| Commit message (Collapse) | Author | Age | Files | Lines |
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
"Most of the MM queue. A few things are still pending.
Liam's maple tree rework didn't make it. This has resulted in a few
other minor patch series being held over for next time.
Multi-gen LRU still isn't merged as we were waiting for mapletree to
stabilize. The current plan is to merge MGLRU into -mm soon and to
later reintroduce mapletree, with a view to hopefully getting both
into 6.1-rc1.
Summary:
- The usual batches of cleanups from Baoquan He, Muchun Song, Miaohe
Lin, Yang Shi, Anshuman Khandual and Mike Rapoport
- Some kmemleak fixes from Patrick Wang and Waiman Long
- DAMON updates from SeongJae Park
- memcg debug/visibility work from Roman Gushchin
- vmalloc speedup from Uladzislau Rezki
- more folio conversion work from Matthew Wilcox
- enhancements for coherent device memory mapping from Alex Sierra
- addition of shared pages tracking and CoW support for fsdax, from
Shiyang Ruan
- hugetlb optimizations from Mike Kravetz
- Mel Gorman has contributed some pagealloc changes to improve
latency and realtime behaviour.
- mprotect soft-dirty checking has been improved by Peter Xu
- Many other singleton patches all over the place"
[ XFS merge from hell as per Darrick Wong in
https://lore.kernel.org/all/YshKnxb4VwXycPO8@magnolia/ ]
* tag 'mm-stable-2022-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (282 commits)
tools/testing/selftests/vm/hmm-tests.c: fix build
mm: Kconfig: fix typo
mm: memory-failure: convert to pr_fmt()
mm: use is_zone_movable_page() helper
hugetlbfs: fix inaccurate comment in hugetlbfs_statfs()
hugetlbfs: cleanup some comments in inode.c
hugetlbfs: remove unneeded header file
hugetlbfs: remove unneeded hugetlbfs_ops forward declaration
hugetlbfs: use helper macro SZ_1{K,M}
mm: cleanup is_highmem()
mm/hmm: add a test for cross device private faults
selftests: add soft-dirty into run_vmtests.sh
selftests: soft-dirty: add test for mprotect
mm/mprotect: fix soft-dirty check in can_change_pte_writable()
mm: memcontrol: fix potential oom_lock recursion deadlock
mm/gup.c: fix formatting in check_and_migrate_movable_page()
xfs: fail dax mount if reflink is enabled on a partition
mm/memcontrol.c: remove the redundant updating of stats_flush_threshold
userfaultfd: don't fail on unrecognized features
hugetlb_cgroup: fix wrong hugetlb cgroup numa stat
...
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
In some cases, e.g. when size option is not specified, f_blocks, f_bavail
and f_bfree will be set to -1 instead of 0. Likewise, when nr_inodes
isn't specified, f_files and f_ffree will be set to -1 too. Update the
comment to make this clear.
Link: https://lkml.kernel.org/r/20220726142918.51693-6-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The function generic_file_buffered_read has been renamed to filemap_read
since commit 87fa0f3eb267 ("mm/filemap: rename generic_file_buffered_read
to filemap_read"). Update the corresponding comment. And duplicated
taken in hugetlbfs_fill_super is removed.
Link: https://lkml.kernel.org/r/20220726142918.51693-5-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The header file signal.h is unneeded now. Remove it.
Link: https://lkml.kernel.org/r/20220726142918.51693-4-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The forward declaration for hugetlbfs_ops is unnecessary. Remove it.
Link: https://lkml.kernel.org/r/20220726142918.51693-3-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Patch series "A few cleanup and fixup patches for hugetlbfs", v2.
This series contains a few cleaup patches to remove unneeded forward
declaration, use helper macro and so on. More details can be found in the
respective changelogs.
This patch (of 5):
Use helper macro SZ_1K and SZ_1M to do the size conversion. Minor
readability improvement.
Link: https://lkml.kernel.org/r/20220726142918.51693-1-linmiaohe@huawei.com
Link: https://lkml.kernel.org/r/20220726142918.51693-2-linmiaohe@huawei.com
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Failure notification is not supported on partitions. So, when we mount a
reflink enabled xfs on a partition with dax option, let it fail with
-EINVAL code.
Link: https://lkml.kernel.org/r/20220609143435.393724-1-ruansy.fnst@fujitsu.com
Signed-off-by: Shiyang Ruan <ruansy.fnst@fujitsu.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Cc: Dave Chinner <david@fromorbit.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The basic interaction for setting up a userfaultfd is, userspace issues
a UFFDIO_API ioctl, and passes in a set of zero or more feature flags,
indicating the features they would prefer to use.
Of course, different kernels may support different sets of features
(depending on kernel version, kconfig options, architecture, etc).
Userspace's expectations may also not match: perhaps it was built
against newer kernel headers, which defined some features the kernel
it's running on doesn't support.
Currently, if userspace passes in a flag we don't recognize, the
initialization fails and we return -EINVAL. This isn't great, though.
Userspace doesn't have an obvious way to react to this; sure, one of the
features I asked for was unavailable, but which one? The only option it
has is to turn off things "at random" and hope something works.
Instead, modify UFFDIO_API to just ignore any unrecognized feature
flags. The interaction is now that the initialization will succeed, and
as always we return the *subset* of feature flags that can actually be
used back to userspace.
Now userspace has an obvious way to react: it checks if any flags it
asked for are missing. If so, it can conclude this kernel doesn't
support those, and it can either resign itself to not using them, or
fail with an error on its own, or whatever else.
Link: https://lkml.kernel.org/r/20220722201513.1624158-1-axelrasmussen@google.com
Signed-off-by: Axel Rasmussen <axelrasmussen@google.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The page fault path checks THP eligibility with __transhuge_page_enabled()
which does the similar thing as hugepage_vma_check(), so use
hugepage_vma_check() instead.
However page fault allows DAX and !anon_vma cases, so added a new flag,
in_pf, to hugepage_vma_check() to make page fault work correctly.
The in_pf flag is also used to skip shmem and file THP for page fault
since shmem handles THP in its own shmem_fault() and file THP allocation
on fault is not supported yet.
Also remove hugepage_vma_enabled() since hugepage_vma_check() is the only
caller now, it is not necessary to have a helper function.
Link: https://lkml.kernel.org/r/20220616174840.1202070-6-shy828301@gmail.com
Signed-off-by: Yang Shi <shy828301@gmail.com>
Reviewed-by: Zach O'Keefe <zokeefe@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The transparent_hugepage_active() was introduced to show THP eligibility
bit in smaps in proc, smaps is the only user. But it actually does the
similar check as hugepage_vma_check() which is used by khugepaged. We
definitely don't have to maintain two similar checks, so kill
transparent_hugepage_active().
This patch also fixed the wrong behavior for VM_NO_KHUGEPAGED vmas.
Also move hugepage_vma_check() to huge_memory.c and huge_mm.h since it
is not only for khugepaged anymore.
[akpm@linux-foundation.org: check vma->vm_mm, per Zach]
[akpm@linux-foundation.org: add comment to vdso check]
Link: https://lkml.kernel.org/r/20220616174840.1202070-5-shy828301@gmail.com
Signed-off-by: Yang Shi <shy828301@gmail.com>
Reviewed-by: Zach O'Keefe <zokeefe@google.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Introduce xfs_mmaplock_two_inodes_and_break_dax_layout() for dax files who
are going to be deduped. After that, call compare range function only
when files are both DAX or not.
Link: https://lkml.kernel.org/r/20220603053738.1218681-15-ruansy.fnst@fujitsu.com
Signed-off-by: Shiyang Ruan <ruansy.fnst@fujitsu.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Dan Williams <dan.j.wiliams@intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Goldwyn Rodrigues <rgoldwyn@suse.com>
Cc: Goldwyn Rodrigues <rgoldwyn@suse.de>
Cc: Jane Chu <jane.chu@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Ritesh Harjani <riteshh@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
In fsdax mode, WRITE and ZERO on a shared extent need CoW performed.
