| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
| |
Return result of btf_get_prog_ctx_type() is never used and callers only
check NULL vs non-NULL case to determine if given type matches expected
PTR_TO_CTX type. So rename function to `btf_is_prog_ctx_type()` and
return a simple true/false. We'll use this simpler interface to handle
kprobe program type's special typedef case in the next patch.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20240212233221.2575350-2-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Collect argument information from the type information of stub functions to
mark arguments of BPF struct_ops programs with PTR_MAYBE_NULL if they are
nullable. A nullable argument is annotated by suffixing "__nullable" at
the argument name of stub function.
For nullable arguments, this patch sets a struct bpf_ctx_arg_aux to label
their reg_type with PTR_TO_BTF_ID | PTR_TRUSTED | PTR_MAYBE_NULL. This
makes the verifier to check programs and ensure that they properly check
the pointer. The programs should check if the pointer is null before
accessing the pointed memory.
The implementer of a struct_ops type should annotate the arguments that can
be null. The implementer should define a stub function (empty) as a
placeholder for each defined operator. The name of a stub function should
be in the pattern "<st_op_type>__<operator name>". For example, for
test_maybe_null of struct bpf_testmod_ops, it's stub function name should
be "bpf_testmod_ops__test_maybe_null". You mark an argument nullable by
suffixing the argument name with "__nullable" at the stub function.
Since we already has stub functions for kCFI, we just reuse these stub
functions with the naming convention mentioned earlier. These stub
functions with the naming convention is only required if there are nullable
arguments to annotate. For functions having not nullable arguments, stub
functions are not necessary for the purpose of this patch.
This patch will prepare a list of struct bpf_ctx_arg_aux, aka arg_info, for
each member field of a struct_ops type. "arg_info" will be assigned to
"prog->aux->ctx_arg_info" of BPF struct_ops programs in
check_struct_ops_btf_id() so that it can be used by btf_ctx_access() later
to set reg_type properly for the verifier.
Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com>
Link: https://lore.kernel.org/r/20240209023750.1153905-4-thinker.li@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
|
|
|
|
|
|
|
|
|
| |
Move __kfunc_param_match_suffix() to btf.c and rename it as
btf_param_match_suffix(). It can be reused by bpf_struct_ops later.
Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com>
Link: https://lore.kernel.org/r/20240209023750.1153905-3-thinker.li@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Replace the static list of struct_ops types with per-btf struct_ops_tab to
enable dynamic registration.
Both bpf_dummy_ops and bpf_tcp_ca now utilize the registration function
instead of being listed in bpf_struct_ops_types.h.
Cc: netdev@vger.kernel.org
Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com>
Link: https://lore.kernel.org/r/20240119225005.668602-12-thinker.li@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
|
|
|
|
|
|
|
|
|
|
| |
Move the majority of the code to bpf_struct_ops_init_one(), which can then
be utilized for the initialization of newly registered dynamically
allocated struct_ops types in the following patches.
Signed-off-by: Kui-Feng Lee <thinker.li@gmail.com>
Link: https://lore.kernel.org/r/20240119225005.668602-2-thinker.li@gmail.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Refactor btf_get_prog_ctx_type() a bit to allow reuse of
bpf_ctx_convert_map logic in more than one places. Simplify interface by
returning btf_type instead of btf_member (field reference in BTF).
To do the above we need to touch and start untangling
btf_translate_to_vmlinux() implementation. We do the bare minimum to
not regress anything for btf_translate_to_vmlinux(), but its
implementation is very questionable for what it claims to be doing.
Mapping kfunc argument types to kernel corresponding types conceptually
is quite different from recognizing program context types. Fixing this
is out of scope for this change though.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20240118033143.3384355-3-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Not all uses of __diag_ignore_all(...) in BPF-related code in order to
suppress warnings are wrapping kfunc definitions. Some "hook point"
definitions - small functions meant to be used as attach points for
fentry and similar BPF progs - need to suppress -Wmissing-declarations.
We could use __bpf_kfunc_{start,end}_defs added in the previous patch in
such cases, but this might be confusing to someone unfamiliar with BPF
internals. Instead, this patch adds __bpf_hook_{start,end} macros,
currently having the same effect as __bpf_kfunc_{start,end}_defs, then
uses them to suppress warnings for two hook points in the kernel itself
and some bpf_testmod hook points as well.
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Cc: Yafang Shao <laoar.shao@gmail.com>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Yafang Shao <laoar.shao@gmail.com>
Link: https://lore.kernel.org/r/20231031215625.2343848-2-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
BPF kfuncs are meant to be called from BPF programs. Accordingly, most
kfuncs are not called from anywhere in the kernel, which the
-Wmissing-prototypes warning is unhappy about. We've peppered
__diag_ignore_all("-Wmissing-prototypes", ... everywhere kfuncs are
defined in the codebase to suppress this warning.
This patch adds two macros meant to bound one or many kfunc definitions.
All existing kfunc definitions which use these __diag calls to suppress
-Wmissing-prototypes are migrated to use the newly-introduced macros.
A new __diag_ignore_all - for "-Wmissing-declarations" - is added to the
__bpf_kfunc_start_defs macro based on feedback from Andrii on an earlier
version of this patch [0] and another recent mailing list thread [1].
In the future we might need to ignore different warnings or do other
kfunc-specific things. This change will make it easier to make such
modifications for all kfunc defs.
[0]: https://lore.kernel.org/bpf/CAEf4BzaE5dRWtK6RPLnjTW-MW9sx9K3Fn6uwqCTChK2Dcb1Xig@mail.gmail.com/
[1]: https://lore.kernel.org/bpf/ZT+2qCc%2FaXep0%2FLf@krava/
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Suggested-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Cc: Jiri Olsa <olsajiri@gmail.com>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: David Vernet <void@manifault.com>
Acked-by: Yafang Shao <laoar.shao@gmail.com>
Link: https://lore.kernel.org/r/20231031215625.2343848-1-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
css_iter and task_iter should be used in rcu section. Specifically, in
sleepable progs explicit bpf_rcu_read_lock() is needed before use these
iters. In normal bpf progs that have implicit rcu_read_lock(), it's OK to
use them directly.
This patch adds a new a KF flag KF_RCU_PROTECTED for bpf_iter_task_new and
bpf_iter_css_new. It means the kfunc should be used in RCU CS. We check
whether we are in rcu cs before we want to invoke this kfunc. If the rcu
protection is guaranteed, we would let st->type = PTR_TO_STACK | MEM_RCU.
Once user do rcu_unlock during the iteration, state MEM_RCU of regs would
be cleared. is_iter_reg_valid_init() will reject if reg->type is UNTRUSTED.
It is worth noting that currently, bpf_rcu_read_unlock does not
clear the state of the STACK_ITER reg, since bpf_for_each_spilled_reg
only considers STACK_SPILL. This patch also let bpf_for_each_spilled_reg
search STACK_ITER.
