summaryrefslogtreecommitdiffstats
path: root/kernel/cgroup.c
Commit message (Collapse)AuthorAgeFilesLines
...
| * cgroup: introduce CSS_RELEASED and reduce css iteration fallback windowTejun Heo2014-05-161-21/+20
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | css iterations allow the caller to drop RCU read lock. As long as the caller keeps the current position accessible, it can simply re-grab RCU read lock later and continue iteration. This is achieved by using CGRP_DEAD to detect whether the current positions next pointer is safe to dereference and if not re-iterate from the beginning to the next position using ->serial_nr. CGRP_DEAD is used as the marker to invalidate the next pointer and the only requirement is that the marker is set before the next sibling starts its RCU grace period. Because CGRP_DEAD is set at the end of cgroup_destroy_locked() but the cgroup is unlinked when the reference count reaches zero, we currently have a rather large window where this fallback re-iteration logic can be triggered. This patch introduces CSS_RELEASED which is set when a css is unlinked from its sibling list. This still keeps the re-iteration logic working while drastically reducing the window of its activation. While at it, rewrite the comment in css_next_child() to reflect the new flag and better explain the synchronization. This will also enable iterating csses directly instead of through cgroups. v2: CSS_RELEASED now assigned to 1 << 2 as 1 << 0 is used by CSS_NO_REF. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com>
| * cgroup: move cgroup->serial_nr into cgroup_subsys_stateTejun Heo2014-05-161-9/+11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | We're moving towards using cgroup_subsys_states as the fundamental structural blocks. All csses including the cgroup->self and actual ones now form trees through css->children and ->sibling which follow the same rules as what cgroup->children and ->sibling followed. This patch moves cgroup->serial_nr which is used to implement css iteration into css. Note that all csses, regardless of their types, allocate their serial numbers from the same monotonically increasing counter. This doesn't affect the ordering needed by css iteration or cause any other material behavior changes. This will be used to update css iteration. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com>
| * cgroup: link all cgroup_subsys_states in their sibling listsTejun Heo2014-05-161-7/+12
| | | | | | | | | | | | | | | | | | | | Currently, while all csses have ->children and ->sibling, only the self csses of cgroups make use of them. This patch makes all other csses to link themselves on the sibling lists too. This will be used to update css iteration. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com>
| * cgroup: move cgroup->sibling and ->children into cgroup_subsys_stateTejun Heo2014-05-161-18/+20
| | | | | | | | | | | | | | | | | | | | | | | | | | | | We're moving towards using cgroup_subsys_states as the fundamental structural blocks. Let's move cgroup->sibling and ->children into cgroup_subsys_state. This is pure move without functional change and only cgroup->self's fields are actually used. Other csses will make use of the fields later. While at it, update init_and_link_css() so that it zeroes the whole css before initializing it and remove explicit zeroing of ->flags. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com>
| * cgroup: remove cgroup->parentTejun Heo2014-05-161-22/+30
| | | | | | | | | | | | | | | | | | | | | | cgroup->parent is redundant as cgroup->self.parent can also be used to determine the parent cgroup and we're moving towards using cgroup_subsys_states as the fundamental structural blocks. This patch introduces cgroup_parent() which follows cgroup->self.parent and removes cgroup->parent. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com>
| * cgroup: remove css_parent()Tejun Heo2014-05-161-4/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | cgroup in general is moving towards using cgroup_subsys_state as the fundamental structural component and css_parent() was introduced to convert from using cgroup->parent to css->parent. It was quite some time ago and we're moving forward with making css more prominent. This patch drops the trivial wrapper css_parent() and let the users dereference css->parent. While at it, explicitly mark fields of css which are public and immutable. v2: New usage from device_cgroup.c converted. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Neil Horman <nhorman@tuxdriver.com> Acked-by: "David S. Miller" <davem@davemloft.net> Acked-by: Li Zefan <lizefan@huawei.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Johannes Weiner <hannes@cmpxchg.org>