After that, new allocated extents needs to be remapped to the file. So,
add a CoW identification in ->iomap_begin(), and implement ->iomap_end()
to do the remapping work.
[akpm@linux-foundation.org: make xfs_dax_fault() static]
Link: https://lkml.kernel.org/r/20220603053738.1218681-14-ruansy.fnst@fujitsu.com
Signed-off-by: Shiyang Ruan <ruansy.fnst@fujitsu.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dan Williams <dan.j.wiliams@intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Goldwyn Rodrigues <rgoldwyn@suse.com>
Cc: Goldwyn Rodrigues <rgoldwyn@suse.de>
Cc: Jane Chu <jane.chu@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Ritesh Harjani <riteshh@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
With dax we cannot deal with readpage() etc. So, we create a dax
comparison function which is similar with vfs_dedupe_file_range_compare().
And introduce dax_remap_file_range_prep() for filesystem use.
Link: https://lkml.kernel.org/r/20220603053738.1218681-13-ruansy.fnst@fujitsu.com
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: Shiyang Ruan <ruansy.fnst@fujitsu.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Dan Williams <dan.j.wiliams@intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Goldwyn Rodrigues <rgoldwyn@suse.de>
Cc: Jane Chu <jane.chu@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Ritesh Harjani <riteshh@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Punch hole on a reflinked file needs dax_iomap_cow_copy() too. Otherwise,
data in not aligned area will be not correct. So, add the CoW operation
for not aligned case in dax_memzero().
Link: https://lkml.kernel.org/r/20220603053738.1218681-12-ruansy.fnst@fujitsu.com
Signed-off-by: Shiyang Ruan <ruansy.fnst@fujitsu.com>
Reviewed-by: Ritesh Harjani <riteshh@linux.ibm.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Dan Williams <dan.j.wiliams@intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Goldwyn Rodrigues <rgoldwyn@suse.com>
Cc: Goldwyn Rodrigues <rgoldwyn@suse.de>
Cc: Jane Chu <jane.chu@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Replace the existing entry to the newly allocated one in case of CoW.
Also, we mark the entry as PAGECACHE_TAG_TOWRITE so writeback marks this
entry as writeprotected. This helps us snapshots so new write pagefaults
after snapshots trigger a CoW.
Link: https://lkml.kernel.org/r/20220603053738.1218681-11-ruansy.fnst@fujitsu.com
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: Shiyang Ruan <ruansy.fnst@fujitsu.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Ritesh Harjani <riteshh@linux.ibm.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Dan Williams <dan.j.wiliams@intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Goldwyn Rodrigues <rgoldwyn@suse.de>
Cc: Jane Chu <jane.chu@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
In the case where the iomap is a write operation and iomap is not equal to
srcmap after iomap_begin, we consider it is a CoW operation.
In this case, the destination (iomap->addr) points to a newly allocated
extent. It is needed to copy the data from srcmap to the extent. In
theory, it is better to copy the head and tail ranges which is outside of
the non-aligned area instead of copying the whole aligned range. But in
dax page fault, it will always be an aligned range. So copy the whole
range in this case.
Link: https://lkml.kernel.org/r/20220603053738.1218681-10-ruansy.fnst@fujitsu.com
Signed-off-by: Shiyang Ruan <ruansy.fnst@fujitsu.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Dan Williams <dan.j.wiliams@intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Goldwyn Rodrigues <rgoldwyn@suse.com>
Cc: Goldwyn Rodrigues <rgoldwyn@suse.de>
Cc: Jane Chu <jane.chu@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Ritesh Harjani <riteshh@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Add address output in dax_iomap_pfn() in order to perform a memcpy() in
CoW case. Since this function both output address and pfn, rename it to
dax_iomap_direct_access().
[ruansy.fnst@fujitsu.com: initialize `rc', per Dan]
Link: https://lore.kernel.org/linux-fsdevel/Yp8FUZnO64Qvyx5G@kili/
Link: https://lkml.kernel.org/r/20220607143837.161174-1-ruansy.fnst@fujitsu.com
Link: https://lkml.kernel.org/r/20220603053738.1218681-9-ruansy.fnst@fujitsu.com
Signed-off-by: Shiyang Ruan <ruansy.fnst@fujitsu.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Ritesh Harjani <riteshh@linux.ibm.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Dan Williams <dan.j.wiliams@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Goldwyn Rodrigues <rgoldwyn@suse.com>
Cc: Goldwyn Rodrigues <rgoldwyn@suse.de>
Cc: Jane Chu <jane.chu@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Introduce a PAGE_MAPPING_DAX_COW flag to support association with CoW file
mappings. In this case, since the dax-rmap has already took the
responsibility to look up for shared files by given dax page, the
page->mapping is no longer to used for rmap but for marking that this dax
page is shared. And to make sure disassociation works fine, we use
page->index as refcount, and clear page->mapping to the initial state when
page->index is decreased to 0.
With the help of this new flag, it is able to distinguish normal case and
CoW case, and keep the warning in normal case.
Link: https://lkml.kernel.org/r/20220603053738.1218681-8-ruansy.fnst@fujitsu.com
Signed-off-by: Shiyang Ruan <ruansy.fnst@fujitsu.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Dan Williams <dan.j.wiliams@intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Goldwyn Rodrigues <rgoldwyn@suse.com>
Cc: Goldwyn Rodrigues <rgoldwyn@suse.de>
Cc: Jane Chu <jane.chu@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Ritesh Harjani <riteshh@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Introduce xfs_notify_failure.c to handle failure related works, such as
implement ->notify_failure(), register/unregister dax holder in xfs, and
so on.
If the rmap feature of XFS enabled, we can query it to find files and
metadata which are associated with the corrupt data. For now all we do is
kill processes with that file mapped into their address spaces, but future
patches could actually do something about corrupt metadata.
After that, the memory failure needs to notify the processes who are using
those files.
Link: https://lkml.kernel.org/r/20220603053738.1218681-7-ruansy.fnst@fujitsu.com
Signed-off-by: Shiyang Ruan <ruansy.fnst@fujitsu.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Dan Williams <dan.j.wiliams@intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Goldwyn Rodrigues <rgoldwyn@suse.com>
Cc: Goldwyn Rodrigues <rgoldwyn@suse.de>
Cc: Jane Chu <jane.chu@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Ritesh Harjani <riteshh@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The current dax_lock_page() locks dax entry by obtaining mapping and index
in page. To support 1-to-N RMAP in NVDIMM, we need a new function to lock
a specific dax entry corresponding to this file's mapping,index. And
output the page corresponding to the specific dax entry for caller use.
Link: https://lkml.kernel.org/r/20220603053738.1218681-5-ruansy.fnst@fujitsu.com
Signed-off-by: Shiyang Ruan <ruansy.fnst@fujitsu.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Dan Williams <dan.j.wiliams@intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Goldwyn Rodrigues <rgoldwyn@suse.com>
Cc: Goldwyn Rodrigues <rgoldwyn@suse.de>
Cc: Jane Chu <jane.chu@oracle.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Ritesh Harjani <riteshh@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Patch series "v14 fsdax-rmap + v11 fsdax-reflink", v2.
The patchset fsdax-rmap is aimed to support shared pages tracking for
fsdax.
It moves owner tracking from dax_assocaite_entry() to pmem device driver,
by introducing an interface ->memory_failure() for struct pagemap. This
interface is called by memory_failure() in mm, and implemented by pmem
device.
Then call holder operations to find the filesystem which the corrupted
data located in, and call filesystem handler to track files or metadata
associated with this page.
Finally we are able to try to fix the corrupted data in filesystem and do
other necessary processing, such as killing processes who are using the
files affected.