Signed-off-by: Chuyi Zhou <zhouchuyi@bytedance.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231018061746.111364-6-zhouchuyi@bytedance.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace
Pull probes updates from Masami Hiramatsu:
- kprobes: use struct_size() for variable size kretprobe_instance data
structure.
- eprobe: Simplify trace_eprobe list iteration.
- probe events: Data structure field access support on BTF argument.
- Update BTF argument support on the functions in the kernel
loadable modules (only loaded modules are supported).
- Move generic BTF access function (search function prototype and
get function parameters) to a separated file.
- Add a function to search a member of data structure in BTF.
- Support accessing BTF data structure member from probe args by
C-like arrow('->') and dot('.') operators. e.g.
't sched_switch next=next->pid vruntime=next->se.vruntime'
- Support accessing BTF data structure member from $retval. e.g.
'f getname_flags%return +0($retval->name):string'
- Add string type checking if BTF type info is available. This will
reject if user specify ":string" type for non "char pointer"
type.
- Automatically assume the fprobe event as a function return event
if $retval is used.
- selftests/ftrace: Add BTF data field access test cases.
- Documentation: Update fprobe event example with BTF data field.
* tag 'probes-v6.6' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
Documentation: tracing: Update fprobe event example with BTF field
selftests/ftrace: Add BTF fields access testcases
tracing/fprobe-event: Assume fprobe is a return event by $retval
tracing/probes: Add string type check with BTF
tracing/probes: Support BTF field access from $retval
tracing/probes: Support BTF based data structure field access
tracing/probes: Add a function to search a member of a struct/union
tracing/probes: Move finding func-proto API and getting func-param API to trace_btf
tracing/probes: Support BTF argument on module functions
tracing/eprobe: Iterate trace_eprobe directly
kernel: kprobes: Use struct_size()
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Since the btf returned from bpf_get_btf_vmlinux() only covers functions in
the vmlinux, BTF argument is not available on the functions in the modules.
Use bpf_find_btf_id() instead of bpf_get_btf_vmlinux()+btf_find_name_kind()
so that BTF argument can find the correct struct btf and btf_type in it.
With this fix, fprobe events can use `$arg*` on module functions as below
# grep nf_log_ip_packet /proc/kallsyms
ffffffffa0005c00 t nf_log_ip_packet [nf_log_syslog]
ffffffffa0005bf0 t __pfx_nf_log_ip_packet [nf_log_syslog]
# echo 'f nf_log_ip_packet $arg*' > dynamic_events
# cat dynamic_events
f:fprobes/nf_log_ip_packet__entry nf_log_ip_packet net=net pf=pf hooknum=hooknum skb=skb in=in out=out loginfo=loginfo prefix=prefix
To support the module's btf which is removable, the struct btf needs to be
ref-counted. So this also records the btf in the traceprobe_parse_context
and returns the refcount when the parse has done.
Link: https://lore.kernel.org/all/169272154223.160970.3507930084247934031.stgit@devnote2/
Suggested-by: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Acked-by: Steven Rostedt (Google) <rostedt@goodmis.org>
|
|/
|
|
|
|
|
|
|
| |
Commit db559117828d ("bpf: Consolidate spin_lock, timer management into btf_record")
removed the implementations but leave declarations.
Signed-off-by: Yue Haibing <yuehaibing@huawei.com>
Link: https://lore.kernel.org/r/20230808145741.33292-1-yuehaibing@huawei.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit adds the ability to filter kfuncs to certain BPF program
types. This is required to limit bpf_sock_destroy kfunc implemented in
follow-up commits to programs with attach type 'BPF_TRACE_ITER'.
The commit adds a callback filter to 'struct btf_kfunc_id_set'. The
filter has access to the `bpf_prog` construct including its properties
such as `expected_attached_type`.
Signed-off-by: Aditi Ghag <aditi.ghag@isovalent.com>
Link: https://lore.kernel.org/r/20230519225157.760788-7-aditi.ghag@isovalent.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We've managed to improve the UX for kptrs significantly over the last 9
months. All of the existing use cases which previously had KF_KPTR_GET
kfuncs (struct bpf_cpumask *, struct task_struct *, and struct cgroup *)
have all been updated to be synchronized using RCU. In other words,
their KF_KPTR_GET kfuncs have been removed in favor of KF_RCU |
KF_ACQUIRE kfuncs, with the pointers themselves also being readable from
maps in an RCU read region thanks to the types being RCU safe.
While KF_KPTR_GET was a logical starting point for kptrs, it's become
clear that they're not the correct abstraction. KF_KPTR_GET is a flag
that essentially does nothing other than enforcing that the argument to
a function is a pointer to a referenced kptr map value. At first glance,
that's a useful thing to guarantee to a kfunc. It gives kfuncs the
ability to try and acquire a reference on that kptr without requiring
the BPF prog to do something like this:
struct kptr_type *in_map, *new = NULL;
in_map = bpf_kptr_xchg(&map->value, NULL);
if (in_map) {
new = bpf_kptr_type_acquire(in_map);
in_map = bpf_kptr_xchg(&map->value, in_map);
if (in_map)
bpf_kptr_type_release(in_map);
}
That's clearly a pretty ugly (and racy) UX, and if using KF_KPTR_GET is
the only alternative, it's better than nothing. However, the problem
with any KF_KPTR_GET kfunc lies in the fact that it always requires some
kind of synchronization in order to safely do an opportunistic acquire
of the kptr in the map. This is because a BPF program running on another
CPU could do a bpf_kptr_xchg() on that map value, and free the kptr
after it's been read by the KF_KPTR_GET kfunc. For example, the
now-removed bpf_task_kptr_get() kfunc did the following:
struct task_struct *bpf_task_kptr_get(struct task_struct **pp)
{
struct task_struct *p;
rcu_read_lock();
p = READ_ONCE(*pp);
/* If p is non-NULL, it could still be freed by another CPU,
* so we have to do an opportunistic refcount_inc_not_zero()
* and return NULL if the task will be freed after the
* current RCU read region.
*/
|f (p && !refcount_inc_not_zero(&p->rcu_users))
p = NULL;
rcu_read_unlock();
return p;
}
In other words, the kfunc uses RCU to ensure that the task remains valid
after it's been peeked from the map. However, this is completely
redundant with just defining a KF_RCU kfunc that itself does a
refcount_inc_not_zero(), which is exactly what bpf_task_acquire() now
does.
So, the question of whether KF_KPTR_GET is useful is actually, "Are
there any synchronization mechanisms / safety flags that are required by
certain kptrs, but which are not provided by the verifier to kfuncs?"
The answer to that question today is "No", because every kptr we
currently care about is RCU protected.
Even if the answer ever became "yes", the proper way to support that
referenced kptr type would be to add support for whatever
synchronization mechanism it requires in the verifier, rather than
giving kfuncs a flag that says, "Here's a pointer to a referenced kptr
in a map, do whatever you need to do."
