summaryrefslogtreecommitdiffstats
path: root/include/linux/bpf.h
Commit message (Collapse)AuthorAgeFilesLines
...
* bpf: Consider non-owning refs to refcounted nodes RCU protectedDave Marchevsky2023-08-251-1/+2
| | | | | | | | | | | | | | | | | | | An earlier patch in the series ensures that the underlying memory of nodes with bpf_refcount - which can have multiple owners - is not reused until RCU grace period has elapsed. This prevents use-after-free with non-owning references that may point to recently-freed memory. While RCU read lock is held, it's safe to dereference such a non-owning ref, as by definition RCU GP couldn't have elapsed and therefore underlying memory couldn't have been reused. From the perspective of verifier "trustedness" non-owning refs to refcounted nodes are now trusted only in RCU CS and therefore should no longer pass is_trusted_reg, but rather is_rcu_reg. Let's mark them MEM_RCU in order to reflect this new state. Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com> Link: https://lore.kernel.org/r/20230821193311.3290257-6-davemarchevsky@fb.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
* bpf: Document struct bpf_struct_ops fieldsDavid Vernet2023-08-141-0/+47
| | | | | | | | | | | | Subsystems that want to implement a struct bpf_struct_ops structure to enable struct_ops maps must currently reverse engineer how the structure works. Given that this is meant to be a way for subsystem maintainers to extend their subsystems using BPF, let's document it to make it a bit easier on them. Signed-off-by: David Vernet <void@manifault.com> Link: https://lore.kernel.org/r/20230814185908.700553-3-void@manifault.com Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
* bpf: Remove unused declaration bpf_link_new_file()Yue Haibing2023-08-111-1/+0
| | | | | | | | | Commit a3b80e107894 ("bpf: Allocate ID for bpf_link") removed the implementation but not the declaration. Signed-off-by: Yue Haibing <yuehaibing@huawei.com> Link: https://lore.kernel.org/r/20230809140556.45836-1-yuehaibing@huawei.com Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
* bpf: Add support for bpf_get_func_ip helper for uprobe programJiri Olsa2023-08-071-2/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Adding support for bpf_get_func_ip helper for uprobe program to return probed address for both uprobe and return uprobe. We discussed this in [1] and agreed that uprobe can have special use of bpf_get_func_ip helper that differs from kprobe. The kprobe bpf_get_func_ip returns: - address of the function if probe is attach on function entry for both kprobe and return kprobe - 0 if the probe is not attach on function entry The uprobe bpf_get_func_ip returns: - address of the probe for both uprobe and return uprobe The reason for this semantic change is that kernel can't really tell if the probe user space address is function entry. The uprobe program is actually kprobe type program attached as uprobe. One of the consequences of this design is that uprobes do not have its own set of helpers, but share them with kprobes. As we need different functionality for bpf_get_func_ip helper for uprobe, I'm adding the bool value to the bpf_trace_run_ctx, so the helper can detect that it's executed in uprobe context and call specific code. The is_uprobe bool is set as true in bpf_prog_run_array_sleepable, which is currently used only for executing bpf programs in uprobe. Renaming bpf_prog_run_array_sleepable to bpf_prog_run_array_uprobe to address that it's only used for uprobes and that it sets the run_ctx.is_uprobe as suggested by Yafang Shao. Suggested-by: Andrii Nakryiko <andrii@kernel.org> Tested-by: Alan Maguire <alan.maguire@oracle.com> [1] https://lore.kernel.org/bpf/CAEf4BzZ=xLVkG5eurEuvLU79wAMtwho7ReR+XJAgwhFF4M-7Cg@mail.gmail.com/ Signed-off-by: Jiri Olsa <jolsa@kernel.org> Tested-by: Viktor Malik <vmalik@redhat.com> Acked-by: Yonghong Song <yonghong.song@linux.dev> Link: https://lore.kernel.org/r/20230807085956.2344866-2-jolsa@kernel.org Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
* bpf: fix bpf_probe_read_kernel prototype mismatchArnd Bergmann2023-08-021-0/+12
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | bpf_probe_read_kernel() has a __weak definition in core.c and another definition with an incompatible prototype in kernel/trace/bpf_trace.c, when CONFIG_BPF_EVENTS is enabled. Since the two are incompatible, there cannot be a shared declaration in a header file, but the lack of a prototype causes a W=1 warning: kernel/bpf/core.c:1638:12: error: no previous prototype for 'bpf_probe_read_kernel' [-Werror=missing-prototypes] On 32-bit architectures, the local prototype u64 __weak bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr) passes arguments in other registers as the one in bpf_trace.c BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size, const void *, unsafe_ptr) which uses 64-bit arguments in pairs of registers. As both versions of the function are fairly simple and only really differ in one line, just move them into a header file as an inline function that does not add any overhead for the bpf_trace.c callers and actually avoids a function call for the other one. Cc: stable@vger.kernel.org Link: https://lore.kernel.org/all/ac25cb0f-b804-1649-3afb-1dc6138c2716@iogearbox.net/ Signed-off-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Yonghong Song <yonghong.song@linux.dev> Link: https://lore.kernel.org/r/20230801111449.185301-1-arnd@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
* bpf: Add 'owner' field to bpf_{list,rb}_nodeDave Marchevsky2023-07-181-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | As described by Kumar in [0], in shared ownership scenarios it is necessary to do runtime tracking of {rb,list} node ownership - and synchronize updates using this ownership information - in order to prevent races. This patch adds an 'owner' field to struct bpf_list_node and bpf_rb_node to implement such runtime tracking. The owner field is a void * that describes the ownership state of a node. It can have the following values: NULL - the node is not owned by any data structure BPF_PTR_POISON - the node is in the process of being added to a data structure ptr_to_root - the pointee is a data structure 'root' (bpf_rb_root / bpf_list_head) which owns this node The field is initially NULL (set by bpf_obj_init_field default behavior) and transitions states in the following sequence: Insertion: NULL -> BPF_PTR_POISON -> ptr_to_root Removal: ptr_to_root -> NULL Before a node has been successfully inserted, it is not protected by any root's lock, and therefore two programs can attempt to add the same node to different roots simultaneously. For this reason the intermediate BPF_PTR_POISON state is necessary. For removal, the node is protected by some root's lock so this intermediate hop isn't necessary. Note that bpf_list_pop_{front,back} helpers don't need to check owner before removing as the node-to-be-removed is not passed in as input and is instead taken directly from the list. Do the check anyways and WARN_ON_ONCE in this unexpected scenario. Selftest changes in this patch are entirely mechanical: some BTF tests have hardcoded struct sizes for structs that contain bpf_{list,rb}_node fields, those were adjusted to account for the new sizes. Selftest additions to validate the owner field are added in a further patch in the series. [0]: https://lore.kernel.org/bpf/d7hyspcow5wtjcmw4fugdgyp3fwhljwuscp3xyut5qnwivyeru@ysdq543otzv2 Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com> Suggested-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Link: https://lore.kernel.org/r/20230718083813.3416104-4-davemarchevsky@fb.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
* bpf: Introduce internal definitions for UAPI-opaque bpf_{rb,list}_nodeDave Marchevsky2023-07-181-0/+10