The call trace is like this:
memory_failure()
|* fsdax case
|------------
|pgmap->ops->memory_failure() => pmem_pgmap_memory_failure()
| dax_holder_notify_failure() =>
| dax_device->holder_ops->notify_failure() =>
| - xfs_dax_notify_failure()
| |* xfs_dax_notify_failure()
| |--------------------------
| | xfs_rmap_query_range()
| | xfs_dax_failure_fn()
| | * corrupted on metadata
| | try to recover data, call xfs_force_shutdown()
| | * corrupted on file data
| | try to recover data, call mf_dax_kill_procs()
|* normal case
|-------------
|mf_generic_kill_procs()
The patchset fsdax-reflink attempts to add CoW support for fsdax, and
takes XFS, which has both reflink and fsdax features, as an example.
One of the key mechanisms needed to be implemented in fsdax is CoW. Copy
the data from srcmap before we actually write data to the destination
iomap. And we just copy range in which data won't be changed.
Another mechanism is range comparison. In page cache case, readpage() is
used to load data on disk to page cache in order to be able to compare
data. In fsdax case, readpage() does not work. So, we need another
compare data with direct access support.
With the two mechanisms implemented in fsdax, we are able to make reflink
and fsdax work together in XFS.
This patch (of 14):
To easily track filesystem from a pmem device, we introduce a holder for
dax_device structure, and also its operation. This holder is used to
remember who is using this dax_device:
- When it is the backend of a filesystem, the holder will be the
instance of this filesystem.
- When this pmem device is one of the targets in a mapped device, the
holder will be this mapped device. In this case, the mapped device
has its own dax_device and it will follow the first rule. So that we
can finally track to the filesystem we needed.
The holder and holder_ops will be set when filesystem is being mounted,
or an target device is being activated.
Link: https://lkml.kernel.org/r/20220603053738.1218681-1-ruansy.fnst@fujitsu.com
Link: https://lkml.kernel.org/r/20220603053738.1218681-2-ruansy.fnst@fujitsu.com
Signed-off-by: Shiyang Ruan <ruansy.fnst@fujitsu.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dan Williams <dan.j.wiliams@intel.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jane Chu <jane.chu@oracle.com>
Cc: Goldwyn Rodrigues <rgoldwyn@suse.de>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Goldwyn Rodrigues <rgoldwyn@suse.com>
Cc: Ritesh Harjani <riteshh@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
With DEVICE_COHERENT, we'll soon have vm_normal_pages() return
device-managed anonymous pages that are not LRU pages. Although they
behave like normal pages for purposes of mapping in CPU page, and for COW.
They do not support LRU lists, NUMA migration or THP.
Callers to follow_page() currently don't expect ZONE_DEVICE pages,
however, with DEVICE_COHERENT we might now return ZONE_DEVICE. Check for
ZONE_DEVICE pages in applicable users of follow_page() as well.
Link: https://lkml.kernel.org/r/20220715150521.18165-5-alex.sierra@amd.com
Signed-off-by: Alex Sierra <alex.sierra@amd.com>
Acked-by: Felix Kuehling <Felix.Kuehling@amd.com> [v2]
Reviewed-by: Alistair Popple <apopple@nvidia.com> [v6]
Cc: Christoph Hellwig <hch@lst.de>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Pss is the sum of the sizes of clean and dirty private pages, and the
proportional sizes of clean and dirty shared pages:
Private = Private_Dirty + Private_Clean
Shared_Proportional = Shared_Dirty_Proportional + Shared_Clean_Proportional
Pss = Private + Shared_Proportional
The Shared*Proportional fields are not present in smaps, so it is not
always possible to determine how much of the Pss is from dirty pages and
how much is from clean pages. This information can be useful for
measuring memory usage for the purpose of optimisation, since clean pages
can usually be discarded by the kernel immediately while dirty pages
cannot.
The smaps routines in the kernel already have access to this data, so add
a Pss_Dirty to show it to userspace. Pss_Clean is not added since it can
be calculated from Pss and Pss_Dirty.
Link: https://lkml.kernel.org/r/20220620081251.2928103-1-vincent.whitchurch@axis.com
Signed-off-by: Vincent Whitchurch <vincent.whitchurch@axis.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Currently shrinkers are anonymous objects. For debugging purposes they
can be identified by count/scan function names, but it's not always
useful: e.g. for superblock's shrinkers it's nice to have at least an
idea of to which superblock the shrinker belongs.
This commit adds names to shrinkers. register_shrinker() and
prealloc_shrinker() functions are extended to take a format and arguments
to master a name.
In some cases it's not possible to determine a good name at the time when
a shrinker is allocated. For such cases shrinker_debugfs_rename() is
provided.
The expected format is:
<subsystem>-<shrinker_type>[:<instance>]-<id>
For some shrinkers an instance can be encoded as (MAJOR:MINOR) pair.
After this change the shrinker debugfs directory looks like:
$ cd /sys/kernel/debug/shrinker/
$ ls
dquota-cache-16 sb-devpts-28 sb-proc-47 sb-tmpfs-42
mm-shadow-18 sb-devtmpfs-5 sb-proc-48 sb-tmpfs-43
mm-zspool:zram0-34 sb-hugetlbfs-17 sb-pstore-31 sb-tmpfs-44
rcu-kfree-0 sb-hugetlbfs-33 sb-rootfs-2 sb-tmpfs-49
sb-aio-20 sb-iomem-12 sb-securityfs-6 sb-tracefs-13
sb-anon_inodefs-15 sb-mqueue-21 sb-selinuxfs-22 sb-xfs:vda1-36
sb-bdev-3 sb-nsfs-4 sb-sockfs-8 sb-zsmalloc-19
sb-bpf-32 sb-pipefs-14 sb-sysfs-26 thp-deferred_split-10
sb-btrfs:vda2-24 sb-proc-25 sb-tmpfs-1 thp-zero-9
sb-cgroup2-30 sb-proc-39 sb-tmpfs-27 xfs-buf:vda1-37
sb-configfs-23 sb-proc-41 sb-tmpfs-29 xfs-inodegc:vda1-38
sb-dax-11 sb-proc-45 sb-tmpfs-35
sb-debugfs-7 sb-proc-46 sb-tmpfs-40
[roman.gushchin@linux.dev: fix build warnings]
Link: https://lkml.kernel.org/r/Yr+ZTnLb9lJk6fJO@castle
Reported-by: kernel test robot <lkp@intel.com>
Link: https://lkml.kernel.org/r/20220601032227.4076670-4-roman.gushchin@linux.dev
Signed-off-by: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Christophe JAILLET <christophe.jaillet@wanadoo.fr>
Cc: Dave Chinner <dchinner@redhat.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Kent Overstreet <kent.overstreet@gmail.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|\ \
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Pull xfs updates from Darrick Wong:
"The biggest changes for this release are the log scalability
improvements, lockless lookups for the buffer cache, and making the
attr fork a permanent part of the incore inode in preparation for
directory parent pointers.
There's also a bunch of bug fixes that have accumulated since -rc5. I
might send you a second pull request with some more bug fixes that I'm
still working on.
Once the merge window ends, I will hand maintainership back to Dave
Chinner until the 6.1-rc1 release so that I can conduct the design
review for the online fsck feature, and try to get it merged.
Summary:
- Improve scalability of the XFS log by removing spinlocks and global
synchronization points.
- Add security labels to whiteout inodes to match the other
filesystems.
- Clean up per-ag pointer passing to simplify call sites.
- Reduce verifier overhead by precalculating more AG geometry.
- Implement fast-path lockless lookups in the buffer cache to reduce
spinlock hammering.
- Make attr forks a permanent part of the inode structure to fix a
UAF bug and because most files these days tend to have security
labels and soon will have parent pointers too.
- Clean up XFS_IFORK_Q usage and give it a better name.
- Fix more UAF bugs in the xattr code.
- SOB my tags.
- Fix some typos in the timestamp range documentation.
- Fix a few more memory leaks.
- Code cleanups and typo fixes.