| * cgroup: skip refcnting on normal root csses and cgrp_dfl_root self cssTejun Heo2014-05-161-2/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 9395a4500404 ("cgroup: enable refcnting for root csses") enabled reference counting for root csses (cgroup_subsys_states) so that cgroup's self csses can be used to manage the lifetime of the containing cgroups. Unfortunately, this change was incorrect. During early init, cgrp_dfl_root self css refcnt is used. percpu_ref can't initialized during early init and its initialization is deferred till cgroup_init() time. This means that cpu was using percpu_ref which wasn't properly initialized. Due to the way percpu variables are laid out on x86, this didn't blow up immediately on x86 but ended up incrementing and decrementing the percpu variable at offset zero, whatever it may be; however, on other archs, this caused fault and early boot failure. As cgroup self csses for root cgroups of non-dfl hierarchies need working refcounting, we can't revert 9395a4500404. This patch adds CSS_NO_REF which explicitly inhibits reference counting on the css and sets it on all normal (non-self) csses and cgroup_dfl_root self css. v2: cgrp_dfl_root.self is the offending one. Set the flag on it. Signed-off-by: Tejun Heo <tj@kernel.org> Reported-by: Stephen Warren <swarren@nvidia.com> Tested-by: Stephen Warren <swarren@nvidia.com> Fixes: 9395a4500404 ("cgroup: enable refcnting for root csses")
| * cgroup: use cgroup->self.refcnt for cgroup refcntingTejun Heo2014-05-141-66/+80
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently cgroup implements refcnting separately using atomic_t cgroup->refcnt. The destruction paths of cgroup and css are rather complex and bear a lot of similiarities including the use of RCU and bouncing to a work item. This patch makes cgroup use the refcnt of self css for refcnting instead of using its own. This makes cgroup refcnting use css's percpu refcnt and share the destruction mechanism. * css_release_work_fn() and css_free_work_fn() are updated to handle both csses and cgroups. This is a bit messy but should do until we can make cgroup->self a full css, which currently can't be done thanks to multiple hierarchies. * cgroup_destroy_locked() now performs percpu_ref_kill(&cgrp->self.refcnt) instead of cgroup_put(cgrp). * Negative refcnt sanity check in cgroup_get() is no longer necessary as percpu_ref already handles it. * Similarly, as a cgroup which hasn't been killed will never be released regardless of its refcnt value and percpu_ref has sanity check on kill, cgroup_is_dead() sanity check in cgroup_put() is no longer necessary. * As whether a refcnt reached zero or not can only be decided after the reference count is killed, cgroup_root->cgrp's refcnting can no longer be used to decide whether to kill the root or not. Let's make cgroup_kill_sb() explicitly initiate destruction if the root doesn't have any children. This makes sense anyway as unmounted cgroup hierarchy without any children should be destroyed. While this is a bit messy, this will allow pushing more bookkeeping towards cgroup->self and thus handling cgroups and csses in more uniform way. In the very long term, it should be possible to introduce a base subsystem and convert the self css to a proper one making things whole lot simpler and unified. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com>
| * cgroup: enable refcnting for root cssesTejun Heo2014-05-141-3/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently, css_get(), css_tryget() and css_tryget_online() are noops for root csses as an optimization; however, we're planning to use css refcnts to track of cgroup lifetime too and root cgroups also need to be reference counted. Since css has been converted to percpu_refcnt, the overhead of refcnting is miniscule and this optimization isn't too meaningful anymore. Furthermore, controllers which optimize the root cgroup often never even invoke these functions in their hot paths. This patch enables refcnting for root csses too. This makes CSS_ROOT flag unused and removes it. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com>
| * cgroup: bounce css release through css->destroy_workTejun Heo2014-05-141-2/+11
| | | | | | | | | | | | | | | | css release is planned to do more and would require process context. Bounce it through css->destroy_work. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com>
| * cgroup: remove cgroup_destory_css_killed()Tejun Heo2014-05-141-56/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | cgroup_destroy_css_killed() is cgroup destruction stage which happens after all csses are offlined. After the recent updates, it no longer does anything other than putting the base reference. This patch removes the function and makes cgroup_destroy_locked() put the base ref at the end isntead. This also makes cgroup->nr_css unnecessary. Removed. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com>