| | | | | | | | | | | | | | | | | | | | | | | | | | Structs bpf_rb_node and bpf_list_node are opaquely defined in uapi/linux/bpf.h, as BPF program writers are not expected to touch their fields - nor does the verifier allow them to do so. Currently these structs are simple wrappers around structs rb_node and list_head and linked_list / rbtree implementation just casts and passes to library functions for those data structures. Later patches in this series, though, will add an "owner" field to bpf_{rb,list}_node, such that they're not just wrapping an underlying node type. Moreover, the bpf linked_list and rbtree implementations will deal with these owner pointers directly in a few different places. To avoid having to do void *owner = (void*)bpf_list_node + sizeof(struct list_head) with opaque UAPI node types, add bpf_{list,rb}_node_kern struct definitions to internal headers and modify linked_list and rbtree to use the internal types where appropriate. Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com> Link: https://lore.kernel.org/r/20230718083813.3416104-3-davemarchevsky@fb.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
* bpf: add percpu stats for bpf_map elements insertions/deletionsAnton Protopopov2023-07-061-0/+30
| | | | | | | | | | | | | | Add a generic percpu stats for bpf_map elements insertions/deletions in order to keep track of both, the current (approximate) number of elements in a map and per-cpu statistics on update/delete operations. To expose these stats a particular map implementation should initialize the counter and adjust it as needed using the 'bpf_map_*_elem_count' helpers provided by this commit. Signed-off-by: Anton Protopopov <aspsk@isovalent.com> Link: https://lore.kernel.org/r/20230706133932.45883-2-aspsk@isovalent.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
* bpf: Support O_PATH FDs in BPF_OBJ_PIN and BPF_OBJ_GET commandsAndrii Nakryiko2023-05-231-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Current UAPI of BPF_OBJ_PIN and BPF_OBJ_GET commands of bpf() syscall forces users to specify pinning location as a string-based absolute or relative (to current working directory) path. This has various implications related to security (e.g., symlink-based attacks), forces BPF FS to be exposed in the file system, which can cause races with other applications. One of the feedbacks we got from folks working with containers heavily was that inability to use purely FD-based location specification was an unfortunate limitation and hindrance for BPF_OBJ_PIN and BPF_OBJ_GET commands. This patch closes this oversight, adding path_fd field to BPF_OBJ_PIN and BPF_OBJ_GET UAPI, following conventions established by *at() syscalls for dirfd + pathname combinations. This now allows interesting possibilities like working with detached BPF FS mount (e.g., to perform multiple pinnings without running a risk of someone interfering with them), and generally making pinning/getting more secure and not prone to any races and/or security attacks. This is demonstrated by a selftest added in subsequent patch that takes advantage of new mount APIs (fsopen, fsconfig, fsmount) to demonstrate creating detached BPF FS mount, pinning, and then getting BPF map out of it, all while never exposing this private instance of BPF FS to outside worlds. Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Reviewed-by: Christian Brauner <brauner@kernel.org> Link: https://lore.kernel.org/bpf/20230523170013.728457-4-andrii@kernel.org
* bpf: Remove bpf trampoline selectorYafang Shao2023-05-151-1/+0
| | | | | | | | | | | | | | | | | | | | | | After commit e21aa341785c ("bpf: Fix fexit trampoline."), the selector is only used to indicate how many times the bpf trampoline image are updated and been displayed in the trampoline ksym name. After the trampoline is freed, the selector will start from 0 again. So the selector is a useless value to the user. We can remove it. If the user want to check whether the bpf trampoline image has been updated or not, the user can compare the address. Each time the trampoline image is updated, the address will change consequently. Jiri also pointed out another issue that perf is still using the old name "bpf_trampoline_%lu", so this change can fix the issue in perf. Fixes: e21aa341785c ("bpf: Fix fexit trampoline.") Signed-off-by: Yafang Shao <laoar.shao@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Song Liu <song@kernel.org> Cc: Jiri Olsa <olsajiri@gmail.com> Link: https://lore.kernel.org/bpf/ZFvOOlrmHiY9AgXE@krava Link: https://lore.kernel.org/bpf/20230515130849.57502-3-laoar.shao@gmail.com
* bpf: Add bpf_dynptr_sizeJoanne Koong2023-04-271-1/+1
| | | | | | | | | | bpf_dynptr_size returns the number of usable bytes in a dynptr. Signed-off-by: Joanne Koong <joannelkoong@gmail.com> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: John Fastabend <john.fastabend@gmail.com> Link: https://lore.kernel.org/bpf/20230420071414.570108-4-joannelkoong@gmail.com
* bpf: add test_run support for netfilter program typeFlorian Westphal2023-04-211-0/+3
| | | | | | | | | | | | | add glue code so a bpf program can be run using userspace-provided netfilter state and packet/skb. Default is to use ipv4:output hook point, but this can be overridden by userspace. Userspace provided netfilter state is restricted, only hook and protocol families can be overridden and only to ipv4/ipv6. Signed-off-by: Florian Westphal <fw@strlen.de> Link: https://lore.kernel.org/r/20230421170300.24115-7-fw@strlen.de Signed-off-by: Alexei Starovoitov <ast@kernel.org>
* bpf: Centralize btf_field-specific initialization logicDave Marchevsky2023-04-151-4/+29
| | | | | | | | | | | | | | | | | | | | | | | | | | All btf_fields in an object are 0-initialized by memset in bpf_obj_init. This might not be a valid initial state for some field types, in which case kfuncs that use the type will properly initialize their input if it's been 0-initialized. Some BPF graph collection types and kfuncs do this: bpf_list_{head,node} and bpf_rb_node. An earlier patch in this series added the bpf_refcount field, for which the 0 state indicates that the refcounted object should be free'd. bpf_obj_init treats this field specially, setting refcount to 1 instead of relying on scattered "refcount is 0? Must have just been initialized, let's set to 1" logic in kfuncs. This patch extends this treatment to list and rbtree field types, allowing most scattered initialization logic in kfuncs to be removed. Note that bpf_{list_head,rb_root} may be inside a BPF map, in which case they'll be 0-initialized without passing through the newly-added logic, so scattered initialization logic must remain for these collection root types. Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com> Link: https://lore.kernel.org/r/20230415201811.343116-9-davemarchevsky@fb.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
* bpf: Support refcounted local kptrs in existing semanticsDave Marchevsky2023-04-151-0/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | A local kptr is considered 'refcounted' when it is of a type that has a bpf_refcount field. When such a kptr is created, its refcount should be initialized to 1; when destroyed, the object should be free'd only if a refcount decr results in 0 refcount. Existing logic always frees the underlying memory when destroying a local kptr, and 0-initializes all btf_record fields. This patch adds checks for "is local kptr refcounted?" and new logic for that case in the appropriate places. This patch focuses on changing existing semantics and thus conspicuously does _not_ provide a way for BPF programs in increment refcount. That follows later in the series. __bpf_obj_drop_impl is modified to do the right thing when it sees a refcounted type. Container types for graph nodes (list, tree, stashed in map) are migrated to use __bpf_obj_drop_impl as a destructor for their nodes instead of each having custom destruction code in their _free paths. Now that "drop" isn't a synonym for "free" when the type is refcounted it makes sense to centralize this logic. Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com> Link: https://lore.kernel.org/r/20230415201811.343116-4-davemarchevsky@fb.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
