assertion failed
FS-Cache: 6 == 5 is false
------------[ cut here ]------------
kernel BUG at fs/fscache/operation.c:494!
RIP: 0010:fscache_put_operation+0x1e3/0x1f0
...
fscache_op_work_func+0x26/0x50
process_one_work+0x131/0x290
worker_thread+0x45/0x360
kthread+0xf8/0x130
? create_worker+0x190/0x190
? kthread_cancel_work_sync+0x10/0x10
ret_from_fork+0x1f/0x30
This is due to the operation being in the DEAD state (6) rather than
INITIALISED, COMPLETE or CANCELLED (5) because it's already passed through
fscache_put_operation().
The bug can also manifest like the following:
kernel BUG at fs/fscache/operation.c:69!
...
[exception RIP: fscache_enqueue_operation+246]
...
#7 [ffff883fff083c10] fscache_enqueue_operation at ffffffffa0b793c6
#8 [ffff883fff083c28] cachefiles_read_waiter at ffffffffa0b15a48
#9 [ffff883fff083c48] __wake_up_common at ffffffff810af028
I'm not entirely certain as to which is line 69 in Lei's kernel, so I'm not
entirely clear which assertion failed.
Fixes: 9ae326a69004 ("CacheFiles: A cache that backs onto a mounted filesystem")
Reported-by: Lei Xue <carmark.dlut@gmail.com>
Reported-by: Vegard Nossum <vegard.nossum@gmail.com>
Reported-by: Anthony DeRobertis <aderobertis@metrics.net>
Reported-by: NeilBrown <neilb@suse.com>
Reported-by: Daniel Axtens <dja@axtens.net>
Reported-by: Kiran Kumar Modukuri <kiran.modukuri@gmail.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Daniel Axtens <dja@axtens.net>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit d0eb06afe712b7b103b6361f40a9a0c638524669 ]
Alter the state-check assertion in fscache_enqueue_operation() to allow
cancelled operations to be given processing time so they can be cleaned up.
Also fix a debugging statement that was requiring such operations to have
an object assigned.
Fixes: 9ae326a69004 ("CacheFiles: A cache that backs onto a mounted filesystem")
Reported-by: Kiran Kumar Modukuri <kiran.modukuri@gmail.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit a13f085d111e90469faf2d9965eb39b11c114d7e upstream.
This fixes the following issues:
- When a buffer size is supplied to reiserfs_listxattr() such that each
individual name fits, but the concatenation of all names doesn't fit,
reiserfs_listxattr() overflows the supplied buffer. This leads to a
kernel heap overflow (verified using KASAN) followed by an out-of-bounds
usercopy and is therefore a security bug.
- When a buffer size is supplied to reiserfs_listxattr() such that a
name doesn't fit, -ERANGE should be returned. But reiserfs instead just
truncates the list of names; I have verified that if the only xattr on a
file has a longer name than the supplied buffer length, listxattr()
incorrectly returns zero.
With my patch applied, -ERANGE is returned in both cases and the memory
corruption doesn't happen anymore.
Credit for making me clean this code up a bit goes to Al Viro, who pointed
out that the ->actor calling convention is suboptimal and should be
changed.
Link: http://lkml.kernel.org/r/20180802151539.5373-1-jannh@google.com
Fixes: 48b32a3553a5 ("reiserfs: use generic xattr handlers")
Signed-off-by: Jann Horn <jannh@google.com>
Acked-by: Jeff Mahoney <jeffm@suse.com>
Cc: Eric Biggers <ebiggers@google.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 119e1ef80ecfe0d1deb6378d4ab41f5b71519de1 upstream.
__legitimize_mnt() has two problems - one is that in case of success
the check of mount_lock is not ordered wrt preceding increment of
refcount, making it possible to have successful __legitimize_mnt()
on one CPU just before the otherwise final mntpu() on another,
with __legitimize_mnt() not seeing mntput() taking the lock and
mntput() not seeing the increment done by __legitimize_mnt().
Solved by a pair of barriers.