| * cgroup: move cgroup->sibling unlinking to cgroup_put()Tejun Heo2014-05-141-3/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Move cgroup->sibling unlinking from cgroup_destroy_css_killed() to cgroup_put(). This is later but still before the RCU grace period, so it doesn't break css_next_child() although there now is a larger window in which a dead cgroup is visible during css iteration. As css iteration always could have included offline csses, this doesn't affect correctness; however, it does make css_next_child() fall back to reiterting mode more often. This also makes cgroup_put() directly take cgroup_mutex, which limits where it can be called from. These are not immediately problematic and will be dealt with later. This change enables simplification of cgroup destruction path. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com>
| * cgroup: move check_for_release(parent) call to the end of ↵Tejun Heo2014-05-141-6/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | cgroup_destroy_locked() Currently, check_for_release() on the parent of a destroyed cgroup is invoked from cgroup_destroy_css_killed(). This is because this is where the destroyed cgroup can be removed from the parent's children list. check_for_release() tests the emptiness of the list directly, so invoking it before removing the cgroup from the list makes it think that the parent still has children even when it no longer does. This patch updates check_for_release() to use cgroup_has_live_children() instead of directly testing ->children emptiness and moves check_for_release(parent) earlier to the end of cgroup_destroy_locked(). As cgroup_has_live_children() ignores cgroups marked DEAD, check_for_release() functions correctly as long as it's called after asserting DEAD. This makes release notification slightly more timely and more importantly enables further simplification of cgroup destruction path. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com>
| * cgroup: separate out cgroup_has_live_children() from cgroup_destroy_locked()Tejun Heo2014-05-141-10/+16
| | | | | | | | | | | | | | We're expecting another user. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com>
| * cgroup: rename cgroup->dummy_css to ->self and move it to the topTejun Heo2014-05-141-10/+10
| | | | | | | | | | | | | | | | | | | | | | | | cgroup->dummy_css is used as the placeholder css when performing css oriended operations on the cgroup. We're gonna shift more cgroup management to this css. Let's rename it to ->self and move it to the top. This is pure rename and field relocation. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com>
| * cgroup: use restart_syscall() for mount retriesTejun Heo2014-05-141-4/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | cgroup_mount() uses dumb delay-and-retry logic to wait for cgroup_root which is being destroyed. The retry currently loops inside cgroup_mount() proper. This patch makes it return with restart_syscall() instead so that retry travels out to userland boundary. This slightly simplifies the logic and more importantly makes the retry logic behave better when the wait for some reason becomes lengthy or infinite by allowing the operation to be suspended or terminated from userland. v2: The original patch forgot to free memory allocated for @opts. Fixed. Caught by Li Zefan. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com>
| * cgroup: remove cgroup_tree_mutexTejun Heo2014-05-131-55/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | cgroup_tree_mutex was introduced to work around the circular dependency between cgroup_mutex and kernfs active protection - some kernfs file and directory operations needed cgroup_mutex putting cgroup_mutex under active protection but cgroup also needs to be able to access cgroup hierarchies and cftypes to determine which kernfs_nodes need to be removed. cgroup_tree_mutex nested above both cgroup_mutex and kernfs active protection and used to protect the hierarchy and cftypes. While this worked, it added a lot of double lockings and was generally cumbersome. kernfs provides a mechanism to opt out of active protection and cgroup was already using it for removal and subtree_control. There's no reason to mix both methods of avoiding circular locking dependency and the preceding cgroup_kn_lock_live() changes applied it to all relevant cgroup kernfs operations making it unnecessary to nest cgroup_mutex under kernfs active protection. The previous patch reversed the original lock ordering and put cgroup_mutex above kernfs active protection. After these changes, all cgroup_tree_mutex usages are now accompanied by cgroup_mutex making the former completely redundant. This patch removes cgroup_tree_mutex and all its usages. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com>