* bpf: Introduce opaque bpf_refcount struct and add btf_record plumbingDave Marchevsky2023-04-151-0/+8
| | | | | | | | | | | | | | | | | | | | | | | | A 'struct bpf_refcount' is added to the set of opaque uapi/bpf.h types meant for use in BPF programs. Similarly to other opaque types like bpf_spin_lock and bpf_rbtree_node, the verifier needs to know where in user-defined struct types a bpf_refcount can be located, so necessary btf_record plumbing is added to enable this. bpf_refcount is sized to hold a refcount_t. Similarly to bpf_spin_lock, the offset of a bpf_refcount is cached in btf_record as refcount_off in addition to being in the field array. Caching refcount_off makes sense for this field because further patches in the series will modify functions that take local kptrs (e.g. bpf_obj_drop) to change their behavior if the type they're operating on is refcounted. So enabling fast "is this type refcounted?" checks is desirable. No such verifier behavior changes are introduced in this patch, just logic to recognize 'struct bpf_refcount' in btf_record. Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com> Link: https://lore.kernel.org/r/20230415201811.343116-3-davemarchevsky@fb.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
* bpf: Remove btf_field_offs, use btf_record's fields insteadDave Marchevsky2023-04-151-25/+19
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The btf_field_offs struct contains (offset, size) for btf_record fields, sorted by offset. btf_field_offs is always used in conjunction with btf_record, which has btf_field 'fields' array with (offset, type), the latter of which btf_field_offs' size is derived from via btf_field_type_size. This patch adds a size field to struct btf_field and sorts btf_record's fields by offset, making it possible to get rid of btf_field_offs. Less data duplication and less code complexity results. Since btf_field_offs' lifetime closely followed the btf_record used to populate it, most complexity wins are from removal of initialization code like: if (btf_record_successfully_initialized) { foffs = btf_parse_field_offs(rec); if (IS_ERR_OR_NULL(foffs)) // free the btf_record and return err } Other changes in this patch are pretty mechanical: * foffs->field_off[i] -> rec->fields[i].offset * foffs->field_sz[i] -> rec->fields[i].size * Sort rec->fields in btf_parse_fields before returning * It's possible that this is necessary independently of other changes in this patch. btf_record_find in syscall.c expects btf_record's fields to be sorted by offset, yet there's no explicit sorting of them before this patch, record's fields are populated in the order they're read from BTF struct definition. BTF docs don't say anything about the sortedness of struct fields. * All functions taking struct btf_field_offs * input now instead take struct btf_record *. All callsites of these functions already have access to the correct btf_record. Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com> Link: https://lore.kernel.org/r/20230415201811.343116-2-davemarchevsky@fb.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
* bpf: Support 64-bit pointers to kfuncsIlya Leoshkevich2023-04-131-0/+10
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | test_ksyms_module fails to emit a kfunc call targeting a module on s390x, because the verifier stores the difference between kfunc address and __bpf_call_base in bpf_insn.imm, which is s32, and modules are roughly (1 << 42) bytes away from the kernel on s390x. Fix by keeping BTF id in bpf_insn.imm for BPF_PSEUDO_KFUNC_CALLs, and storing the absolute address in bpf_kfunc_desc. Introduce bpf_jit_supports_far_kfunc_call() in order to limit this new behavior to the s390x JIT. Otherwise other JITs need to be modified, which is not desired. Introduce bpf_get_kfunc_addr() instead of exposing both find_kfunc_desc() and struct bpf_kfunc_desc. In addition to sorting kfuncs by imm, also sort them by offset, in order to handle conflicting imms from different modules. Do this on all architectures in order to simplify code. Factor out resolving specialized kfuncs (XPD and dynptr) from fixup_kfunc_call(). This was required in the first place, because fixup_kfunc_call() uses find_kfunc_desc(), which returns a const pointer, so it's not possible to modify kfunc addr without stripping const, which is not nice. It also removes repetition of code like: if (bpf_jit_supports_far_kfunc_call()) desc->addr = func; else insn->imm = BPF_CALL_IMM(func); and separates kfunc_desc_tab fixups from kfunc_call fixups. Suggested-by: Jiri Olsa <olsajiri@gmail.com> Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Link: https://lore.kernel.org/r/20230412230632.885985-1-iii@linux.ibm.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
* bpf: Add log_true_size output field to return necessary log buffer sizeAndrii Nakryiko2023-04-111-1/+1
| | | | | | | | | | | | | | | | | | | | | | | Add output-only log_true_size and btf_log_true_size field to BPF_PROG_LOAD and BPF_BTF_LOAD commands, respectively. It will return the size of log buffer necessary to fit in all the log contents at specified log_level. This is very useful for BPF loader libraries like libbpf to be able to size log buffer correctly, but could be used by users directly, if necessary, as well. This patch plumbs all this through the code, taking into account actual bpf_attr size provided by user to determine if these new fields are expected by users. And if they are, set them from kernel on return. We refactory btf_parse() function to accommodate this, moving attr and uattr handling inside it. The rest is very straightforward code, which is split from the logging accounting changes in the previous patch to make it simpler to review logic vs UAPI changes. Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Lorenz Bauer <lmb@isovalent.com> Link: https://lore.kernel.org/bpf/20230406234205.323208-13-andrii@kernel.org
* bpf: Refactor btf_nested_type_is_trusted().Alexei Starovoitov2023-04-041-3/+4
| | | | | | | | | | | | | btf_nested_type_is_trusted() tries to find a struct member at corresponding offset. It works for flat structures and falls apart in more complex structs with nested structs. The offset->member search is already performed by btf_struct_walk() including nested structs. Reuse this work and pass {field name, field btf id} into btf_nested_type_is_trusted() instead of offset to make BTF_TYPE_SAFE*() logic more robust. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: David Vernet <void@manifault.com> Link: https://lore.kernel.org/bpf/20230404045029.82870-4-alexei.starovoitov@gmail.com
* bpf: Remove unused arguments from btf_struct_access().Alexei Starovoitov2023-04-041-2/+1
| | | | | | | | | Remove unused arguments from btf_struct_access() callback. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: David Vernet <void@manifault.com> Link: https://lore.kernel.org/bpf/20230404045029.82870-3-alexei.starovoitov@gmail.com
* bpf: Update the struct_ops of a bpf_link.Kui-Feng Lee2023-03-221-0/+3
| | | | | | | | | | | | | | | By improving the BPF_LINK_UPDATE command of bpf(), it should allow you to conveniently switch between different struct_ops on a single bpf_link. This would enable smoother transitions from one struct_ops to another. The struct_ops maps passing along with BPF_LINK_UPDATE should have the BPF_F_LINK flag. Signed-off-by: Kui-Feng Lee <kuifeng@meta.com> Acked-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20230323032405.3735486-6-kuifeng@meta.com Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