- Fix an unlocked inode fork pointer access in getbmap"
* tag 'xfs-5.20-merge-6' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: (61 commits)
xfs: delete extra space and tab in blank line
xfs: fix NULL pointer dereference in xfs_getbmap()
xfs: Fix typo 'the the' in comment
xfs: Fix comment typo
xfs: don't leak memory when attr fork loading fails
xfs: fix for variable set but not used warning
xfs: xfs_buf cache destroy isn't RCU safe
xfs: delete unnecessary NULL checks
xfs: fix comment for start time value of inode with bigtime enabled
xfs: fix use-after-free in xattr node block inactivation
xfs: lockless buffer lookup
xfs: remove a superflous hash lookup when inserting new buffers
xfs: reduce the number of atomic when locking a buffer after lookup
xfs: merge xfs_buf_find() and xfs_buf_get_map()
xfs: break up xfs_buf_find() into individual pieces
xfs: add in-memory iunlink log item
xfs: add log item precommit operation
xfs: combine iunlink inode update functions
xfs: clean up xfs_iunlink_update_inode()
xfs: double link the unlinked inode list
...
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
delete extra space and tab in blank line, there is no functional change.
Reported-by: Hacash Robot <hacashRobot@santino.com>
Signed-off-by: Xie Shaowen <studentxswpy@163.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Reproducer:
1. fallocate -l 100M image
2. mkfs.xfs -f image
3. mount image /mnt
4. setxattr("/mnt", "trusted.overlay.upper", NULL, 0, XATTR_CREATE)
5. char arg[32] = "\x01\xff\x00\x00\x00\x00\x03\x00\x00\x00\x00\x00\x00"
"\x00\x00\x00\x00\x00\x08\x00\x00\x00\xc6\x2a\xf7";
fd = open("/mnt", O_RDONLY|O_DIRECTORY);
ioctl(fd, _IOC(_IOC_READ|_IOC_WRITE, 0x58, 0x2c, 0x20), arg);
NULL pointer dereference will occur when race happens between xfs_getbmap()
and xfs_bmap_set_attrforkoff():
ioctl | setxattr
----------------------------|---------------------------
xfs_getbmap |
xfs_ifork_ptr |
xfs_inode_has_attr_fork |
ip->i_forkoff == 0 |
return NULL |
ifp == NULL |
| xfs_bmap_set_attrforkoff
| ip->i_forkoff > 0
xfs_inode_has_attr_fork |
ip->i_forkoff > 0 |
ifp == NULL |
ifp->if_format |
Fix this by locking i_lock before xfs_ifork_ptr().
Fixes: abbf9e8a4507 ("xfs: rewrite getbmap using the xfs_iext_* helpers")
Signed-off-by: ChenXiaoSong <chenxiaosong2@huawei.com>
Signed-off-by: Guo Xuenan <guoxuenan@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
[djwong: added fixes tag]
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Replace 'the the' with 'the' in the comment.
Signed-off-by: Slark Xiao <slark_xiao@163.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
The double `the' is duplicated in line 552, remove one.
Signed-off-by: Xin Gao <gaoxin@cdjrlc.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
I observed the following evidence of a memory leak while running xfs/399
from the xfs fsck test suite (edited for brevity):
XFS (sde): Metadata corruption detected at xfs_attr_shortform_verify_struct.part.0+0x7b/0xb0 [xfs], inode 0x1172 attr fork
XFS: Assertion failed: ip->i_af.if_u1.if_data == NULL, file: fs/xfs/libxfs/xfs_inode_fork.c, line: 315
------------[ cut here ]------------
WARNING: CPU: 2 PID: 91635 at fs/xfs/xfs_message.c:104 assfail+0x46/0x4a [xfs]
CPU: 2 PID: 91635 Comm: xfs_scrub Tainted: G W 5.19.0-rc7-xfsx #rc7 6e6475eb29fd9dda3181f81b7ca7ff961d277a40
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.15.0-1 04/01/2014
RIP: 0010:assfail+0x46/0x4a [xfs]
Call Trace:
<TASK>
xfs_ifork_zap_attr+0x7c/0xb0
xfs_iformat_attr_fork+0x86/0x110
xfs_inode_from_disk+0x41d/0x480
xfs_iget+0x389/0xd70
xfs_bulkstat_one_int+0x5b/0x540
xfs_bulkstat_iwalk+0x1e/0x30
xfs_iwalk_ag_recs+0xd1/0x160
xfs_iwalk_run_callbacks+0xb9/0x180
xfs_iwalk_ag+0x1d8/0x2e0
xfs_iwalk+0x141/0x220
xfs_bulkstat+0x105/0x180
xfs_ioc_bulkstat.constprop.0.isra.0+0xc5/0x130
xfs_file_ioctl+0xa5f/0xef0
__x64_sys_ioctl+0x82/0xa0
do_syscall_64+0x2b/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
This newly-added assertion checks that there aren't any incore data
structures hanging off the incore fork when we're trying to reset its
contents. From the call trace, it is evident that iget was trying to
construct an incore inode from the ondisk inode, but the attr fork
verifier failed and we were trying to undo all the memory allocations
that we had done earlier.
The three assertions in xfs_ifork_zap_attr check that the caller has
already called xfs_idestroy_fork, which clearly has not been done here.
As the zap function then zeroes the pointers, we've effectively leaked
the memory.
The shortest change would have been to insert an extra call to
xfs_idestroy_fork, but it makes more sense to bundle the _idestroy_fork
call into _zap_attr, since all other callsites call _idestroy_fork
immediately prior to calling _zap_attr. IOWs, it eliminates one way to
fail.
Note: This change only applies cleanly to 2ed5b09b3e8f, since we just
reworked the attr fork lifetime. However, I think this memory leak has
existed since 0f45a1b20cd8, since the chain xfs_iformat_attr_fork ->
xfs_iformat_local -> xfs_init_local_fork will allocate
ifp->if_u1.if_data, but if xfs_ifork_verify_local_attr fails,
xfs_iformat_attr_fork will free i_afp without freeing any of the stuff
hanging off i_afp. The solution for older kernels I think is to add the
missing call to xfs_idestroy_fork just prior to calling kmem_cache_free.
Found by fuzzing a.sfattr.hdr.totsize = lastbit in xfs/399.
Fixes: 2ed5b09b3e8f ("xfs: make inode attribute forks a permanent part of struct xfs_inode")
Probably-Fixes: 0f45a1b20cd8 ("xfs: improve local fork verification")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Fix below kernel warning:
fs/xfs/scrub/repair.c:539:19: warning: variable 'agno' set but not used [-Wunused-but-set-variable]
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: sunliming <sunliming@kylinos.cn>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Darrick and Sachin Sant reported that xfs/435 and xfs/436 would
report an non-empty xfs_buf slab on module remove. This isn't easily
to reproduce, but is clearly a side effect of converting the buffer
caceh to RUC freeing and lockless lookups. Sachin bisected and
Darrick hit it when testing the patchset directly.
Turns out that the xfs_buf slab is not destroyed when all the other
XFS slab caches are destroyed. Instead, it's got it's own little
wrapper function that gets called separately, and so it doesn't have
an rcu_barrier() call in it that is needed to drain all the rcu
callbacks before the slab is destroyed.
Fix it by removing the xfs_buf_init/terminate wrappers that just
allocate and destroy the xfs_buf slab, and move them to the same
place that all the other slab caches are set up and destroyed.
Reported-and-tested-by: Sachin Sant <sachinp@linux.ibm.com>
Fixes: 298f34224506 ("xfs: lockless buffer lookup")
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
These NULL check are no long needed after commit 2ed5b09b3e8f ("xfs:
make inode attribute forks a permanent part of struct xfs_inode").