Another is that failure of __legitimize_mnt() on the second
read_seqretry() leaves us with reference that'll need to be
dropped by caller; however, if that races with final mntput()
we can end up with caller dropping rcu_read_lock() and doing
mntput() to release that reference - with the first mntput()
having freed the damn thing just as rcu_read_lock() had been
dropped. Solution: in "do mntput() yourself" failure case
grab mount_lock, check if MNT_DOOMED has been set by racing
final mntput() that has missed our increment and if it has -
undo the increment and treat that as "failure, caller doesn't
need to drop anything" case.
It's not easy to hit - the final mntput() has to come right
after the first read_seqretry() in __legitimize_mnt() *and*
manage to miss the increment done by __legitimize_mnt() before
the second read_seqretry() in there. The things that are almost
impossible to hit on bare hardware are not impossible on SMP
KVM, though...
Reported-by: Oleg Nesterov <oleg@redhat.com>
Fixes: 48a066e72d97 ("RCU'd vsfmounts")
Cc: stable@vger.kernel.org
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 9ea0a46ca2c318fcc449c1e6b62a7230a17888f1 upstream.
mntput_no_expire() does the calculation of total refcount under mount_lock;
unfortunately, the decrement (as well as all increments) are done outside
of it, leading to false positives in the "are we dropping the last reference"
test. Consider the following situation:
* mnt is a lazy-umounted mount, kept alive by two opened files. One
of those files gets closed. Total refcount of mnt is 2. On CPU 42
mntput(mnt) (called from __fput()) drops one reference, decrementing component
* After it has looked at component #0, the process on CPU 0 does
mntget(), incrementing component #0, gets preempted and gets to run again -
on CPU 69. There it does mntput(), which drops the reference (component #69)
and proceeds to spin on mount_lock.
* On CPU 42 our first mntput() finishes counting. It observes the
decrement of component #69, but not the increment of component #0. As the
result, the total it gets is not 1 as it should've been - it's 0. At which
point we decide that vfsmount needs to be killed and proceed to free it and
shut the filesystem down. However, there's still another opened file
on that filesystem, with reference to (now freed) vfsmount, etc. and we are
screwed.
It's not a wide race, but it can be reproduced with artificial slowdown of
the mnt_get_count() loop, and it should be easier to hit on SMP KVM setups.
Fix consists of moving the refcount decrement under mount_lock; the tricky
part is that we want (and can) keep the fast case (i.e. mount that still
has non-NULL ->mnt_ns) entirely out of mount_lock. All places that zero
mnt->mnt_ns are dropping some reference to mnt and they call synchronize_rcu()
before that mntput(). IOW, if mntput() observes (under rcu_read_lock())
a non-NULL ->mnt_ns, it is guaranteed that there is another reference yet to
be dropped.
Reported-by: Jann Horn <jannh@google.com>
Tested-by: Jann Horn <jannh@google.com>
Fixes: 48a066e72d97 ("RCU'd vsfmounts")
Cc: stable@vger.kernel.org
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 90bad5e05bcdb0308cfa3d3a60f5c0b9c8e2efb3 upstream.
Since mountpoint crossing can happen without leaving lazy mode,
root dentries do need the same protection against having their
memory freed without RCU delay as everything else in the tree.
It's partially hidden by RCU delay between detaching from the
mount tree and dropping the vfsmount reference, but the starting
point of pathwalk can be on an already detached mount, in which
case umount-caused RCU delay has already passed by the time the
lazy pathwalk grabs rcu_read_lock(). If the starting point
happens to be at the root of that vfsmount *and* that vfsmount
covers the entire filesystem, we get trouble.
Fixes: 48a066e72d97 ("RCU'd vsfmounts")
Cc: stable@vger.kernel.org
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 92d34134193e5b129dc24f8d79cb9196626e8d7a upstream.
The code is assuming the buffer is max_size length, but we weren't
allocating enough space for it.
Signed-off-by: Shankara Pailoor <shankarapailoor@gmail.com>
Signed-off-by: Dave Kleikamp <dave.kleikamp@oracle.com>
Cc: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 71755ee5350b63fb1f283de8561cdb61b47f4d1d upstream.