* bpf: Create links for BPF struct_ops maps.Kui-Feng Lee2023-03-221-0/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Make bpf_link support struct_ops. Previously, struct_ops were always used alone without any associated links. Upon updating its value, a struct_ops would be activated automatically. Yet other BPF program types required to make a bpf_link with their instances before they could become active. Now, however, you can create an inactive struct_ops, and create a link to activate it later. With bpf_links, struct_ops has a behavior similar to other BPF program types. You can pin/unpin them from their links and the struct_ops will be deactivated when its link is removed while previously need someone to delete the value for it to be deactivated. bpf_links are responsible for registering their associated struct_ops. You can only use a struct_ops that has the BPF_F_LINK flag set to create a bpf_link, while a structs without this flag behaves in the same manner as before and is registered upon updating its value. The BPF_LINK_TYPE_STRUCT_OPS serves a dual purpose. Not only is it used to craft the links for BPF struct_ops programs, but also to create links for BPF struct_ops them-self. Since the links of BPF struct_ops programs are only used to create trampolines internally, they are never seen in other contexts. Thus, they can be reused for struct_ops themself. To maintain a reference to the map supporting this link, we add bpf_struct_ops_link as an additional type. The pointer of the map is RCU and won't be necessary until later in the patchset. Signed-off-by: Kui-Feng Lee <kuifeng@meta.com> Link: https://lore.kernel.org/r/20230323032405.3735486-4-kuifeng@meta.com Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
* bpf: Retire the struct_ops map kvalue->refcnt.Kui-Feng Lee2023-03-221-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | We have replaced kvalue-refcnt with synchronize_rcu() to wait for an RCU grace period. Maintenance of kvalue->refcnt was a complicated task, as we had to simultaneously keep track of two reference counts: one for the reference count of bpf_map. When the kvalue->refcnt reaches zero, we also have to reduce the reference count on bpf_map - yet these steps are not performed in an atomic manner and require us to be vigilant when managing them. By eliminating kvalue->refcnt, we can make our maintenance more straightforward as the refcount of bpf_map is now solely managed! To prevent the trampoline image of a struct_ops from being released while it is still in use, we wait for an RCU grace period. The setsockopt(TCP_CONGESTION, "...") command allows you to change your socket's congestion control algorithm and can result in releasing the old struct_ops implementation. It is fine. However, this function is exposed through bpf_setsockopt(), it may be accessed by BPF programs as well. To ensure that the trampoline image belonging to struct_op can be safely called while its method is in use, the trampoline safeguarde the BPF program with rcu_read_lock(). Doing so prevents any destruction of the associated images before returning from a trampoline and requires us to wait for an RCU grace period. Signed-off-by: Kui-Feng Lee <kuifeng@meta.com> Link: https://lore.kernel.org/r/20230323032405.3735486-2-kuifeng@meta.com Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
* bpf: return long from bpf_map_ops funcsJP Kobryn2023-03-221-7/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch changes the return types of bpf_map_ops functions to long, where previously int was returned. Using long allows for bpf programs to maintain the sign bit in the absence of sign extension during situations where inlined bpf helper funcs make calls to the bpf_map_ops funcs and a negative error is returned. The definitions of the helper funcs are generated from comments in the bpf uapi header at `include/uapi/linux/bpf.h`. The return type of these helpers was previously changed from int to long in commit bdb7b79b4ce8. For any case where one of the map helpers call the bpf_map_ops funcs that are still returning 32-bit int, a compiler might not include sign extension instructions to properly convert the 32-bit negative value a 64-bit negative value. For example: bpf assembly excerpt of an inlined helper calling a kernel function and checking for a specific error: ; err = bpf_map_update_elem(&mymap, &key, &val, BPF_NOEXIST); ... 46: call 0xffffffffe103291c ; htab_map_update_elem ; if (err && err != -EEXIST) { 4b: cmp $0xffffffffffffffef,%rax ; cmp -EEXIST,%rax kernel function assembly excerpt of return value from `htab_map_update_elem` returning 32-bit int: movl $0xffffffef, %r9d ... movl %r9d, %eax ...results in the comparison: cmp $0xffffffffffffffef, $0x00000000ffffffef Fixes: bdb7b79b4ce8 ("bpf: Switch most helper return values from 32-bit int to 64-bit long") Tested-by: Eduard Zingerman <eddyz87@gmail.com> Signed-off-by: JP Kobryn <inwardvessel@gmail.com> Link: https://lore.kernel.org/r/20230322194754.185781-3-inwardvessel@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
* bpf: Fix attaching fentry/fexit/fmod_ret/lsm to modulesViktor Malik2023-03-151-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This resolves two problems with attachment of fentry/fexit/fmod_ret/lsm to functions located in modules: 1. The verifier tries to find the address to attach to in kallsyms. This is always done by searching the entire kallsyms, not respecting the module in which the function is located. Such approach causes an incorrect attachment address to be computed if the function to attach to is shadowed by a function of the same name located earlier in kallsyms. 2. If the address to attach to is located in a module, the module reference is only acquired in register_fentry. If the module is unloaded between the place where the address is found (bpf_check_attach_target in the verifier) and register_fentry, it is possible that another module is loaded to the same address which may lead to potential errors. Since the attachment must contain the BTF of the program to attach to, we extract the module from it and search for the function address in the correct module (resolving problem no. 1). Then, the module reference is taken directly in bpf_check_attach_target and stored in the bpf program (in bpf_prog_aux). The reference is only released when the program is unloaded (resolving problem no. 2). Signed-off-by: Viktor Malik <vmalik@redhat.com> Acked-by: Jiri Olsa <jolsa@kernel.org> Reviewed-by: Luis Chamberlain <mcgrof@kernel.org> Link: https://lore.kernel.org/r/3f6a9d8ae850532b5ef864ef16327b0f7a669063.1678432753.git.vmalik@redhat.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
* bpf: Disable migration when freeing stashed local kptr using obj dropDave Marchevsky2023-03-131-8/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When a local kptr is stashed in a map and freed when the map goes away, currently an error like the below appears: [ 39.195695] BUG: using smp_processor_id() in preemptible [00000000] code: kworker/u32:15/2875 [ 39.196549] caller is bpf_mem_free+0x56/0xc0 [ 39.196958] CPU: 15 PID: 2875 Comm: kworker/u32:15 Tainted: G O 6.2.0-13016-g22df776a9a86 #4477 [ 39.197897] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014 [ 39.198949] Workqueue: events_unbound bpf_map_free_deferred [ 39.199470] Call Trace: [ 39.199703] <TASK> [ 39.199911] dump_stack_lvl+0x60/0x70 [ 39.200267] check_preemption_disabled+0xbf/0xe0 [ 39.200704] bpf_mem_free+0x56/0xc0 [ 39.201032] ? bpf_obj_new_impl+0xa0/0xa0 [ 39.201430] bpf_obj_free_fields+0x1cd/0x200 [ 39.201838] array_map_free+0xad/0x220 [ 39.202193] ? finish_task_switch+0xe5/0x3c0 [ 39.202614] bpf_map_free_deferred+0xea/0x210 [ 39.203006] ? lockdep_hardirqs_on_prepare+0xe/0x220 [ 39.203460] process_one_work+0x64f/0xbe0 [ 39.203822] ? pwq_dec_nr_in_flight+0x110/0x110 [ 39.204264] ? do_raw_spin_lock+0x107/0x1c0 [ 39.204662] ? lockdep_hardirqs_on_prepare+0xe/0x220 [ 39.205107] worker_thread+0x74/0x7a0 [ 39.205451] ? process_one_work+0xbe0/0xbe0 [ 39.205818] kthread+0x171/0x1a0 [ 39.206111] ? kthread_complete_and_exit+0x20/0x20 [ 39.206552] ret_from_fork+0x1f/0x30 [ 39.206886] </TASK> This happens because the call to __bpf_obj_drop_impl I added in the patch adding support for stashing local kptrs doesn't disable migration. Prior to that patch, __bpf_obj_drop_impl logic only ran when called by a BPF progarm, whereas now it can be called from map free path, so it's necessary to explicitly disable migration. Also, refactor a bit to just call __bpf_obj_drop_impl directly instead of bothering w/ dtor union and setting pointer-to-obj_drop. Fixes: c8e187540914 ("bpf: Support __kptr to local kptrs") Reported-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com> Link: https://lore.kernel.org/r/20230313214641.3731908-1-davemarchevsky@fb.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