With all that said -- so as to allow us to consolidate the kfunc API,
and simplify the verifier a bit, this patch removes KF_KPTR_GET, and all
relevant logic from the verifier.
Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230416084928.326135-3-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The btf_field_offs struct contains (offset, size) for btf_record fields,
sorted by offset. btf_field_offs is always used in conjunction with
btf_record, which has btf_field 'fields' array with (offset, type), the
latter of which btf_field_offs' size is derived from via
btf_field_type_size.
This patch adds a size field to struct btf_field and sorts btf_record's
fields by offset, making it possible to get rid of btf_field_offs. Less
data duplication and less code complexity results.
Since btf_field_offs' lifetime closely followed the btf_record used to
populate it, most complexity wins are from removal of initialization
code like:
if (btf_record_successfully_initialized) {
foffs = btf_parse_field_offs(rec);
if (IS_ERR_OR_NULL(foffs))
// free the btf_record and return err
}
Other changes in this patch are pretty mechanical:
* foffs->field_off[i] -> rec->fields[i].offset
* foffs->field_sz[i] -> rec->fields[i].size
* Sort rec->fields in btf_parse_fields before returning
* It's possible that this is necessary independently of other
changes in this patch. btf_record_find in syscall.c expects
btf_record's fields to be sorted by offset, yet there's no
explicit sorting of them before this patch, record's fields are
populated in the order they're read from BTF struct definition.
BTF docs don't say anything about the sortedness of struct fields.
* All functions taking struct btf_field_offs * input now instead take
struct btf_record *. All callsites of these functions already have
access to the correct btf_record.
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230415201811.343116-2-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add output-only log_true_size and btf_log_true_size field to
BPF_PROG_LOAD and BPF_BTF_LOAD commands, respectively. It will return
the size of log buffer necessary to fit in all the log contents at
specified log_level. This is very useful for BPF loader libraries like
libbpf to be able to size log buffer correctly, but could be used by
users directly, if necessary, as well.
This patch plumbs all this through the code, taking into account actual
bpf_attr size provided by user to determine if these new fields are
expected by users. And if they are, set them from kernel on return.
We refactory btf_parse() function to accommodate this, moving attr and
uattr handling inside it. The rest is very straightforward code, which
is split from the logging accounting changes in the previous patch to
make it simpler to review logic vs UAPI changes.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Lorenz Bauer <lmb@isovalent.com>
Link: https://lore.kernel.org/bpf/20230406234205.323208-13-andrii@kernel.org
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
If a PTR_TO_BTF_ID type comes from program BTF - not vmlinux or module
BTF - it must have been allocated by bpf_obj_new and therefore must be
free'd with bpf_obj_drop. Such a PTR_TO_BTF_ID is considered a "local
kptr" and is tagged with MEM_ALLOC type tag by bpf_obj_new.
This patch adds support for treating __kptr-tagged pointers to "local
kptrs" as having an implicit bpf_obj_drop destructor for referenced kptr
acquire / release semantics. Consider the following example:
struct node_data {
long key;
long data;
struct bpf_rb_node node;
};
struct map_value {
struct node_data __kptr *node;
};
struct {
__uint(type, BPF_MAP_TYPE_ARRAY);
__type(key, int);
__type(value, struct map_value);
__uint(max_entries, 1);
} some_nodes SEC(".maps");
If struct node_data had a matching definition in kernel BTF, the verifier would
expect a destructor for the type to be registered. Since struct node_data does
not match any type in kernel BTF, the verifier knows that there is no kfunc
that provides a PTR_TO_BTF_ID to this type, and that such a PTR_TO_BTF_ID can
only come from bpf_obj_new. So instead of searching for a registered dtor,
a bpf_obj_drop dtor can be assumed.
This allows the runtime to properly destruct such kptrs in
bpf_obj_free_fields, which enables maps to clean up map_vals w/ such
kptrs when going away.
Implementation notes:
* "kernel_btf" variable is renamed to "kptr_btf" in btf_parse_kptr.
Before this patch, the variable would only ever point to vmlinux or
module BTFs, but now it can point to some program BTF for local kptr
type. It's later used to populate the (btf, btf_id) pair in kptr btf
field.
* It's necessary to btf_get the program BTF when populating btf_field
for local kptr. btf_record_free later does a btf_put.
* Behavior for non-local referenced kptrs is not modified, as
bpf_find_btf_id helper only searches vmlinux and module BTFs for
matching BTF type. If such a type is found, btf_field_kptr's btf will
pass btf_is_kernel check, and the associated release function is
some one-argument dtor. If btf_is_kernel check fails, associated
release function is two-arg bpf_obj_drop_impl. Before this patch
only btf_field_kptr's w/ kernel or module BTFs were created.
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230310230743.2320707-2-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add ability to register kfuncs that implement BPF open-coded iterator
contract and enforce naming and function proto convention. Enforcement
happens at the time of kfunc registration and significantly simplifies
the rest of iterators logic in the verifier.
More details follow in subsequent patches, but we enforce the following
conditions.
All kfuncs (constructor, next, destructor) have to be named consistenly
as bpf_iter_<type>_{new,next,destroy}(), respectively. <type> represents
iterator type, and iterator state should be represented as a matching
`struct bpf_iter_<type>` state type. Also, all iter kfuncs should have
a pointer to this `struct bpf_iter_<type>` as the very first argument.
Additionally:
- Constructor, i.e., bpf_iter_<type>_new(), can have arbitrary extra
number of arguments. Return type is not enforced either.
- Next method, i.e., bpf_iter_<type>_next(), has to return a pointer
type and should have exactly one argument: `struct bpf_iter_<type> *`
(const/volatile/restrict and typedefs are ignored).
- Destructor, i.e., bpf_iter_<type>_destroy(), should return void and
should have exactly one argument, similar to the next method.
- struct bpf_iter_<type> size is enforced to be positive and
a multiple of 8 bytes (to fit stack slots correctly).
Such strictness and consistency allows to build generic helpers
abstracting important, but boilerplate, details to be able to use
open-coded iterators effectively and ergonomically (see bpf_for_each()
in subsequent patches). It also simplifies the verifier logic in some
places. At the same time, this doesn't hurt generality of possible
iterator implementations. Win-win.
Constructor kfunc is marked with a new KF_ITER_NEW flags, next method is
marked with KF_ITER_NEXT (and should also have KF_RET_NULL, of course),
while destructor kfunc is marked as KF_ITER_DESTROY.
Additionally, we add a trivial kfunc name validation: it should be
a valid non-NULL and non-empty string.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230308184121.1165081-3-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The life time of certain kernel structures like 'struct cgroup' is protected by RCU.
Hence it's safe to dereference them directly from __kptr tagged pointers in bpf maps.
The resulting pointer is MEM_RCU and can be passed to kfuncs that expect KF_RCU.
Derefrence of other kptr-s returns PTR_UNTRUSTED.