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
The 'ctime', 'mtime', and 'atime' for inode is the type of
'xfs_timestamp_t', which is a 64-bit type:
/* fs/xfs/libxfs/xfs_format.h begin */
typedef __be64 xfs_timestamp_t;
/* fs/xfs/libxfs/xfs_format.h end */
When the 'bigtime' feature is disabled, this 64-bit type is splitted
into two parts of 32-bit, one part is encoded for seconds since
1970-01-01 00:00:00 UTC, the other part is encoded for nanoseconds
above the seconds, this two parts are the type of
'xfs_legacy_timestamp' and the min and max time value of this type are
defined as macros 'XFS_LEGACY_TIME_MIN' and 'XFS_LEGACY_TIME_MAX':
/* fs/xfs/libxfs/xfs_format.h begin */
struct xfs_legacy_timestamp {
__be32 t_sec; /* timestamp seconds */
__be32 t_nsec; /* timestamp nanoseconds */
};
#define XFS_LEGACY_TIME_MIN ((int64_t)S32_MIN)
#define XFS_LEGACY_TIME_MAX ((int64_t)S32_MAX)
/* fs/xfs/libxfs/xfs_format.h end */
/* include/linux/limits.h begin */
#define U32_MAX ((u32)~0U)
#define S32_MAX ((s32)(U32_MAX >> 1))
#define S32_MIN ((s32)(-S32_MAX - 1))
/* include/linux/limits.h end */
'XFS_LEGACY_TIME_MIN' is the min time value of the
'xfs_legacy_timestamp', that is -(2^31) seconds relative to the
1970-01-01 00:00:00 UTC, it can be converted to human-friendly time
value by 'date' command:
/* command begin */
[root@~]# date --utc -d '@0' +'%Y-%m-%d %H:%M:%S'
1970-01-01 00:00:00
[root@~]# date --utc -d "@`echo '-(2^31)'|bc`" +'%Y-%m-%d %H:%M:%S'
1901-12-13 20:45:52
[root@~]#
/* command end */
When 'bigtime' feature is enabled, this 64-bit type becomes a 64-bit
nanoseconds counter, with the start time value is the min time value of
'xfs_legacy_timestamp'(start time means the value of 64-bit nanoseconds
counter is 0). We have already caculated the min time value of
'xfs_legacy_timestamp', that is 1901-12-13 20:45:52 UTC, but the comment
for the start time value of inode with 'bigtime' feature enabled writes
the value is 1901-12-31 20:45:52 UTC:
/* fs/xfs/libxfs/xfs_format.h begin */
/*
* XFS Timestamps
* ==============
* When the bigtime feature is enabled, ondisk inode timestamps become an
* unsigned 64-bit nanoseconds counter. This means that the bigtime inode
* timestamp epoch is the start of the classic timestamp range, which is
* Dec 31 20:45:52 UTC 1901. ...
...
*/
/* fs/xfs/libxfs/xfs_format.h end */
That is a typo, and this patch corrects the typo, from 'Dec 31' to
'Dec 13'.
Suggested-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Xiaole He <hexiaole@kylinos.cn>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
The kernel build robot reported a UAF error while running xfs/433
(edited somewhat for brevity):
BUG: KASAN: use-after-free in xfs_attr3_node_inactive (fs/xfs/xfs_attr_inactive.c:214) xfs
Read of size 4 at addr ffff88820ac2bd44 by task kworker/0:2/139
CPU: 0 PID: 139 Comm: kworker/0:2 Tainted: G S 5.19.0-rc2-00004-g7cf2b0f9611b #1
Hardware name: Hewlett-Packard p6-1451cx/2ADA, BIOS 8.15 02/05/2013
Workqueue: xfs-inodegc/sdb4 xfs_inodegc_worker [xfs]
Call Trace:
<TASK>
dump_stack_lvl (lib/dump_stack.c:107 (discriminator 1))
print_address_description+0x1f/0x200
print_report.cold (mm/kasan/report.c:430)
kasan_report (mm/kasan/report.c:162 mm/kasan/report.c:493)
xfs_attr3_node_inactive (fs/xfs/xfs_attr_inactive.c:214) xfs
xfs_attr3_root_inactive (fs/xfs/xfs_attr_inactive.c:296) xfs
xfs_attr_inactive (fs/xfs/xfs_attr_inactive.c:371) xfs
xfs_inactive (fs/xfs/xfs_inode.c:1781) xfs
xfs_inodegc_worker (fs/xfs/xfs_icache.c:1837 fs/xfs/xfs_icache.c:1860) xfs
process_one_work
worker_thread
kthread
ret_from_fork
</TASK>
Allocated by task 139:
kasan_save_stack (mm/kasan/common.c:39)
__kasan_slab_alloc (mm/kasan/common.c:45 mm/kasan/common.c:436 mm/kasan/common.c:469)
kmem_cache_alloc (mm/slab.h:750 mm/slub.c:3214 mm/slub.c:3222 mm/slub.c:3229 mm/slub.c:3239)
_xfs_buf_alloc (include/linux/instrumented.h:86 include/linux/atomic/atomic-instrumented.h:41 fs/xfs/xfs_buf.c:232) xfs
xfs_buf_get_map (fs/xfs/xfs_buf.c:660) xfs
xfs_buf_read_map (fs/xfs/xfs_buf.c:777) xfs
xfs_trans_read_buf_map (fs/xfs/xfs_trans_buf.c:289) xfs
xfs_da_read_buf (fs/xfs/libxfs/xfs_da_btree.c:2652) xfs
xfs_da3_node_read (fs/xfs/libxfs/xfs_da_btree.c:392) xfs
xfs_attr3_root_inactive (fs/xfs/xfs_attr_inactive.c:272) xfs
xfs_attr_inactive (fs/xfs/xfs_attr_inactive.c:371) xfs
xfs_inactive (fs/xfs/xfs_inode.c:1781) xfs
xfs_inodegc_worker (fs/xfs/xfs_icache.c:1837 fs/xfs/xfs_icache.c:1860) xfs
process_one_work
worker_thread
kthread
ret_from_fork
Freed by task 139:
kasan_save_stack (mm/kasan/common.c:39)
kasan_set_track (mm/kasan/common.c:45)
kasan_set_free_info (mm/kasan/generic.c:372)
__kasan_slab_free (mm/kasan/common.c:368 mm/kasan/common.c:328 mm/kasan/common.c:374)
kmem_cache_free (mm/slub.c:1753 mm/slub.c:3507 mm/slub.c:3524)
xfs_buf_rele (fs/xfs/xfs_buf.c:1040) xfs
xfs_attr3_node_inactive (fs/xfs/xfs_attr_inactive.c:210) xfs
xfs_attr3_root_inactive (fs/xfs/xfs_attr_inactive.c:296) xfs
xfs_attr_inactive (fs/xfs/xfs_attr_inactive.c:371) xfs
xfs_inactive (fs/xfs/xfs_inode.c:1781) xfs
xfs_inodegc_worker (fs/xfs/xfs_icache.c:1837 fs/xfs/xfs_icache.c:1860) xfs
process_one_work
worker_thread
kthread
ret_from_fork
I reproduced this for my own satisfaction, and got the same report,
along with an extra morsel:
The buggy address belongs to the object at ffff88802103a800
which belongs to the cache xfs_buf of size 432
The buggy address is located 396 bytes inside of
432-byte region [ffff88802103a800, ffff88802103a9b0)
I tracked this code down to:
error = xfs_trans_get_buf(*trans, mp->m_ddev_targp,
child_blkno,
XFS_FSB_TO_BB(mp, mp->m_attr_geo->fsbcount), 0,
&child_bp);
if (error)
return error;
error = bp->b_error;
That doesn't look right -- I think this should be dereferencing
child_bp, not bp. Looking through the codebase history, I think this
was added by commit 2911edb653b9 ("xfs: remove the mappedbno argument to
xfs_da_get_buf"), which replaced a call to xfs_da_get_buf with the
current call to xfs_trans_get_buf. Not sure why we trans_brelse'd @bp
earlier in the function, but I'm guessing it's to avoid pinning too many
buffers in memory while we inactivate the bottom of the attr tree.
Hence we now have to get the buffer back.
I /think/ this was supposed to check child_bp->b_error and fail the rest
of the invalidation if child_bp had experienced any kind of IO or
corruption error. I bet the xfs_da3_node_read earlier in the loop will
catch most cases of incoming on-disk corruption which makes this check
mostly moot unless someone corrupts the buffer and the AIL pushes it out
to disk while the buffer's unlocked.
In the first case we'll never get to the bad check, and in the second
case the AIL will shut down the log, at which point there's no reason to
check b_error. Remove the check, and null out @bp to avoid this problem
in the future.