* bpf: Support __kptr to local kptrsDave Marchevsky2023-03-101-1/+10
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | If a PTR_TO_BTF_ID type comes from program BTF - not vmlinux or module BTF - it must have been allocated by bpf_obj_new and therefore must be free'd with bpf_obj_drop. Such a PTR_TO_BTF_ID is considered a "local kptr" and is tagged with MEM_ALLOC type tag by bpf_obj_new. This patch adds support for treating __kptr-tagged pointers to "local kptrs" as having an implicit bpf_obj_drop destructor for referenced kptr acquire / release semantics. Consider the following example: struct node_data { long key; long data; struct bpf_rb_node node; }; struct map_value { struct node_data __kptr *node; }; struct { __uint(type, BPF_MAP_TYPE_ARRAY); __type(key, int); __type(value, struct map_value); __uint(max_entries, 1); } some_nodes SEC(".maps"); If struct node_data had a matching definition in kernel BTF, the verifier would expect a destructor for the type to be registered. Since struct node_data does not match any type in kernel BTF, the verifier knows that there is no kfunc that provides a PTR_TO_BTF_ID to this type, and that such a PTR_TO_BTF_ID can only come from bpf_obj_new. So instead of searching for a registered dtor, a bpf_obj_drop dtor can be assumed. This allows the runtime to properly destruct such kptrs in bpf_obj_free_fields, which enables maps to clean up map_vals w/ such kptrs when going away. Implementation notes: * "kernel_btf" variable is renamed to "kptr_btf" in btf_parse_kptr. Before this patch, the variable would only ever point to vmlinux or module BTFs, but now it can point to some program BTF for local kptr type. It's later used to populate the (btf, btf_id) pair in kptr btf field. * It's necessary to btf_get the program BTF when populating btf_field for local kptr. btf_record_free later does a btf_put. * Behavior for non-local referenced kptrs is not modified, as bpf_find_btf_id helper only searches vmlinux and module BTFs for matching BTF type. If such a type is found, btf_field_kptr's btf will pass btf_is_kernel check, and the associated release function is some one-argument dtor. If btf_is_kernel check fails, associated release function is two-arg bpf_obj_drop_impl. Before this patch only btf_field_kptr's w/ kernel or module BTFs were created. Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com> Link: https://lore.kernel.org/r/20230310230743.2320707-2-davemarchevsky@fb.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
* bpf: Change btf_record_find enum parameter to field_maskDave Marchevsky2023-03-101-1/+1
| | | | | | | | | | btf_record_find's 3rd parameter can be multiple enum btf_field_type's masked together. The function is called with BPF_KPTR in two places in verifier.c, so it works with masked values already. Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com> Link: https://lore.kernel.org/r/20230309180111.1618459-4-davemarchevsky@fb.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
* bpf: implement numbers iteratorAndrii Nakryiko2023-03-081-2/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Implement the first open-coded iterator type over a range of integers. It's public API consists of: - bpf_iter_num_new() constructor, which accepts [start, end) range (that is, start is inclusive, end is exclusive). - bpf_iter_num_next() which will keep returning read-only pointer to int until the range is exhausted, at which point NULL will be returned. If bpf_iter_num_next() is kept calling after this, NULL will be persistently returned. - bpf_iter_num_destroy() destructor, which needs to be called at some point to clean up iterator state. BPF verifier enforces that iterator destructor is called at some point before BPF program exits. Note that `start = end = X` is a valid combination to setup an empty iterator. bpf_iter_num_new() will return 0 (success) for any such combination. If bpf_iter_num_new() detects invalid combination of input arguments, it returns error, resets iterator state to, effectively, empty iterator, so any subsequent call to bpf_iter_num_next() will keep returning NULL. BPF verifier has no knowledge that returned integers are in the [start, end) value range, as both `start` and `end` are not statically known and enforced: they are runtime values. While the implementation is pretty trivial, some care needs to be taken to avoid overflows and underflows. Subsequent selftests will validate correctness of [start, end) semantics, especially around extremes (INT_MIN and INT_MAX). Similarly to bpf_loop(), we enforce that no more than BPF_MAX_LOOPS can be specified. bpf_iter_num_{new,next,destroy}() is a logical evolution from bounded BPF loops and bpf_loop() helper and is the basis for implementing ergonomic BPF loops with no statically known or verified bounds. Subsequent patches implement bpf_for() macro, demonstrating how this can be wrapped into something that works and feels like a normal for() loop in C language. Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Link: https://lore.kernel.org/r/20230308184121.1165081-5-andrii@kernel.org Signed-off-by: Alexei Starovoitov <ast@kernel.org>
* bpf: offload map memory usageYafang Shao2023-03-071-0/+6
| | | | | | | | | | A new helper is introduced to calculate offload map memory usage. But currently the memory dynamically allocated in netdev dev_ops, like nsim_map_update_elem, is not counted. Let's just put it aside now. Signed-off-by: Yafang Shao <laoar.shao@gmail.com> Link: https://lore.kernel.org/r/20230305124615.12358-18-laoar.shao@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
* bpf: add new map ops ->map_mem_usageYafang Shao2023-03-071-0/+2
| | | | | | | | | | | Add a new map ops ->map_mem_usage to print the memory usage of a bpf map. This is a preparation for the followup change. Signed-off-by: Yafang Shao <laoar.shao@gmail.com> Link: https://lore.kernel.org/r/20230305124615.12358-2-laoar.shao@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
* bpf: Refactor RCU enforcement in the verifier.Alexei Starovoitov2023-03-031-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | bpf_rcu_read_lock/unlock() are only available in clang compiled kernels. Lack of such key mechanism makes it impossible for sleepable bpf programs to use RCU pointers. Allow bpf_rcu_read_lock/unlock() in GCC compiled kernels (though GCC doesn't support btf_type_tag yet) and allowlist certain field dereferences in important data structures like tast_struct, cgroup, socket that are used by sleepable programs either as RCU pointer or full trusted pointer (which is valid outside of RCU CS). Use BTF_TYPE_SAFE_RCU and BTF_TYPE_SAFE_TRUSTED macros for such tagging. They will be removed once GCC supports btf_type_tag. With that refactor check_ptr_to_btf_access(). Make it strict in enforcing PTR_TRUSTED and PTR_UNTRUSTED while deprecating old PTR_TO_BTF_ID without modifier flags. There is a chance that this strict enforcement might break existing programs (especially on GCC compiled kernels), but this cleanup has to start sooner than later. Note PTR_TO_CTX access still yields old deprecated PTR_TO_BTF_ID. Once it's converted to strict PTR_TRUSTED or PTR_UNTRUSTED the kfuncs and helpers will be able to default to KF_TRUSTED_ARGS. KF_RCU will remain as a weaker version of KF_TRUSTED_ARGS where obj refcnt could be 0. Adjust rcu_read_lock selftest to run on gcc and clang compiled kernels. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: David Vernet <void@manifault.com> Link: https://lore.kernel.org/bpf/20230303041446.3630-7-alexei.starovoitov@gmail.com
* bpf: Add xdp dynptrsJoanne Koong2023-03-011-1/+7