For example:
struct map_value {
struct cgroup __kptr *cgrp;
};
SEC("tp_btf/cgroup_mkdir")
int BPF_PROG(test_cgrp_get_ancestors, struct cgroup *cgrp_arg, const char *path)
{
struct cgroup *cg, *cg2;
cg = bpf_cgroup_acquire(cgrp_arg); // cg is PTR_TRUSTED and ref_obj_id > 0
bpf_kptr_xchg(&v->cgrp, cg);
cg2 = v->cgrp; // This is new feature introduced by this patch.
// cg2 is PTR_MAYBE_NULL | MEM_RCU.
// When cg2 != NULL, it's a valid cgroup, but its percpu_ref could be zero
if (cg2)
bpf_cgroup_ancestor(cg2, level); // safe to do.
}
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/bpf/20230303041446.3630-4-alexei.starovoitov@gmail.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
kfuncs are functions defined in the kernel, which may be invoked by BPF
programs. They may or may not also be used as regular kernel functions,
implying that they may be static (in which case the compiler could e.g.
inline it away, or elide one or more arguments), or it could have
external linkage, but potentially be elided in an LTO build if a
function is observed to never be used, and is stripped from the final
kernel binary.
This has already resulted in some issues, such as those discussed in [0]
wherein changes in DWARF that identify when a parameter has been
optimized out can break BTF encodings (and in general break the kfunc).
[0]: https://lore.kernel.org/all/1675088985-20300-2-git-send-email-alan.maguire@oracle.com/
We therefore require some convenience macro that kfunc developers can
use just add to their kfuncs, and which will prevent all of the above
issues from happening. This is in contrast with what we have today,
where some kfunc definitions have "noinline", some have "__used", and
others are static and have neither.
Note that longer term, this mechanism may be replaced by a macro that
more closely resembles EXPORT_SYMBOL_GPL(), as described in [1]. For
now, we're going with this shorter-term approach to fix existing issues
in kfuncs.
[1]: https://lore.kernel.org/lkml/Y9AFT4pTydKh+PD3@maniforge.lan/
Note as well that checkpatch complains about this patch with the
following:
ERROR: Macros with complex values should be enclosed in parentheses
+#define __bpf_kfunc __used noinline
There seems to be a precedent for using this pattern in other places
such as compiler_types.h (see e.g. __randomize_layout and noinstr), so
it seems appropriate.
Signed-off-by: David Vernet <void@manifault.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/bpf/20230201173016.342758-2-void@manifault.com
|
|
|
|
|
|
|
|
|
|
| |
s390x eBPF JIT needs to know whether a function return value is signed
and which function arguments are signed, in order to generate code
compliant with the s390x ABI.
Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com>
Link: https://lore.kernel.org/r/20230128000650.1516334-26-iii@linux.ibm.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|\
| |
| |
| |
| |
| |
| | |
Merge commit 5b481acab4ce ("bpf: do not rely on ALLOW_ERROR_INJECTION for fmod_ret")
from hid tree into bpf-next.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The current way of expressing that a non-bpf kernel component is willing
to accept that bpf programs can be attached to it and that they can change
the return value is to abuse ALLOW_ERROR_INJECTION.
This is debated in the link below, and the result is that it is not a
reasonable thing to do.
Reuse the kfunc declaration structure to also tag the kernel functions
we want to be fmodret. This way we can control from any subsystem which
functions are being modified by bpf without touching the verifier.
Link: https://lore.kernel.org/all/20221121104403.1545f9b5@gandalf.local.home/
Suggested-by: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Signed-off-by: Benjamin Tissoires <benjamin.tissoires@redhat.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/r/20221206145936.922196-2-benjamin.tissoires@redhat.com
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Commit 9bb00b2895cb ("bpf: Add kfunc bpf_rcu_read_lock/unlock()")
introduced MEM_RCU and bpf_rcu_read_lock/unlock() support. In that
commit, a rcu pointer is tagged with both MEM_RCU and PTR_TRUSTED
so that it can be passed into kfuncs or helpers as an argument.
Martin raised a good question in [1] such that the rcu pointer,
although being able to accessing the object, might have reference
count of 0. This might cause a problem if the rcu pointer is passed
to a kfunc which expects trusted arguments where ref count should
be greater than 0.
This patch makes the following changes related to MEM_RCU pointer:
- MEM_RCU pointer might be NULL (PTR_MAYBE_NULL).
- Introduce KF_RCU so MEM_RCU ptr can be acquired with
a KF_RCU tagged kfunc which assumes ref count of rcu ptr
could be zero.
- For mem access 'b = ptr->a', say 'ptr' is a MEM_RCU ptr, and
'a' is tagged with __rcu as well. Let us mark 'b' as
MEM_RCU | PTR_MAYBE_NULL.
[1] https://lore.kernel.org/bpf/ac70f574-4023-664e-b711-e0d3b18117fd@linux.dev/
Fixes: 9bb00b2895cb ("bpf: Add kfunc bpf_rcu_read_lock/unlock()")
Signed-off-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221203184602.477272-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Implement bpf_cast_to_kern_ctx() kfunc which does a type cast
of a uapi ctx object to the corresponding kernel ctx. Previously
if users want to access some data available in kctx but not
in uapi ctx, bpf_probe_read_kernel() helper is needed.
The introduction of bpf_cast_to_kern_ctx() allows direct
memory access which makes code simpler and easier to understand.
Signed-off-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221120195432.3113982-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Kfuncs currently support specifying the KF_TRUSTED_ARGS flag to signal
to the verifier that it should enforce that a BPF program passes it a
"safe", trusted pointer. Currently, "safe" means that the pointer is
either PTR_TO_CTX, or is refcounted. There may be cases, however, where
the kernel passes a BPF program a safe / trusted pointer to an object
that the BPF program wishes to use as a kptr, but because the object
does not yet have a ref_obj_id from the perspective of the verifier, the
program would be unable to pass it to a KF_ACQUIRE | KF_TRUSTED_ARGS
kfunc.
The solution is to expand the set of pointers that are considered
trusted according to KF_TRUSTED_ARGS, so that programs can invoke kfuncs
with these pointers without getting rejected by the verifier.
There is already a PTR_UNTRUSTED flag that is set in some scenarios,
such as when a BPF program reads a kptr directly from a map
without performing a bpf_kptr_xchg() call. These pointers of course can
and should be rejected by the verifier. Unfortunately, however,
PTR_UNTRUSTED does not cover all the cases for safety that need to
be addressed to adequately protect kfuncs. Specifically, pointers
obtained by a BPF program "walking" a struct are _not_ considered
PTR_UNTRUSTED according to BPF. For example, say that we were to add a
kfunc called bpf_task_acquire(), with KF_ACQUIRE | KF_TRUSTED_ARGS, to
acquire a struct task_struct *. If we only used PTR_UNTRUSTED to signal
that a task was unsafe to pass to a kfunc, the verifier would mistakenly
allow the following unsafe BPF program to be loaded:
SEC("tp_btf/task_newtask")
int BPF_PROG(unsafe_acquire_task,
struct task_struct *task,
u64 clone_flags)
{
struct task_struct *acquired, *nested;
nested = task->last_wakee;
/* Would not be rejected by the verifier. */
acquired = bpf_task_acquire(nested);
if (!acquired)
return 0;
bpf_task_release(acquired);
return 0;
}
To address this, this patch defines a new type flag called PTR_TRUSTED
which tracks whether a PTR_TO_BTF_ID pointer is safe to pass to a
KF_TRUSTED_ARGS kfunc or a BPF helper function. PTR_TRUSTED pointers are
passed directly from the kernel as a tracepoint or struct_ops callback
argument. Any nested pointer that is obtained from walking a PTR_TRUSTED
pointer is no longer PTR_TRUSTED. From the example above, the struct
task_struct *task argument is PTR_TRUSTED, but the 'nested' pointer
obtained from 'task->last_wakee' is not PTR_TRUSTED.