Cc: hch@lst.de
Reported-by: kernel test robot <oliver.sang@intel.com>
Fixes: 2911edb653b9 ("xfs: remove the mappedbno argument to xfs_da_get_buf")
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|
| |\ \
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux into xfs-5.20-mergeB
xfs: make attr forks permanent
This series fixes a use-after-free bug that syzbot uncovered. The UAF
itself is a result of a race condition between getxattr and removexattr
because callers to getxattr do not necessarily take any sort of locks
before calling into the filesystem.
Although the race condition itself can be fixed through clever use of a
memory barrier, further consideration of the use cases of extended
attributes shows that most files always have at least one attribute, so
we might as well make them permanent.
v2: Minor tweaks suggested by Dave, and convert some more macros to
helper functions.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
* tag 'make-attr-fork-permanent-5.20_2022-07-14' of git://git.kernel.org/pub/scm/linux/kernel/git/djwong/xfs-linux:
xfs: replace inode fork size macros with functions
xfs: replace XFS_IFORK_Q with a proper predicate function
xfs: use XFS_IFORK_Q to determine the presence of an xattr fork
xfs: make inode attribute forks a permanent part of struct xfs_inode
xfs: convert XFS_IFORK_PTR to a static inline helper
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Replace the shouty macros here with typechecked helper functions.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Replace this shouty macro with a real C function that has a more
descriptive name.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Modify xfs_ifork_ptr to return a NULL pointer if the caller asks for the
attribute fork but i_forkoff is zero. This eliminates the ambiguity
between i_forkoff and i_af.if_present, which should make it easier to
understand the lifetime of attr forks.
While we're at it, remove the if_present checks around calls to
xfs_idestroy_fork and xfs_ifork_zap_attr since they can both handle attr
forks that have already been torn down.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Syzkaller reported a UAF bug a while back:
==================================================================
BUG: KASAN: use-after-free in xfs_ilock_attr_map_shared+0xe3/0xf6 fs/xfs/xfs_inode.c:127
Read of size 4 at addr ffff88802cec919c by task syz-executor262/2958
CPU: 2 PID: 2958 Comm: syz-executor262 Not tainted
5.15.0-0.30.3-20220406_1406 #3
Hardware name: Red Hat KVM, BIOS 1.13.0-2.module+el8.3.0+7860+a7792d29
04/01/2014
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x82/0xa9 lib/dump_stack.c:106
print_address_description.constprop.9+0x21/0x2d5 mm/kasan/report.c:256
__kasan_report mm/kasan/report.c:442 [inline]
kasan_report.cold.14+0x7f/0x11b mm/kasan/report.c:459
xfs_ilock_attr_map_shared+0xe3/0xf6 fs/xfs/xfs_inode.c:127
xfs_attr_get+0x378/0x4c2 fs/xfs/libxfs/xfs_attr.c:159
xfs_xattr_get+0xe3/0x150 fs/xfs/xfs_xattr.c:36
__vfs_getxattr+0xdf/0x13d fs/xattr.c:399
cap_inode_need_killpriv+0x41/0x5d security/commoncap.c:300
security_inode_need_killpriv+0x4c/0x97 security/security.c:1408
dentry_needs_remove_privs.part.28+0x21/0x63 fs/inode.c:1912
dentry_needs_remove_privs+0x80/0x9e fs/inode.c:1908
do_truncate+0xc3/0x1e0 fs/open.c:56
handle_truncate fs/namei.c:3084 [inline]
do_open fs/namei.c:3432 [inline]
path_openat+0x30ab/0x396d fs/namei.c:3561
do_filp_open+0x1c4/0x290 fs/namei.c:3588
do_sys_openat2+0x60d/0x98c fs/open.c:1212
do_sys_open+0xcf/0x13c fs/open.c:1228
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3a/0x7e arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0x0
RIP: 0033:0x7f7ef4bb753d
Code: 00 c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 48 89 f8 48 89 f7 48
89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73
01 c3 48 8b 0d 1b 79 2c 00 f7 d8 64 89 01 48
RSP: 002b:00007f7ef52c2ed8 EFLAGS: 00000246 ORIG_RAX: 0000000000000055
RAX: ffffffffffffffda RBX: 0000000000404148 RCX: 00007f7ef4bb753d
RDX: 00007f7ef4bb753d RSI: 0000000000000000 RDI: 0000000020004fc0
RBP: 0000000000404140 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0030656c69662f2e
R13: 00007ffd794db37f R14: 00007ffd794db470 R15: 00007f7ef52c2fc0
</TASK>
Allocated by task 2953:
kasan_save_stack+0x19/0x38 mm/kasan/common.c:38
kasan_set_track mm/kasan/common.c:46 [inline]
set_alloc_info mm/kasan/common.c:434 [inline]
__kasan_slab_alloc+0x68/0x7c mm/kasan/common.c:467
kasan_slab_alloc include/linux/kasan.h:254 [inline]
slab_post_alloc_hook mm/slab.h:519 [inline]
slab_alloc_node mm/slub.c:3213 [inline]
slab_alloc mm/slub.c:3221 [inline]
kmem_cache_alloc+0x11b/0x3eb mm/slub.c:3226
kmem_cache_zalloc include/linux/slab.h:711 [inline]
xfs_ifork_alloc+0x25/0xa2 fs/xfs/libxfs/xfs_inode_fork.c:287
xfs_bmap_add_attrfork+0x3f2/0x9b1 fs/xfs/libxfs/xfs_bmap.c:1098
xfs_attr_set+0xe38/0x12a7 fs/xfs/libxfs/xfs_attr.c:746
xfs_xattr_set+0xeb/0x1a9 fs/xfs/xfs_xattr.c:59
__vfs_setxattr+0x11b/0x177 fs/xattr.c:180
__vfs_setxattr_noperm+0x128/0x5e0 fs/xattr.c:214
__vfs_setxattr_locked+0x1d4/0x258 fs/xattr.c:275
vfs_setxattr+0x154/0x33d fs/xattr.c:301
setxattr+0x216/0x29f fs/xattr.c:575
__do_sys_fsetxattr fs/xattr.c:632 [inline]
__se_sys_fsetxattr fs/xattr.c:621 [inline]
__x64_sys_fsetxattr+0x243/0x2fe fs/xattr.c:621
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3a/0x7e arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0x0
Freed by task 2949:
kasan_save_stack+0x19/0x38 mm/kasan/common.c:38
kasan_set_track+0x1c/0x21 mm/kasan/common.c:46
kasan_set_free_info+0x20/0x30 mm/kasan/generic.c:360
____kasan_slab_free mm/kasan/common.c:366 [inline]
____kasan_slab_free mm/kasan/common.c:328 [inline]
__kasan_slab_free+0xe2/0x10e mm/kasan/common.c:374
kasan_slab_free include/linux/kasan.h:230 [inline]
slab_free_hook mm/slub.c:1700 [inline]
slab_free_freelist_hook mm/slub.c:1726 [inline]
slab_free mm/slub.c:3492 [inline]
kmem_cache_free+0xdc/0x3ce mm/slub.c:3508
xfs_attr_fork_remove+0x8d/0x132 fs/xfs/libxfs/xfs_attr_leaf.c:773
xfs_attr_sf_removename+0x5dd/0x6cb fs/xfs/libxfs/xfs_attr_leaf.c:822
xfs_attr_remove_iter+0x68c/0x805 fs/xfs/libxfs/xfs_attr.c:1413
xfs_attr_remove_args+0xb1/0x10d fs/xfs/libxfs/xfs_attr.c:684
xfs_attr_set+0xf1e/0x12a7 fs/xfs/libxfs/xfs_attr.c:802
xfs_xattr_set+0xeb/0x1a9 fs/xfs/xfs_xattr.c:59
__vfs_removexattr+0x106/0x16a fs/xattr.c:468
cap_inode_killpriv+0x24/0x47 security/commoncap.c:324
security_inode_killpriv+0x54/0xa1 security/security.c:1414
setattr_prepare+0x1a6/0x897 fs/attr.c:146
xfs_vn_change_ok+0x111/0x15e fs/xfs/xfs_iops.c:682
xfs_vn_setattr_size+0x5f/0x15a fs/xfs/xfs_iops.c:1065
xfs_vn_setattr+0x125/0x2ad fs/xfs/xfs_iops.c:1093
notify_change+0xae5/0x10a1 fs/attr.c:410
do_truncate+0x134/0x1e0 fs/open.c:64
handle_truncate fs/namei.c:3084 [inline]
do_open fs/namei.c:3432 [inline]
path_openat+0x30ab/0x396d fs/namei.c:3561
do_filp_open+0x1c4/0x290 fs/namei.c:3588
do_sys_openat2+0x60d/0x98c fs/open.c:1212