| | | | | | | | | | | | | | | | | | | | | | | Add xdp dynptrs, which are dynptrs whose underlying pointer points to a xdp_buff. The dynptr acts on xdp data. xdp dynptrs have two main benefits. One is that they allow operations on sizes that are not statically known at compile-time (eg variable-sized accesses). Another is that parsing the packet data through dynptrs (instead of through direct access of xdp->data and xdp->data_end) can be more ergonomic and less brittle (eg does not need manual if checking for being within bounds of data_end). For reads and writes on the dynptr, this includes reading/writing from/to and across fragments. Data slices through the bpf_dynptr_data API are not supported; instead bpf_dynptr_slice() and bpf_dynptr_slice_rdwr() should be used. For examples of how xdp dynptrs can be used, please see the attached selftests. Signed-off-by: Joanne Koong <joannelkoong@gmail.com> Link: https://lore.kernel.org/r/20230301154953.641654-9-joannelkoong@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
* bpf: Add skb dynptrsJoanne Koong2023-03-011-1/+13
| | | | | | | | | | | | | | | | | | | | | | | | | | | Add skb dynptrs, which are dynptrs whose underlying pointer points to a skb. The dynptr acts on skb data. skb dynptrs have two main benefits. One is that they allow operations on sizes that are not statically known at compile-time (eg variable-sized accesses). Another is that parsing the packet data through dynptrs (instead of through direct access of skb->data and skb->data_end) can be more ergonomic and less brittle (eg does not need manual if checking for being within bounds of data_end). For bpf prog types that don't support writes on skb data, the dynptr is read-only (bpf_dynptr_write() will return an error) For reads and writes through the bpf_dynptr_read() and bpf_dynptr_write() interfaces, reading and writing from/to data in the head as well as from/to non-linear paged buffers is supported. Data slices through the bpf_dynptr_data API are not supported; instead bpf_dynptr_slice() and bpf_dynptr_slice_rdwr() (added in subsequent commit) should be used. For examples of how skb dynptrs can be used, please see the attached selftests. Signed-off-by: Joanne Koong <joannelkoong@gmail.com> Link: https://lore.kernel.org/r/20230301154953.641654-8-joannelkoong@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
* bpf: Define no-ops for externally called bpf dynptr functionsJoanne Koong2023-03-011-30/+45
| | | | | | | | | | | | | | Some bpf dynptr functions will be called from places where if CONFIG_BPF_SYSCALL is not set, then the dynptr function is undefined. For example, when skb type dynptrs are added in the next commit, dynptr functions are called from net/core/filter.c This patch defines no-op implementations of these dynptr functions so that they do not break compilation by being an undefined reference. Signed-off-by: Joanne Koong <joannelkoong@gmail.com> Link: https://lore.kernel.org/r/20230301154953.641654-5-joannelkoong@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
* bpf: Zeroing allocated object from slab in bpf memory allocatorHou Tao2023-02-151-0/+7
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently the freed element in bpf memory allocator may be immediately reused, for htab map the reuse will reinitialize special fields in map value (e.g., bpf_spin_lock), but lookup procedure may still access these special fields, and it may lead to hard-lockup as shown below: NMI backtrace for cpu 16 CPU: 16 PID: 2574 Comm: htab.bin Tainted: G L 6.1.0+ #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), RIP: 0010:queued_spin_lock_slowpath+0x283/0x2c0 ...... Call Trace: <TASK> copy_map_value_locked+0xb7/0x170 bpf_map_copy_value+0x113/0x3c0 __sys_bpf+0x1c67/0x2780 __x64_sys_bpf+0x1c/0x20 do_syscall_64+0x30/0x60 entry_SYSCALL_64_after_hwframe+0x46/0xb0 ...... </TASK> For htab map, just like the preallocated case, these is no need to initialize these special fields in map value again once these fields have been initialized. For preallocated htab map, these fields are initialized through __GFP_ZERO in bpf_map_area_alloc(), so do the similar thing for non-preallocated htab in bpf memory allocator. And there is no need to use __GFP_ZERO for per-cpu bpf memory allocator, because __alloc_percpu_gfp() does it implicitly. Fixes: 0fd7c5d43339 ("bpf: Optimize call_rcu in non-preallocated hash map.") Signed-off-by: Hou Tao <houtao1@huawei.com> Link: https://lore.kernel.org/r/20230215082132.3856544-2-houtao@huaweicloud.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
* bpf: Add basic bpf_rb_{root,node} supportDave Marchevsky2023-02-131-1/+19
| | | | | | | | | | | | | | | | | | | | | | | | | | This patch adds special BPF_RB_{ROOT,NODE} btf_field_types similar to BPF_LIST_{HEAD,NODE}, adds the necessary plumbing to detect the new types, and adds bpf_rb_root_free function for freeing bpf_rb_root in map_values. structs bpf_rb_root and bpf_rb_node are opaque types meant to obscure structs rb_root_cached rb_node, respectively. btf_struct_access will prevent BPF programs from touching these special fields automatically now that they're recognized. btf_check_and_fixup_fields now groups list_head and rb_root together as "graph root" fields and {list,rb}_node as "graph node", and does same ownership cycle checking as before. Note that this function does _not_ prevent ownership type mixups (e.g. rb_root owning list_node) - that's handled by btf_parse_graph_root. After this patch, a bpf program can have a struct bpf_rb_root in a map_value, but not add anything to nor do anything useful with it. Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com> Link: https://lore.kernel.org/r/20230214004017.2534011-2-davemarchevsky@fb.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
* bpf: Migrate release_on_unlock logic to non-owning ref semanticsDave Marchevsky2023-02-131-0/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch introduces non-owning reference semantics to the verifier, specifically linked_list API kfunc handling. release_on_unlock logic for refs is refactored - with small functional changes - to implement these semantics, and bpf_list_push_{front,back} are migrated to use them. When a list node is pushed to a list, the program still has a pointer to the node: n = bpf_obj_new(typeof(*n)); bpf_spin_lock(&l); bpf_list_push_back(&l, n); /* n still points to the just-added node */ bpf_spin_unlock(&l); What the verifier considers n to be after the push, and thus what can be done with n, are changed by this patch. Common properties both before/after this patch: * After push, n is only a valid reference to the node until end of critical section * After push, n cannot be pushed to any list * After push, the program can read the node's fields using n Before: * After push, n retains the ref_obj_id which it received on bpf_obj_new, but the associated bpf_reference_state's release_on_unlock field is set to true * release_on_unlock field and associated logic is used to implement "n is only a valid ref until end of critical section" * After push, n cannot be written to, the node must be removed from the list before writing to its fields * After push, n is marked PTR_UNTRUSTED After: * After push, n's ref is released and ref_obj_id set to 0. NON_OWN_REF type flag is added to reg's type, indicating that it's a non-owning reference. * NON_OWN_REF flag and logic is used to implement "n is only a valid ref until end of critical section" * n can be written to (except for special fields e.g. bpf_list_node, timer, ...) Summary of specific implementation changes to achieve the above: * release_on_unlock field, ref_set_release_on_unlock helper, and logic to "release on unlock" based on that field are removed * The anonymous active_lock struct used by bpf_verifier_state is pulled out into a named struct bpf_active_lock. * NON_OWN_REF type flag is introduced along with verifier logic changes to handle non-owning refs * Helpers are added to use NON_OWN_REF flag to implement non-owning ref semantics as described above * invalidate_non_owning_refs - helper to clobber all non-owning refs matching a particular bpf_active_lock identity. Replaces release_on_unlock logic in process_spin_lock. * ref_set_non_owning - set NON_OWN_REF type flag after doing some sanity checking * ref_convert_owning_non_owning - convert owning reference w/ specified ref_obj_id to non-owning references. Set NON_OWN_REF flag for each reg with that ref_obj_id and 0-out its ref_obj_id * Update linked_list selftests to account for minor semantic differences introduced by this patch * Writes to a release_on_unlock node ref are not allowed, while writes to non-owning reference pointees are. As a result the linked_list "write after push" failure tests are no longer scenarios that should fail. * The test##missing_lock##op and test##incorrect_lock##op macro-generated failure tests need to have a valid node argument in order to have the same error output as before. Otherwise verification will fail early and the expected error output won't be seen. Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com> Link: https://lore.kernel.org/r/20230212092715.1422619-2-davemarchevsky@fb.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