A subsequent patch will add kfuncs for storing a task kfunc as a kptr,
and then another patch will add selftests to validate.
Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20221120051004.3605026-3-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
As we continue to add more features, argument types, kfunc flags, and
different extensions to kfuncs, the code to verify the correctness of
the kfunc prototype wrt the passed in registers has become ad-hoc and
ugly to read. To make life easier, and make a very clear split between
different stages of argument processing, move all the code into
verifier.c and refactor into easier to read helpers and functions.
This also makes sharing code within the verifier easier with kfunc
argument processing. This will be more and more useful in later patches
as we are now moving to implement very core BPF helpers as kfuncs, to
keep them experimental before baking into UAPI.
Remove all kfunc related bits now from btf_check_func_arg_match, as
users have been converted away to refactored kfunc argument handling.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-12-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Ensure that there can be no ownership cycles among different types by
way of having owning objects that can hold some other type as their
element. For instance, a map value can only hold allocated objects, but
these are allowed to have another bpf_list_head. To prevent unbounded
recursion while freeing resources, elements of bpf_list_head in local
kptrs can never have a bpf_list_head which are part of list in a map
value. Later patches will verify this by having dedicated BTF selftests.
Also, to make runtime destruction easier, once btf_struct_metas is fully
populated, we can stash the metadata of the value type directly in the
metadata of the list_head fields, as that allows easier access to the
value type's layout to destruct it at runtime from the btf_field entry
of the list head itself.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-8-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Allow specifying bpf_spin_lock, bpf_list_head, bpf_list_node fields in a
allocated object.
Also update btf_struct_access to reject direct access to these special
fields.
A bpf_list_head allows implementing map-in-map style use cases, where an
allocated object with bpf_list_head is linked into a list in a map
value. This would require embedding a bpf_list_node, support for which
is also included. The bpf_spin_lock is used to protect the bpf_list_head
and other data.
While we strictly don't require to hold a bpf_spin_lock while touching
the bpf_list_head in such objects, as when have access to it, we have
complete ownership of the object, the locking constraint is still kept
and may be conditionally lifted in the future.
Note that the specification of such types can be done just like map
values, e.g.:
struct bar {
struct bpf_list_node node;
};
struct foo {
struct bpf_spin_lock lock;
struct bpf_list_head head __contains(bar, node);
struct bpf_list_node node;
};
struct map_value {
struct bpf_spin_lock lock;
struct bpf_list_head head __contains(foo, node);
};
To recognize such types in user BTF, we build a btf_struct_metas array
of metadata items corresponding to each BTF ID. This is done once during
the btf_parse stage to avoid having to do it each time during the
verification process's requirement to inspect the metadata.
Moreover, the computed metadata needs to be passed to some helpers in
future patches which requires allocating them and storing them in the
BTF that is pinned by the program itself, so that valid access can be
assumed to such data during program runtime.
A key thing to note is that once a btf_struct_meta is available for a
type, both the btf_record and btf_field_offs should be available. It is
critical that btf_field_offs is available in case special fields are
present, as we extensively rely on special fields being zeroed out in
map values and allocated objects in later patches. The code ensures that
by bailing out in case of errors and ensuring both are available
together. If the record is not available, the special fields won't be
recognized, so not having both is also fine (in terms of being a
verification error and not a runtime bug).
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-7-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Refactor map->off_arr handling into generic functions that can work on
their own without hardcoding map specific code. The btf_fields_offs
structure is now returned from btf_parse_field_offs, which can be reused
later for types in program BTF.
All functions like copy_map_value, zero_map_value call generic
underlying functions so that they can also be reused later for copying
to values allocated in programs which encode specific fields.
Later, some helper functions will also require access to this
btf_field_offs structure to be able to skip over special fields at
runtime.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221103191013.1236066-9-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Now that kptr_off_tab has been refactored into btf_record, and can hold
more than one specific field type, accomodate bpf_spin_lock and
bpf_timer as well.
While they don't require any more metadata than offset, having all
special fields in one place allows us to share the same code for
allocated user defined types and handle both map values and these
allocated objects in a similar fashion.
As an optimization, we still keep spin_lock_off and timer_off offsets in
the btf_record structure, just to avoid having to find the btf_field
struct each time their offset is needed. This is mostly needed to
manipulate such objects in a map value at runtime. It's ok to hardcode
just one offset as more than one field is disallowed.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221103191013.1236066-8-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
To prepare the BPF verifier to handle special fields in both map values
and program allocated types coming from program BTF, we need to refactor
the kptr_off_tab handling code into something more generic and reusable
across both cases to avoid code duplication.
Later patches also require passing this data to helpers at runtime, so
that they can work on user defined types, initialize them, destruct
them, etc.
The main observation is that both map values and such allocated types
point to a type in program BTF, hence they can be handled similarly. We
can prepare a field metadata table for both cases and store them in
struct bpf_map or struct btf depending on the use case.
Hence, refactor the code into generic btf_record and btf_field member
structs. The btf_record represents the fields of a specific btf_type in
user BTF. The cnt indicates the number of special fields we successfully
recognized, and field_mask is a bitmask of fields that were found, to
enable quick determination of availability of a certain field.
Subsequently, refactor the rest of the code to work with these generic
types, remove assumptions about kptr and kptr_off_tab, rename variables
to more meaningful names, etc.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221103191013.1236066-7-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|/
|
|
|
|
|
|
|
|
|
|
| |
This is useful in particular to mark the pointer as volatile, so that
compiler treats each load and store to the field as a volatile access.
The alternative is having to define and use READ_ONCE and WRITE_ONCE in
the BPF program.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Acked-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20221103191013.1236066-3-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Allow dynamic pointers (struct bpf_dynptr_kern *) to be specified as
parameters in kfuncs. Also, ensure that dynamic pointers passed as argument
are valid and initialized, are a pointer to the stack, and of the type
local. More dynamic pointer types can be supported in the future.
To properly detect whether a parameter is of the desired type, introduce
the stringify_struct() macro to compare the returned structure name with
the desired name. In addition, protect against structure renames, by
halting the build with BUILD_BUG_ON(), so that developers have to revisit
the code.