do_sys_open+0xcf/0x13c fs/open.c:1228
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3a/0x7e arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0x0
The buggy address belongs to the object at ffff88802cec9188
which belongs to the cache xfs_ifork of size 40
The buggy address is located 20 bytes inside of
40-byte region [ffff88802cec9188, ffff88802cec91b0)
The buggy address belongs to the page:
page:00000000c3af36a1 refcount:1 mapcount:0 mapping:0000000000000000
index:0x0 pfn:0x2cec9
flags: 0xfffffc0000200(slab|node=0|zone=1|lastcpupid=0x1fffff)
raw: 000fffffc0000200 ffffea00009d2580 0000000600000006 ffff88801a9ffc80
raw: 0000000000000000 0000000080490049 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
ffff88802cec9080: fb fb fb fc fc fa fb fb fb fb fc fc fb fb fb fb
ffff88802cec9100: fb fc fc fb fb fb fb fb fc fc fb fb fb fb fb fc
>ffff88802cec9180: fc fa fb fb fb fb fc fc fa fb fb fb fb fc fc fb
^
ffff88802cec9200: fb fb fb fb fc fc fb fb fb fb fb fc fc fb fb fb
ffff88802cec9280: fb fb fc fc fa fb fb fb fb fc fc fa fb fb fb fb
==================================================================
The root cause of this bug is the unlocked access to xfs_inode.i_afp
from the getxattr code paths while trying to determine which ILOCK mode
to use to stabilize the xattr data. Unfortunately, the VFS does not
acquire i_rwsem when vfs_getxattr (or listxattr) call into the
filesystem, which means that getxattr can race with a removexattr that's
tearing down the attr fork and crash:
xfs_attr_set: xfs_attr_get:
xfs_attr_fork_remove: xfs_ilock_attr_map_shared:
xfs_idestroy_fork(ip->i_afp);
kmem_cache_free(xfs_ifork_cache, ip->i_afp);
if (ip->i_afp &&
ip->i_afp = NULL;
xfs_need_iread_extents(ip->i_afp))
<KABOOM>
ip->i_forkoff = 0;
Regrettably, the VFS is much more lax about i_rwsem and getxattr than
is immediately obvious -- not only does it not guarantee that we hold
i_rwsem, it actually doesn't guarantee that we *don't* hold it either.
The getxattr system call won't acquire the lock before calling XFS, but
the file capabilities code calls getxattr with and without i_rwsem held
to determine if the "security.capabilities" xattr is set on the file.
Fixing the VFS locking requires a treewide investigation into every code
path that could touch an xattr and what i_rwsem state it expects or sets
up. That could take years or even prove impossible; fortunately, we
can fix this UAF problem inside XFS.
An earlier version of this patch used smp_wmb in xfs_attr_fork_remove to
ensure that i_forkoff is always zeroed before i_afp is set to null and
changed the read paths to use smp_rmb before accessing i_forkoff and
i_afp, which avoided these UAF problems. However, the patch author was
too busy dealing with other problems in the meantime, and by the time he
came back to this issue, the situation had changed a bit.
On a modern system with selinux, each inode will always have at least
one xattr for the selinux label, so it doesn't make much sense to keep
incurring the extra pointer dereference. Furthermore, Allison's
upcoming parent pointer patchset will also cause nearly every inode in
the filesystem to have extended attributes. Therefore, make the inode
attribute fork structure part of struct xfs_inode, at a cost of 40 more
bytes.
This patch adds a clunky if_present field where necessary to maintain
the existing logic of xattr fork null pointer testing in the existing
codebase. The next patch switches the logic over to XFS_IFORK_Q and it
all goes away.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
We're about to make this logic do a bit more, so convert the macro to a
static inline function for better typechecking and fewer shouty macros.
No functional changes here.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
|
| |\ \ \
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs into xfs-5.20-mergeB
xfs: lockless buffer cache lookups
Current work to merge the XFS inode life cycle with the VFS inode
life cycle is finding some interesting issues. If we have a path
that hits buffer trylocks fairly hard (e.g. a non-blocking
background inode freeing function), we end up hitting massive
contention on the buffer cache hash locks:
- 92.71% 0.05% [kernel] [k] xfs_inodegc_worker
- 92.67% xfs_inodegc_worker
- 92.13% xfs_inode_unlink
- 91.52% xfs_inactive_ifree
- 85.63% xfs_read_agi
- 85.61% xfs_trans_read_buf_map
- 85.59% xfs_buf_read_map
- xfs_buf_get_map
- 85.55% xfs_buf_find
- 72.87% _raw_spin_lock
- do_raw_spin_lock
71.86% __pv_queued_spin_lock_slowpath
- 8.74% xfs_buf_rele
- 7.88% _raw_spin_lock
- 7.88% do_raw_spin_lock
7.63% __pv_queued_spin_lock_slowpath
- 1.70% xfs_buf_trylock
- 1.68% down_trylock
- 1.41% _raw_spin_lock_irqsave
- 1.39% do_raw_spin_lock
__pv_queued_spin_lock_slowpath
- 0.76% _raw_spin_unlock
0.75% do_raw_spin_unlock
This is basically hammering the pag->pag_buf_lock from lots of CPUs
doing trylocks at the same time. Most of the buffer trylock
operations ultimately fail after we've done the lookup, so we're
really hammering the buf hash lock whilst making no progress.
We can also see significant spinlock traffic on the same lock just
under normal operation when lots of tasks are accessing metadata
from the same AG, so let's avoid all this by creating a lookup fast
path which leverages the rhashtable's ability to do RCU protected
lookups.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
* tag 'xfs-buf-lockless-lookup-5.20' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs:
xfs: lockless buffer lookup
xfs: remove a superflous hash lookup when inserting new buffers
xfs: reduce the number of atomic when locking a buffer after lookup
xfs: merge xfs_buf_find() and xfs_buf_get_map()
xfs: break up xfs_buf_find() into individual pieces
xfs: rework xfs_buf_incore() API
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
Now that we have a standalone fast path for buffer lookup, we can
easily convert it to use rcu lookups. When we continually hammer the
buffer cache with trylock lookups, we end up with a huge amount of
lock contention on the per-ag buffer hash locks:
- 92.71% 0.05% [kernel] [k] xfs_inodegc_worker
- 92.67% xfs_inodegc_worker
- 92.13% xfs_inode_unlink
- 91.52% xfs_inactive_ifree
- 85.63% xfs_read_agi
- 85.61% xfs_trans_read_buf_map
- 85.59% xfs_buf_read_map
- xfs_buf_get_map
- 85.55% xfs_buf_find
- 72.87% _raw_spin_lock
- do_raw_spin_lock
71.86% __pv_queued_spin_lock_slowpath
- 8.74% xfs_buf_rele
- 7.88% _raw_spin_lock
- 7.88% do_raw_spin_lock
7.63% __pv_queued_spin_lock_slowpath
- 1.70% xfs_buf_trylock
- 1.68% down_trylock
- 1.41% _raw_spin_lock_irqsave
- 1.39% do_raw_spin_lock
__pv_queued_spin_lock_slowpath
- 0.76% _raw_spin_unlock
0.75% do_raw_spin_unlock
This is basically hammering the pag->pag_buf_lock from lots of CPUs
doing trylocks at the same time. Most of the buffer trylock
operations ultimately fail after we've done the lookup, so we're
really hammering the buf hash lock whilst making no progress.