* bpf: allow to disable bpf map memory accountingYafang Shao2023-02-101-0/+8
| | | | | | | | | | | | | We can simply set root memcg as the map's memcg to disable bpf memory accounting. bpf_map_area_alloc is a little special as it gets the memcg from current rather than from the map, so we need to disable GFP_ACCOUNT specifically for it. Signed-off-by: Yafang Shao <laoar.shao@gmail.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Roman Gushchin <roman.gushchin@linux.dev> Link: https://lore.kernel.org/r/20230210154734.4416-4-laoar.shao@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
* bpf: use bpf_map_kvcalloc in bpf_local_storageYafang Shao2023-02-101-0/+8
| | | | | | | | | | | | | | Introduce new helper bpf_map_kvcalloc() for the memory allocation in bpf_local_storage(). Then the allocation will charge the memory from the map instead of from current, though currently they are the same thing as it is only used in map creation path now. By charging map's memory into the memcg from the map, it will be more clear. Signed-off-by: Yafang Shao <laoar.shao@gmail.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Roman Gushchin <roman.gushchin@linux.dev> Link: https://lore.kernel.org/r/20230210154734.4416-3-laoar.shao@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
* bpf: Drop always true do_idr_lock parameter to bpf_map_free_idTobias Klauser2023-02-021-1/+1
| | | | | | | | | | | | | | The do_idr_lock parameter to bpf_map_free_id was introduced by commit bd5f5f4ecb78 ("bpf: Add BPF_MAP_GET_FD_BY_ID"). However, all callers set do_idr_lock = true since commit 1e0bd5a091e5 ("bpf: Switch bpf_map ref counter to atomic64_t so bpf_map_inc() never fails"). While at it also inline __bpf_map_put into its only caller bpf_map_put now that do_idr_lock can be dropped from its signature. Signed-off-by: Tobias Klauser <tklauser@distanz.ch> Link: https://lore.kernel.org/r/20230202141921.4424-1-tklauser@distanz.ch Signed-off-by: Alexei Starovoitov <ast@kernel.org>
* s390/bpf: Implement arch_prepare_bpf_trampoline()Ilya Leoshkevich2023-01-291-0/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | arch_prepare_bpf_trampoline() is used for direct attachment of eBPF programs to various places, bypassing kprobes. It's responsible for calling a number of eBPF programs before, instead and/or after whatever they are attached to. Add a s390x implementation, paying attention to the following: - Reuse the existing JIT infrastructure, where possible. - Like the existing JIT, prefer making multiple passes instead of backpatching. Currently 2 passes is enough. If literal pool is introduced, this needs to be raised to 3. However, at the moment adding literal pool only makes the code larger. If branch shortening is introduced, the number of passes needs to be increased even further. - Support both regular and ftrace calling conventions, depending on the trampoline flags. - Use expolines for indirect calls. - Handle the mismatch between the eBPF and the s390x ABIs. - Sign-extend fmod_ret return values. invoke_bpf_prog() produces about 120 bytes; it might be possible to slightly optimize this, but reaching 50 bytes, like on x86_64, looks unrealistic: just loading cookie, __bpf_prog_enter, bpf_func, insnsi and __bpf_prog_exit as literals already takes at least 5 * 12 = 60 bytes, and we can't use relative addressing for most of them. Therefore, lower BPF_MAX_TRAMP_LINKS on s390x. Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com> Link: https://lore.kernel.org/r/20230129190501.1624747-5-iii@linux.ibm.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
* bpf: btf: Add BTF_FMODEL_SIGNED_ARG flagIlya Leoshkevich2023-01-281-0/+4
| | | | | | | | | | s390x eBPF JIT needs to know whether a function return value is signed and which function arguments are signed, in order to generate code compliant with the s390x ABI. Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com> Link: https://lore.kernel.org/r/20230128000650.1516334-26-iii@linux.ibm.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
* bpf: Change BPF_MAX_TRAMP_LINKS to enumIlya Leoshkevich2023-01-281-1/+3
| | | | | | | | This way it's possible to query its value from testcases using BTF. Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com> Link: https://lore.kernel.org/r/20230128000650.1516334-3-iii@linux.ibm.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
* Merge tag 'for-netdev' of ↵Jakub Kicinski2023-01-281-12/+67
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next Daniel Borkmann says: ==================== bpf-next 2023-01-28 We've added 124 non-merge commits during the last 22 day(s) which contain a total of 124 files changed, 6386 insertions(+), 1827 deletions(-). The main changes are: 1) Implement XDP hints via kfuncs with initial support for RX hash and timestamp metadata kfuncs, from Stanislav Fomichev and Toke Høiland-Jørgensen. Measurements on overhead: https://lore.kernel.org/bpf/875yellcx6.fsf@toke.dk 2) Extend libbpf's bpf_tracing.h support for tracing arguments of kprobes/uprobes and syscall as a special case, from Andrii Nakryiko. 3) Significantly reduce the search time for module symbols by livepatch and BPF, from Jiri Olsa and Zhen Lei. 4) Enable cpumasks to be used as kptrs, which is useful for tracing programs tracking which tasks end up running on which CPUs in different time intervals, from David Vernet. 5) Fix several issues in the dynptr processing such as stack slot liveness propagation, missing checks for PTR_TO_STACK variable offset, etc, from Kumar Kartikeya Dwivedi. 6) Various performance improvements, fixes, and introduction of more than just one XDP program to XSK selftests, from Magnus Karlsson. 7) Big batch to BPF samples to reduce deprecated functionality, from Daniel T. Lee. 8) Enable struct_ops programs to be sleepable in verifier, from David Vernet. 9) Reduce pr_warn() noise on BTF mismatches when they are expected under the CONFIG_MODULE_ALLOW_BTF_MISMATCH config anyway, from Connor O'Brien. 10) Describe modulo and division by zero behavior of the BPF runtime in BPF's instruction specification document, from Dave Thaler. 11) Several improvements to libbpf API documentation in libbpf.h, from Grant Seltzer. 12) Improve resolve_btfids header dependencies related to subcmd and add proper support for HOSTCC, from Ian Rogers. 13) Add ipip6 and ip6ip decapsulation support for bpf_skb_adjust_room() helper along with BPF selftests, from Ziyang Xuan. 14) Simplify the parsing logic of structure parameters for BPF trampoline in the x86-64 JIT compiler, from Pu Lehui. 15) Get BTF working for kernels with CONFIG_RUST enabled by excluding Rust compilation units with pahole, from Martin Rodriguez Reboredo. 16) Get bpf_setsockopt() working for kTLS on top of TCP sockets, from Kui-Feng Lee. 17) Disable stack protection for BPF objects in bpftool given BPF backends don't support it, from Holger Hoffstätte. * tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (124 commits) selftest/bpf: Make crashes more debuggable in test_progs libbpf: Add documentation to map pinning API functions libbpf: Fix malformed documentation formatting selftests/bpf: Properly enable hwtstamp in xdp_hw_metadata selftests/bpf: Calls bpf_setsockopt() on a ktls enabled socket. bpf: Check the protocol of a sock to agree the calls to bpf_setsockopt(). bpf/selftests: Verify struct_ops prog sleepable behavior bpf: Pass const struct bpf_prog * to .check_member libbpf: Support sleepable struct_ops.s section bpf: Allow BPF_PROG_TYPE_STRUCT_OPS programs to be sleepable selftests/bpf: Fix vmtest static compilation error tools/resolve_btfids: Alter how HOSTCC is forced tools/resolve_btfids: Install subcmd headers bpf/docs: Document the nocast aliasing behavior of ___init bpf/docs: Document how nested trusted fields may be defined bpf/docs: Document cpumask kfuncs in a new file selftests/bpf: Add selftest suite for cpumask kfuncs selftests/bpf: Add nested trust selftests suite bpf: Enable cpumasks to be queried and used as kptrs bpf: Disallow NULLable pointers for trusted kfuncs ... ==================== Link: https://lore.kernel.org/r/20230128004827.21371-1-daniel@iogearbox.net Signed-off-by: Jakub Kicinski <kuba@kernel.org>