The squashfs fragment reading code doesn't actually verify that the
fragment is inside the fragment table. The end result _is_ verified to
be inside the image when actually reading the fragment data, but before
that is done, we may end up taking a page fault because the fragment
table itself might not even exist.
Another report from Anatoly and his endless squashfs image fuzzing.
Reported-by: Анатолий Тросиненко <anatoly.trosinenko@gmail.com>
Acked-by:: Phillip Lougher <phillip.lougher@gmail.com>,
Cc: Willy Tarreau <w@1wt.eu>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit d512584780d3e6a7cacb2f482834849453d444a1 upstream.
Anatoly reports another squashfs fuzzing issue, where the decompression
parameters themselves are in a compressed block.
This causes squashfs_read_data() to be called in order to read the
decompression options before the decompression stream having been set
up, making squashfs go sideways.
Reported-by: Anatoly Trosinenko <anatoly.trosinenko@gmail.com>
Acked-by: Phillip Lougher <phillip.lougher@gmail.com>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 01cfb7937a9af2abb1136c7e89fbf3fd92952956 upstream.
Anatoly Trosinenko reports that a corrupted squashfs image can cause a
kernel oops. It turns out that squashfs can end up being confused about
negative fragment lengths.
The regular squashfs_read_data() does check for negative lengths, but
squashfs_read_metadata() did not, and the fragment size code just
blindly trusted the on-disk value. Fix both the fragment parsing and
the metadata reading code.
Reported-by: Anatoly Trosinenko <anatoly.trosinenko@gmail.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Phillip Lougher <phillip@squashfs.org.uk>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 35033ab988c396ad7bce3b6d24060c16a9066db8 upstream.
In parse_options(), if match_strdup() failed, parse_options() leaves
opts->iocharset in unexpected state (i.e. still pointing the freed
string). And this can be the cause of double free.
To fix, this initialize opts->iocharset always when freeing.
Link: http://lkml.kernel.org/r/8736wp9dzc.fsf@mail.parknet.co.jp
Signed-off-by: OGAWA Hirofumi <hirofumi@mail.parknet.co.jp>
Reported-by: syzbot+90b8e10515ae88228a92@syzkaller.appspotmail.com
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 0fa3ecd87848c9c93c2c828ef4c3a8ca36ce46c7 upstream.
sgid directories have special semantics, making newly created files in
the directory belong to the group of the directory, and newly created
subdirectories will also become sgid. This is historically used for
group-shared directories.
But group directories writable by non-group members should not imply
that such non-group members can magically join the group, so make sure
to clear the sgid bit on non-directories for non-members (but remember
that sgid without group execute means "mandatory locking", just to
confuse things even more).
Reported-by: Jann Horn <jannh@google.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit bfe0a5f47ada40d7984de67e59a7d3390b9b9ecc upstream.
The kernel's ext4 mount-time checks were more permissive than
e2fsprogs's libext2fs checks when opening a file system. The
superblock is considered too insane for debugfs or e2fsck to operate
on it, the kernel has no business trying to mount it.
This will make file system fuzzing tools work harder, but the failure
cases that they find will be more useful and be easier to evaluate.
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Cc: stable@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 6e8ab72a812396996035a37e5ca4b3b99b5d214b upstream.
When converting from an inode from storing the data in-line to a data
block, ext4_destroy_inline_data_nolock() was only clearing the on-disk
copy of the i_blocks[] array. It was not clearing copy of the
i_blocks[] in ext4_inode_info, in i_data[], which is the copy actually
used by ext4_map_blocks().
This didn't matter much if we are using extents, since the extents
header would be invalid and thus the extents could would re-initialize
the extents tree. But if we are using indirect blocks, the previous
contents of the i_blocks array will be treated as block numbers, with
potentially catastrophic results to the file system integrity and/or
user data.
This gets worse if the file system is using a 1k block size and
s_first_data is zero, but even without this, the file system can get
quite badly corrupted.
This addresses CVE-2018-10881.
https://bugzilla.kernel.org/show_bug.cgi?id=200015
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Cc: stable@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|