We can also see significant spinlock traffic on the same lock just
under normal operation when lots of tasks are accessing metadata
from the same AG, so let's avoid all this by converting the lookup
fast path to leverages the rhashtable's ability to do rcu protected
lookups.
We avoid races with the buffer release path by using
atomic_inc_not_zero() on the buffer hold count. Any buffer that is
in the LRU will have a non-zero count, thereby allowing the lockless
fast path to be taken in most cache hit situations. If the buffer
hold count is zero, then it is likely going through the release path
so in that case we fall back to the existing lookup miss slow path.
The slow path will then do an atomic lookup and insert under the
buffer hash lock and hence serialise correctly against buffer
release freeing the buffer.
The use of rcu protected lookups means that buffer handles now need
to be freed by RCU callbacks (same as inodes). We still free the
buffer pages before the RCU callback - we won't be trying to access
them at all on a buffer that has zero references - but we need the
buffer handle itself to be present for the entire rcu protected read
side to detect a zero hold count correctly.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
Currently on the slow path insert we repeat the initial hash table
lookup before we attempt the insert, resulting in a two traversals
of the hash table to ensure the insert is valid. The rhashtable API
provides a method for an atomic lookup and insert operation, so we
can avoid one of the hash table traversals by using this method.
Adapted from a large patch containing this optimisation by Christoph
Hellwig.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
Avoid an extra atomic operation in the non-trylock case by only
doing a trylock if the XBF_TRYLOCK flag is set. This follows the
pattern in the IO path with NOWAIT semantics where the
"trylock-fail-lock" path showed 5-10% reduced throughput compared to
just using single lock call when not under NOWAIT conditions. So
make that same change here, too.
See commit 942491c9e6d6 ("xfs: fix AIM7 regression") for details.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
[hch: split from a larger patch]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
Now that we factored xfs_buf_find(), we can start separating into
distinct fast and slow paths from xfs_buf_get_map(). We start by
moving the lookup map and perag setup to _get_map(), and then move
all the specifics of the fast path lookup into xfs_buf_lookup()
and call it directly from _get_map(). We the move all the slow path
code to xfs_buf_find_insert(), which is now also called directly
from _get_map(). As such, xfs_buf_find() now goes away.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
xfs_buf_find() is made up of three main parts: lookup, insert and
locking. The interactions with xfs_buf_get_map() require it to be
called twice - once for a pure lookup, and again on lookup failure
so the insert path can be run. We want to simplify this down a lot,
so split it into a fast path lookup, a slow path insert and a "lock
the found buffer" helper. This will then let us integrate these
operations more effectively into xfs_buf_get_map() in future
patches.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
Make it consistent with the other buffer APIs to return a error and
the buffer is placed in a parameter.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
|
| |\ \ \ \
| | |_|/ /
| |/| | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs into xfs-5.20-mergeB
xfs: introduce in-memory inode unlink log items
To facilitate future improvements in inode logging and improving
inode cluster buffer locking order consistency, we need a new
mechanism for defering inode cluster buffer modifications during
unlinked list modifications.
The unlinked inode list buffer locking is complex. The unlinked
list is unordered - we add to the tail, remove from where-ever the
inode is in the list. Hence we might need to lock two inode buffers
here (previous inode in list and the one being removed). While we
can order the locking of these buffers correctly within the confines
of the unlinked list, there may be other inodes that need buffer
locking in the same transaction. e.g. O_TMPFILE being linked into a
directory also modifies the directory inode.
Hence we need a mechanism for defering unlinked inode list updates
until a point where we know that all modifications have been made
and all that remains is to lock and modify the cluster buffers.
We can do this by first observing that we serialise unlinked list
modifications by holding the AGI buffer lock. IOWs, the AGI is going
to be locked until the transaction commits any time we modify the
unlinked list. Hence it doesn't matter when in the unlink
transactions that we actually load, lock and modify the inode
cluster buffer.
We add an in-memory unlinked inode log item to defer the inode
cluster buffer update to transaction commit time where it can be
ordered with all the other inode cluster operations that need to be
done. Essentially all we need to do is record the inodes that need
to have their unlinked list pointer updated in a new log item that
we attached to the transaction.
This log item exists purely for the purpose of delaying the update
of the unlinked list pointer until the inode cluster buffer can be
locked in the correct order around the other inode cluster buffers.
It plays no part in the actual commit, and there's no change to
anything that is written to the log. i.e. the inode cluster buffers
still have to be fully logged here (not just ordered) as log
recovery depedends on this to replay mods to the unlinked inode
list.
Hence if we add a "precommit" hook into xfs_trans_commit()
to run a "precommit" operation on these iunlink log items, we can
delay the locking, modification and logging of the inode cluster
buffer until after all other modifications have been made. The
precommit hook reuires us to sort the items that are going to be run
so that we can lock precommit items in the correct order as we
perform the modifications they describe.
To make this unlinked inode list processing simpler and easier to
implement as a log item, we need to change the way we track the
unlinked list in memory. Starting from the observation that an inode
on the unlinked list is pinned in memory by the VFS, we can use the
xfs_inode itself to track the unlinked list. To do this efficiently,
we want the unlinked list to be a double linked list. The problem
here is that we need a list per AGI unlinked list, and there are 64
of these per AGI. The approach taken in this patchset is to shadow
the AGI unlinked list heads in the perag, and link inodes by agino,
hence requiring only 8 extra bytes per inode to track this state.
We can then use the agino pointers for lockless inode cache lookups
to retreive the inode. The aginos in the inode are modified only
under the AGI lock, just like the cluster buffer pointers, so we
don't need any extra locking here. The i_next_unlinked field tracks
the on-disk value of the unlinked list, and the i_prev_unlinked is a
purely in-memory pointer that enables us to efficiently remove
inodes from the middle of the list.
This results in moving a lot of the unlink modification work into
the precommit operations on the unlink log item. Tracking all the
unlinked inodes in the inodes themselves also gets rid of the
unlinked list reference hash table that is used to track this back
pointer relationship. This greatly simplifies the the unlinked list
modification code, and removes memory allocations in this hot path
to track back pointers. This, overall, slightly reduces the CPU
overhead of the unlink path.
The result of this log item means that we move all the actual
manipulation of objects to be logged out of the iunlink path and
into the iunlink item. This allows for future optimisation of this
mechanism without needing changes to high level unlink path, as
well as making the unlink lock ordering predictable and synchronised
with other operations that may require inode cluster locking.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
* tag 'xfs-iunlink-item-5.20' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs:
xfs: add in-memory iunlink log item
xfs: add log item precommit operation
xfs: combine iunlink inode update functions
xfs: clean up xfs_iunlink_update_inode()
xfs: double link the unlinked inode list
xfs: introduce xfs_iunlink_lookup
xfs: refactor xlog_recover_process_iunlinks()
xfs: track the iunlink list pointer in the xfs_inode
xfs: factor the xfs_iunlink functions
xfs: flush inode gc workqueue before clearing agi bucket
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
Now that we have a clean operation to update the di_next_unlinked
field of inode cluster buffers, we can easily defer this operation
to transaction commit time so we can order the inode cluster buffer
locking consistently.
To do this, we introduce a new in-memory log item to track the
unlinked list item modification that we are going to make. This
follows the same observations as the in-memory double linked list
used to track unlinked inodes in that the inodes on the list are
pinned in memory and cannot go away, and hence we can simply
reference them for the duration of the transaction without needing
to take active references or pin them or look them up.
This allows us to pass the xfs_inode to the transaction commit code
along with the modification to be made, and then order the logged
modifications via the ->iop_sort and ->iop_precommit operations
for the new log item type. As this is an in-memory log item, it
doesn't have formatting, CIL or AIL operational hooks - it exists
purely to run the inode unlink modifications and is then removed
from the transaction item list and freed once the precommit
operation has run.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
|