| * bpf/selftests: Verify struct_ops prog sleepable behaviorDavid Vernet2023-01-251-0/+1
| | | | | | | | | | | | | | | | | | | | | | In a set of prior changes, we added the ability for struct_ops programs to be sleepable. This patch enhances the dummy_st_ops selftest suite to validate this behavior by adding a new sleepable struct_ops entry to dummy_st_ops. Signed-off-by: David Vernet <void@manifault.com> Link: https://lore.kernel.org/r/20230125164735.785732-5-void@manifault.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
| * bpf: Pass const struct bpf_prog * to .check_memberDavid Vernet2023-01-251-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The .check_member field of struct bpf_struct_ops is currently passed the member's btf_type via const struct btf_type *t, and a const struct btf_member *member. This allows the struct_ops implementation to check whether e.g. an ops is supported, but it would be useful to also enforce that the struct_ops prog being loaded for that member has other qualities, like being sleepable (or not). This patch therefore updates the .check_member() callback to also take a const struct bpf_prog *prog argument. Signed-off-by: David Vernet <void@manifault.com> Link: https://lore.kernel.org/r/20230125164735.785732-4-void@manifault.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
| * bpf: Allow trusted args to walk struct when checking BTF IDsDavid Vernet2023-01-241-0/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When validating BTF types for KF_TRUSTED_ARGS kfuncs, the verifier currently enforces that the top-level type must match when calling the kfunc. In other words, the verifier does not allow the BPF program to pass a bitwise equivalent struct, despite it being allowed according to the C standard. For example, if you have the following type: struct nf_conn___init { struct nf_conn ct; }; The C standard stipulates that it would be safe to pass a struct nf_conn___init to a kfunc expecting a struct nf_conn. The verifier currently disallows this, however, as semantically kfuncs may want to enforce that structs that have equivalent types according to the C standard, but have different BTF IDs, are not able to be passed to kfuncs expecting one or the other. For example, struct nf_conn___init may not be queried / looked up, as it is allocated but may not yet be fully initialized. On the other hand, being able to pass types that are equivalent according to the C standard will be useful for other types of kfunc / kptrs enabled by BPF. For example, in a follow-on patch, a series of kfuncs will be added which allow programs to do bitwise queries on cpumasks that are either allocated by the program (in which case they'll be a 'struct bpf_cpumask' type that wraps a cpumask_t as its first element), or a cpumask that was allocated by the main kernel (in which case it will just be a straight cpumask_t, as in task->cpus_ptr). Having the two types of cpumasks allows us to distinguish between the two for when a cpumask is read-only vs. mutatable. A struct bpf_cpumask can be mutated by e.g. bpf_cpumask_clear(), whereas a regular cpumask_t cannot be. On the other hand, a struct bpf_cpumask can of course be queried in the exact same manner as a cpumask_t, with e.g. bpf_cpumask_test_cpu(). If we were to enforce that top level types match, then a user that's passing a struct bpf_cpumask to a read-only cpumask_t argument would have to cast with something like bpf_cast_to_kern_ctx() (which itself would need to be updated to expect the alias, and currently it only accommodates a single alias per prog type). Additionally, not specifying KF_TRUSTED_ARGS is not an option, as some kfuncs take one argument as a struct bpf_cpumask *, and another as a struct cpumask * (i.e. cpumask_t). In order to enable this, this patch relaxes the constraint that a KF_TRUSTED_ARGS kfunc must have strict type matching, and instead only enforces strict type matching if a type is observed to be a "no-cast alias" (i.e., that the type names are equivalent, but one is suffixed with ___init). Additionally, in order to try and be conservative and match existing behavior / expectations, this patch also enforces strict type checking for acquire kfuncs. We were already enforcing it for release kfuncs, so this should also improve the consistency of the semantics for kfuncs. Signed-off-by: David Vernet <void@manifault.com> Link: https://lore.kernel.org/r/20230120192523.3650503-3-void@manifault.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
| * bpf: Enable annotating trusted nested pointersDavid Vernet2023-01-241-0/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In kfuncs, a "trusted" pointer is a pointer that the kfunc can assume is safe, and which the verifier will allow to be passed to a KF_TRUSTED_ARGS kfunc. Currently, a KF_TRUSTED_ARGS kfunc disallows any pointer to be passed at a nonzero offset, but sometimes this is in fact safe if the "nested" pointer's lifetime is inherited from its parent. For example, the const cpumask_t *cpus_ptr field in a struct task_struct will remain valid until the task itself is destroyed, and thus would also be safe to pass to a KF_TRUSTED_ARGS kfunc. While it would be conceptually simple to enable this by using BTF tags, gcc unfortunately does not yet support this. In the interim, this patch enables support for this by using a type-naming convention. A new BTF_TYPE_SAFE_NESTED macro is defined in verifier.c which allows a developer to specify the nested fields of a type which are considered trusted if its parent is also trusted. The verifier is also updated to account for this. A patch with selftests will be added in a follow-on change, along with documentation for this feature. Signed-off-by: David Vernet <void@manifault.com> Link: https://lore.kernel.org/r/20230120192523.3650503-2-void@manifault.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
| * bpf: Support consuming XDP HW metadata from fext programsToke Høiland-Jørgensen2023-01-231-0/+14
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Instead of rejecting the attaching of PROG_TYPE_EXT programs to XDP programs that consume HW metadata, implement support for propagating the offload information. The extension program doesn't need to set a flag or ifindex, these will just be propagated from the target by the verifier. We need to create a separate offload object for the extension program, though, since it can be reattached to a different program later (which means we can't just inherit the offload information from the target). An additional check is added on attach that the new target is compatible with the offload information in the extension prog. Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com> Signed-off-by: Stanislav Fomichev <sdf@google.com> Link: https://lore.kernel.org/r/20230119221536.3349901-9-sdf@google.com Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>