To check if a dynamic pointer passed to the kfunc is valid and initialized,
and if its type is local, export the existing functions
is_dynptr_reg_valid_init() and is_dynptr_type_expected().
Cc: Joanne Koong <joannelkoong@gmail.com>
Cc: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Roberto Sassu <roberto.sassu@huawei.com>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220920075951.929132-5-roberto.sassu@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
For drivers (outside of network), the incoming data is not statically
defined in a struct. Most of the time the data buffer is kzalloc-ed
and thus we can not rely on eBPF and BTF to explore the data.
This commit allows to return an arbitrary memory, previously allocated by
the driver.
An interesting extra point is that the kfunc can mark the exported
memory region as read only or read/write.
So, when a kfunc is not returning a pointer to a struct but to a plain
type, we can consider it is a valid allocated memory assuming that:
- one of the arguments is either called rdonly_buf_size or
rdwr_buf_size
- and this argument is a const from the caller point of view
We can then use this parameter as the size of the allocated memory.
The memory is either read-only or read-write based on the name
of the size parameter.
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Benjamin Tissoires <benjamin.tissoires@redhat.com>
Link: https://lore.kernel.org/r/20220906151303.2780789-7-benjamin.tissoires@redhat.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
|
|
|
|
|
|
|
| |
Add KF_DESTRUCTIVE flag for destructive functions. Functions with this
flag set will require CAP_SYS_BOOT capabilities.
Signed-off-by: Artem Savkov <asavkov@redhat.com>
Link: https://lore.kernel.org/r/20220810065905.475418-2-asavkov@redhat.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
| |
This allows to declare a kfunc as sleepable and prevents its use in
a non sleepable program.
Signed-off-by: Benjamin Tissoires <benjamin.tissoires@redhat.com>
Co-developed-by: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Hao Luo <haoluo@google.com>
Link: https://lore.kernel.org/r/20220805214821.1058337-2-haoluo@google.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Teach the verifier to detect a new KF_TRUSTED_ARGS kfunc flag, which
means each pointer argument must be trusted, which we define as a
pointer that is referenced (has non-zero ref_obj_id) and also needs to
have its offset unchanged, similar to how release functions expect their
argument. This allows a kfunc to receive pointer arguments unchanged
from the result of the acquire kfunc.
This is required to ensure that kfunc that operate on some object only
work on acquired pointers and not normal PTR_TO_BTF_ID with same type
which can be obtained by pointer walking. The restrictions applied to
release arguments also apply to trusted arguments. This implies that
strict type matching (not deducing type by recursively following members
at offset) and OBJ_RELEASE offset checks (ensuring they are zero) are
used for trusted pointer arguments.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220721134245.2450-5-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
| |
Instead of populating multiple sets to indicate some attribute and then
researching the same BTF ID in them, prepare a single unified BTF set
which indicates whether a kfunc is allowed to be called, and also its
attributes if any at the same time. Now, only one call is needed to
perform the lookup for both kfunc availability and its attributes.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220721134245.2450-4-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently, BTF only supports upto 32bit enum value with BTF_KIND_ENUM.
But in kernel, some enum indeed has 64bit values, e.g.,
in uapi bpf.h, we have
enum {
BPF_F_INDEX_MASK = 0xffffffffULL,
BPF_F_CURRENT_CPU = BPF_F_INDEX_MASK,
BPF_F_CTXLEN_MASK = (0xfffffULL << 32),
};
In this case, BTF_KIND_ENUM will encode the value of BPF_F_CTXLEN_MASK
as 0, which certainly is incorrect.
This patch added a new btf kind, BTF_KIND_ENUM64, which permits
64bit value to cover the above use case. The BTF_KIND_ENUM64 has
the following three fields followed by the common type:
struct bpf_enum64 {
__u32 nume_off;
__u32 val_lo32;
__u32 val_hi32;
};
Currently, btf type section has an alignment of 4 as all element types
are u32. Representing the value with __u64 will introduce a pad
for bpf_enum64 and may also introduce misalignment for the 64bit value.
Hence, two members of val_hi32 and val_lo32 are chosen to avoid these issues.
The kflag is also introduced for BTF_KIND_ENUM and BTF_KIND_ENUM64
to indicate whether the value is signed or unsigned. The kflag intends
to provide consistent output of BTF C fortmat with the original
source code. For example, the original BTF_KIND_ENUM bit value is 0xffffffff.
The format C has two choices, printing out 0xffffffff or -1 and current libbpf
prints out as unsigned value. But if the signedness is preserved in btf,
the value can be printed the same as the original source code.
The kflag value 0 means unsigned values, which is consistent to the default
by libbpf and should also cover most cases as well.
The new BTF_KIND_ENUM64 is intended to support the enum value represented as
64bit value. But it can represent all BTF_KIND_ENUM values as well.
The compiler ([1]) and pahole will generate BTF_KIND_ENUM64 only if the value has
to be represented with 64 bits.
In addition, a static inline function btf_kind_core_compat() is introduced which
will be used later when libbpf relo_core.c changed. Here the kernel shares the
same relo_core.c with libbpf.
[1] https://reviews.llvm.org/D124641
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20220607062600.3716578-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We introduce a new style of kfunc helpers, namely *_kptr_get, where they
take pointer to the map value which points to a referenced kernel
pointer contained in the map. Since this is referenced, only
bpf_kptr_xchg from BPF side and xchg from kernel side is allowed to
change the current value, and each pointer that resides in that location
would be referenced, and RCU protected (this must be kept in mind while
adding kernel types embeddable as reference kptr in BPF maps).
This means that if do the load of the pointer value in an RCU read
section, and find a live pointer, then as long as we hold RCU read lock,
it won't be freed by a parallel xchg + release operation. This allows us
to implement a safe refcount increment scheme. Hence, enforce that first
argument of all such kfunc is a proper PTR_TO_MAP_VALUE pointing at the
right offset to referenced pointer.
For the rest of the arguments, they are subjected to typical kfunc
argument checks, hence allowing some flexibility in passing more intent
into how the reference should be taken.
For instance, in case of struct nf_conn, it is not freed until RCU grace
period ends, but can still be reused for another tuple once refcount has
dropped to zero. Hence, a bpf_ct_kptr_get helper not only needs to call
refcount_inc_not_zero, but also do a tuple match after incrementing the
reference, and when it fails to match it, put the reference again and
return NULL.
This can be implemented easily if we allow passing additional parameters
to the bpf_ct_kptr_get kfunc, like a struct bpf_sock_tuple * and a
tuple__sz pair.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20220424214901.2743946-9-memxor@gmail.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
A destructor kfunc can be defined as void func(type *), where type may
be void or any other pointer type as per convenience.
In this patch, we ensure that the type is sane and capture the function
pointer into off_desc of ptr_off_tab for the specific pointer offset,
with the invariant that the dtor pointer is always set when 'kptr_ref'
tag is applied to the pointer's pointee type, which is indicated by the
flag BPF_MAP_VALUE_OFF_F_REF.