| * cgroup: nest kernfs active protection under cgroup_mutexTejun Heo2014-05-131-11/+16
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | After the recent cgroup_kn_lock_live() changes, cgroup_mutex is no longer nested below kernfs active protection. The two don't have any relationship now. This patch nests kernfs active protection under cgroup_mutex. All cftype operations now require both cgroup_tree_mutex and cgroup_mutex, temporary cgroup_mutex releases over kernfs operations are removed, and cgroup_add/rm_cftypes() grab both mutexes. This makes cgroup_tree_mutex redundant, which will be removed by the next patch. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com>
| * cgroup: use cgroup_kn_lock_live() in other cgroup kernfs methodsTejun Heo2014-05-131-27/+12
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Make __cgroup_procs_write() and cgroup_release_agent_write() use cgroup_kn_lock_live() and cgroup_kn_unlock() instead of cgroup_lock_live_group(). This puts the operations under both cgroup_tree_mutex and cgroup_mutex protection without circular dependency from kernfs active protection. Also, this means that cgroup_mutex is no longer nested below kernfs active protection. There is no longer any place where the two locks interact. This leaves cgroup_lock_live_group() without any user. Removed. This will help simplifying cgroup locking. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com>
| * cgroup: factor out cgroup_kn_lock_live() and cgroup_kn_unlock()Tejun Heo2014-05-131-67/+90
| | | | | | | | | | | | | | | | | | | | | | | | | | cgroup_mkdir(), cgroup_rmdir() and cgroup_subtree_control_write() share the logic to break active protection so that they can grab cgroup_tree_mutex which nests above active protection and/or remove self. Factor out this logic into cgroup_kn_lock_live() and cgroup_kn_unlock(). This patch doesn't introduce any functional changes. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com>
| * cgroup: move cgroup->kn->priv clearing to cgroup_rmdir()Tejun Heo2014-05-131-11/+12
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The ->priv field of a cgroup directory kernfs_node points back to the cgroup. This field is RCU cleared in cgroup_destroy_locked() for non-kernfs accesses from css_tryget_from_dir() and cgroupstats_build(). As these are only applicable to cgroups which finished creation successfully and fully initialized cgroups are always removed by cgroup_rmdir(), this can be safely moved to the end of cgroup_rmdir(). This will help simplifying cgroup locking and shouldn't introduce any behavior difference. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com>
| * cgroup: grab cgroup_mutex earlier in cgroup_subtree_control_write()Tejun Heo2014-05-131-8/+8
| | | | | | | | | | | | | | | | | | | | | | Move cgroup_lock_live_group() invocation upwards to right below cgroup_tree_mutex in cgroup_subtree_control_write(). This is to help the planned locking simplification. This doesn't make any userland-visible behavioral changes. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com>
| * cgroup: collapse cgroup_create() into croup_mkdir()Tejun Heo2014-05-131-39/+13
| | | | | | | | | | | | | | | | | | | | | | cgroup_mkdir() is the sole user of cgroup_create(). Let's collapse the latter into the former. This will help simplifying locking. While at it, remove now stale comment about inode locking. This patch doesn't introduce any functional changes. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com>
| * cgroup: reorganize cgroup_create()Tejun Heo2014-05-131-35/+34
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Reorganize cgroup_create() so that all paths share unlock out path. * All err_* labels are renamed to out_* as they're now shared by both success and failure paths. * @err renamed to @ret for the similar reason as above and so that it's more consistent with other functions. * cgroup memory allocation moved after locking so that freeing failed cgroup happens before unlocking. While this moves more code inside critical section, memory allocations inside cgroup locking are already pretty common and this is unlikely to make any noticeable difference. * While at it, replace a stray @parent->root dereference with @root. This reorganization will help simplifying locking. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com>
| * cgroup: remove cgroup->control_knTejun Heo2014-05-131-5/+3