Note that only BTF IDs whose destructor kfunc is registered, thus become
the allowed BTF IDs for embedding as referenced kptr. Hence it serves
the purpose of finding dtor kfunc BTF ID, as well acting as a check
against the whitelist of allowed BTF IDs for this purpose.
Finally, wire up the actual freeing of the referenced pointer if any at
all available offsets, so that no references are leaked after the BPF
map goes away and the BPF program previously moved the ownership a
referenced pointer into it.
The behavior is similar to BPF timers, where bpf_map_{update,delete}_elem
will free any existing referenced kptr. The same case is with LRU map's
bpf_lru_push_free/htab_lru_push_free functions, which are extended to
reset unreferenced and free referenced kptr.
Note that unlike BPF timers, kptr is not reset or freed when map uref
drops to zero.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20220424214901.2743946-8-memxor@gmail.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
To support storing referenced PTR_TO_BTF_ID in maps, we require
associating a specific BTF ID with a 'destructor' kfunc. This is because
we need to release a live referenced pointer at a certain offset in map
value from the map destruction path, otherwise we end up leaking
resources.
Hence, introduce support for passing an array of btf_id, kfunc_btf_id
pairs that denote a BTF ID and its associated release function. Then,
add an accessor 'btf_find_dtor_kfunc' which can be used to look up the
destructor kfunc of a certain BTF ID. If found, we can use it to free
the object from the map free path.
The registration of these pairs also serve as a whitelist of structures
which are allowed as referenced PTR_TO_BTF_ID in a BPF map, because
without finding the destructor kfunc, we will bail and return an error.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20220424214901.2743946-7-memxor@gmail.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit introduces a new pointer type 'kptr' which can be embedded
in a map value to hold a PTR_TO_BTF_ID stored by a BPF program during
its invocation. When storing such a kptr, BPF program's PTR_TO_BTF_ID
register must have the same type as in the map value's BTF, and loading
a kptr marks the destination register as PTR_TO_BTF_ID with the correct
kernel BTF and BTF ID.
Such kptr are unreferenced, i.e. by the time another invocation of the
BPF program loads this pointer, the object which the pointer points to
may not longer exist. Since PTR_TO_BTF_ID loads (using BPF_LDX) are
patched to PROBE_MEM loads by the verifier, it would safe to allow user
to still access such invalid pointer, but passing such pointers into
BPF helpers and kfuncs should not be permitted. A future patch in this
series will close this gap.
The flexibility offered by allowing programs to dereference such invalid
pointers while being safe at runtime frees the verifier from doing
complex lifetime tracking. As long as the user may ensure that the
object remains valid, it can ensure data read by it from the kernel
object is valid.
The user indicates that a certain pointer must be treated as kptr
capable of accepting stores of PTR_TO_BTF_ID of a certain type, by using
a BTF type tag 'kptr' on the pointed to type of the pointer. Then, this
information is recorded in the object BTF which will be passed into the
kernel by way of map's BTF information. The name and kind from the map
value BTF is used to look up the in-kernel type, and the actual BTF and
BTF ID is recorded in the map struct in a new kptr_off_tab member. For
now, only storing pointers to structs is permitted.
An example of this specification is shown below:
#define __kptr __attribute__((btf_type_tag("kptr")))
struct map_value {
...
struct task_struct __kptr *task;
...
};
Then, in a BPF program, user may store PTR_TO_BTF_ID with the type
task_struct into the map, and then load it later.
Note that the destination register is marked PTR_TO_BTF_ID_OR_NULL, as
the verifier cannot know whether the value is NULL or not statically, it
must treat all potential loads at that map value offset as loading a
possibly NULL pointer.
Only BPF_LDX, BPF_STX, and BPF_ST (with insn->imm = 0 to denote NULL)
are allowed instructions that can access such a pointer. On BPF_LDX, the
destination register is updated to be a PTR_TO_BTF_ID, and on BPF_STX,
it is checked whether the source register type is a PTR_TO_BTF_ID with
same BTF type as specified in the map BTF. The access size must always
be BPF_DW.
For the map in map support, the kptr_off_tab for outer map is copied
from the inner map's kptr_off_tab. It was chosen to do a deep copy
instead of introducing a refcount to kptr_off_tab, because the copy only
needs to be done when paramterizing using inner_map_fd in the map in map
case, hence would be unnecessary for all other users.
It is not permitted to use MAP_FREEZE command and mmap for BPF map
having kptrs, similar to the bpf_timer case. A kptr also requires that
BPF program has both read and write access to the map (hence both
BPF_F_RDONLY_PROG and BPF_F_WRONLY_PROG are disallowed).
Note that check_map_access must be called from both
check_helper_mem_access and for the BPF instructions, hence the kptr
check must distinguish between ACCESS_DIRECT and ACCESS_HELPER, and
reject ACCESS_HELPER cases. We rename stack_access_src to bpf_access_src
and reuse it for this purpose.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20220424214901.2743946-2-memxor@gmail.com
|
|
|
|
|
|
|
|
|
|
| |
Adopt libbpf's bpf_core_types_are_compat() for kernel duty by adding
explicit recursion limit of 2 which is enough to handle 2 levels of
function prototypes.
Signed-off-by: Matteo Croce <mcroce@microsoft.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20220204005519.60361-2-mcroce@linux.microsoft.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
BPF verifier supports direct memory access for BPF_PROG_TYPE_TRACING type
of bpf programs, e.g., a->b. If "a" is a pointer
pointing to kernel memory, bpf verifier will allow user to write
code in C like a->b and the verifier will translate it to a kernel
load properly. If "a" is a pointer to user memory, it is expected
that bpf developer should be bpf_probe_read_user() helper to
get the value a->b. Without utilizing BTF __user tagging information,
current verifier will assume that a->b is a kernel memory access
and this may generate incorrect result.
Now BTF contains __user information, it can check whether the
pointer points to a user memory or not. If it is, the verifier
can reject the program and force users to use bpf_probe_read_user()
helper explicitly.
In the future, we can easily extend btf_add_space for other
address space tagging, for example, rcu/percpu etc.
Signed-off-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20220127154606.654961-1-yhs@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Completely remove the old code for check_kfunc_call to help it work
with modules, and also the callback itself.
The previous commit adds infrastructure to register all sets and put
them in vmlinux or module BTF, and concatenates all related sets
organized by the hook and the type. Once populated, these sets remain
immutable for the lifetime of the struct btf.
Also, since we don't need the 'owner' module anywhere when doing
check_kfunc_call, drop the 'btf_modp' module parameter from
find_kfunc_desc_btf.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220114163953.1455836-4-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch prepares the kernel to support putting all kinds of kfunc BTF
ID sets in the struct btf itself. The various kernel subsystems will
make register_btf_kfunc_id_set call in the initcalls (for built-in code
and modules).
The 'hook' is one of the many program types, e.g. XDP and TC/SCHED_CLS,
STRUCT_OPS, and 'types' are check (allowed or not), acquire, release,
and ret_null (with PTR_TO_BTF_ID_OR_NULL return type).
A maximum of BTF_KFUNC_SET_MAX_CNT (32) kfunc BTF IDs are permitted in a
set of certain hook and type for vmlinux sets, since they are allocated
on demand, and otherwise set as NULL. Module sets can only be registered
once per hook and type, hence they are directly assigned.
A new btf_kfunc_id_set_contains function is exposed for use in verifier,
this new method is faster than the existing list searching method, and
is also automatic. It also lets other code not care whether the set is
unallocated or not.
Note that module code can only do single register_btf_kfunc_id_set call
per hook. This is why sorting is only done for in-kernel vmlinux sets,
because there might be multiple sets for the same hook and type that
must be concatenated, hence sorting them is required to ensure bsearch
in btf_id_set_contains continues to work correctly.
Next commit will update the kernel users to make use of this
infrastructure.
Finally, add __maybe_unused annotation for BTF ID macros for the
!CONFIG_DEBUG_INFO_BTF case, so that they don't produce warnings during
build time.
The previous patch is also needed to provide synchronization against
initialization for module BTF's kfunc_set_tab introduced here, as
described below:
The kfunc_set_tab pointer in struct btf is write-once (if we consider
the registration phase (comprised of multiple register_btf_kfunc_id_set
calls) as a single operation). In this sense, once it has been fully
prepared, it isn't modified, only used for lookup (from the verifier
context).
For btf_vmlinux, it is initialized fully during the do_initcalls phase,
which happens fairly early in the boot process, before any processes are
present. This also eliminates the possibility of bpf_check being called
at that point, thus relieving us of ensuring any synchronization between
the registration and lookup function (btf_kfunc_id_set_contains).
However, the case for module BTF is a bit tricky. The BTF is parsed,
prepared, and published from the MODULE_STATE_COMING notifier callback.
After this, the module initcalls are invoked, where our registration
function will be called to populate the kfunc_set_tab for module BTF.
At this point, BTF may be available to userspace while its corresponding
module is still intializing. A BTF fd can then be passed to verifier
using bpf syscall (e.g. for kfunc call insn).
Hence, there is a race window where verifier may concurrently try to
lookup the kfunc_set_tab. To prevent this race, we must ensure the
operations are serialized, or waiting for the __init functions to
complete.
In the earlier registration API, this race was alleviated as verifier
bpf_check_mod_kfunc_call didn't find the kfunc BTF ID until it was added
by the registration function (called usually at the end of module __init
function after all module resources have been initialized). If the
verifier made the check_kfunc_call before kfunc BTF ID was added to the
list, it would fail verification (saying call isn't allowed). The
access to list was protected using a mutex.
Now, it would still fail verification, but for a different reason
(returning ENXIO due to the failed btf_try_get_module call in
add_kfunc_call), because if the __init call is in progress the module
will be in the middle of MODULE_STATE_COMING -> MODULE_STATE_LIVE
transition, and the BTF_MODULE_LIVE flag for btf_module instance will
not be set, so the btf_try_get_module call will fail.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20220114163953.1455836-3-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Andrii Nakryiko says:
====================
bpf-next 2021-12-10 v2
We've added 115 non-merge commits during the last 26 day(s) which contain
a total of 182 files changed, 5747 insertions(+), 2564 deletions(-).
The main changes are:
1) Various samples fixes, from Alexander Lobakin.
2) BPF CO-RE support in kernel and light skeleton, from Alexei Starovoitov.
3) A batch of new unified APIs for libbpf, logging improvements, version
querying, etc. Also a batch of old deprecations for old APIs and various
bug fixes, in preparation for libbpf 1.0, from Andrii Nakryiko.
4) BPF documentation reorganization and improvements, from Christoph Hellwig
and Dave Tucker.
5) Support for declarative initialization of BPF_MAP_TYPE_PROG_ARRAY in
libbpf, from Hengqi Chen.
6) Verifier log fixes, from Hou Tao.
7) Runtime-bounded loops support with bpf_loop() helper, from Joanne Koong.
8) Extend branch record capturing to all platforms that support it,
from Kajol Jain.
9) Light skeleton codegen improvements, from Kumar Kartikeya Dwivedi.
10) bpftool doc-generating script improvements, from Quentin Monnet.
11) Two libbpf v0.6 bug fixes, from Shuyi Cheng and Vincent Minet.
12) Deprecation warning fix for perf/bpf_counter, from Song Liu.
13) MAX_TAIL_CALL_CNT unification and MIPS build fix for libbpf,
from Tiezhu Yang.
14) BTF_KING_TYPE_TAG follow-up fixes, from Yonghong Song.
15) Selftests fixes and improvements, from Ilya Leoshkevich, Jean-Philippe
Brucker, Jiri Olsa, Maxim Mikityanskiy, Tirthendu Sarkar, Yucong Sun,
and others.
* https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (115 commits)
libbpf: Add "bool skipped" to struct bpf_map
libbpf: Fix typo in btf__dedup@LIBBPF_0.0.2 definition
bpftool: Switch bpf_object__load_xattr() to bpf_object__load()
selftests/bpf: Remove the only use of deprecated bpf_object__load_xattr()
selftests/bpf: Add test for libbpf's custom log_buf behavior
selftests/bpf: Replace all uses of bpf_load_btf() with bpf_btf_load()
libbpf: Deprecate bpf_object__load_xattr()
libbpf: Add per-program log buffer setter and getter
libbpf: Preserve kernel error code and remove kprobe prog type guessing
libbpf: Improve logging around BPF program loading
libbpf: Allow passing user log setting through bpf_object_open_opts
libbpf: Allow passing preallocated log_buf when loading BTF into kernel
libbpf: Add OPTS-based bpf_btf_load() API
libbpf: Fix bpf_prog_load() log_buf logic for log_level 0
samples/bpf: Remove unneeded variable
bpf: Remove redundant assignment to pointer t
selftests/bpf: Fix a compilation warning
perf/bpf_counter: Use bpf_map_create instead of bpf_create_map
samples: bpf: Fix 'unknown warning group' build warning on Clang
samples: bpf: Fix xdp_sample_user.o linking with Clang
...
====================
Link: https://lore.kernel.org/r/20211210234746.2100561-1-andrii@kernel.org
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Make relo_core.c to be compiled for the kernel and for user space libbpf.
Note the patch is reducing BPF_CORE_SPEC_MAX_LEN from 64 to 32.
This is the maximum number of nested structs and arrays.
For example:
struct sample {
int a;
struct {
int b[10];
};
};
struct sample *s = ...;
int *y = &s->b[5];
This field access is encoded as "0:1:0:5" and spec len is 4.
The follow up patch might bump it back to 64.
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20211201181040.23337-4-alexei.starovoitov@gmail.com
|