| | | | | | | | | | | | | | | | | | | | Now that cgroup_subtree_control_write() has access to the associated kernfs_open_file and thus the kernfs_node, there's no need to cache it in cgroup->control_kn on creation. Remove cgroup->control_kn and use @of->kn directly. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com>
| * cgroup: convert "tasks" and "cgroup.procs" handle to use cftype->write()Tejun Heo2014-05-131-10/+16
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | cgroup_tasks_write() and cgroup_procs_write() are currently using cftype->write_u64(). This patch converts them to use cftype->write() instead. This allows access to the associated kernfs_open_file which will be necessary to implement the planned kernfs active protection manipulation for these files. This shifts buffer parsing to attach_task_by_pid() and makes it return @nbytes on success. Let's rename it to __cgroup_procs_write() to clearly indicate that this is a write handler implementation. This patch doesn't introduce any visible behavior changes. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com>
| * cgroup: replace cftype->trigger() with cftype->write()Tejun Heo2014-05-131-4/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | cftype->trigger() is pointless. It's trivial to ignore the input buffer from a regular ->write() operation. Convert all ->trigger() users to ->write() and remove ->trigger(). This patch doesn't introduce any visible behavior changes. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz>
| * cgroup: replace cftype->write_string() with cftype->write()Tejun Heo2014-05-131-19/+19
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Convert all cftype->write_string() users to the new cftype->write() which maps directly to kernfs write operation and has full access to kernfs and cgroup contexts. The conversions are mostly mechanical. * @css and @cft are accessed using of_css() and of_cft() accessors respectively instead of being specified as arguments. * Should return @nbytes on success instead of 0. * @buf is not trimmed automatically. Trim if necessary. Note that blkcg and netprio don't need this as the parsers already handle whitespaces. cftype->write_string() has no user left after the conversions and removed. While at it, remove unnecessary local variable @p in cgroup_subtree_control_write() and stale comment about CGROUP_LOCAL_BUFFER_SIZE in cgroup_freezer.c. This patch doesn't introduce any visible behavior changes. v2: netprio was missing from conversion. Converted. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Aristeu Rozanski <arozansk@redhat.com> Acked-by: Vivek Goyal <vgoyal@redhat.com> Acked-by: Li Zefan <lizefan@huawei.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Neil Horman <nhorman@tuxdriver.com> Cc: "David S. Miller" <davem@davemloft.net>
| * cgroup: implement cftype->write()Tejun Heo2014-05-131-6/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | During the recent conversion to kernfs, cftype's seq_file operations are updated so that they are directly mapped to kernfs operations and thus can fully access the associated kernfs and cgroup contexts; however, write path hasn't seen similar updates and none of the existing write operations has access to, for example, the associated kernfs_open_file. Let's introduce a new operation cftype->write() which maps directly to the kernfs write operation and has access to all the arguments and contexts. This will replace ->write_string() and ->trigger() and ease manipulation of kernfs active protection from cgroup file operations. Two accessors - of_cft() and of_css() - are introduced to enable accessing the associated cgroup context from cftype->write() which only takes kernfs_open_file for the context information. The accessors for seq_file operations - seq_cft() and seq_css() - are rewritten to wrap the of_ accessors. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com>
| * cgroup: rename css_tryget*() to css_tryget_online*()Tejun Heo2014-05-131-20/+20
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Unlike the more usual refcnting, what css_tryget() provides is the distinction between online and offline csses instead of protection against upping a refcnt which already reached zero. cgroup is planning to provide actual tryget which fails if the refcnt already reached zero. Let's rename the existing trygets so that they clearly indicate that they're onliness. I thought about keeping the existing names as-are and introducing new names for the planned actual tryget; however, given that each controller participates in the synchronization of the online state, it seems worthwhile to make it explicit that these functions are about on/offline state. Rename css_tryget() to css_tryget_online() and css_tryget_from_dir() to css_tryget_online_from_dir(). This is pure rename. v2: cgroup_freezer grew new usages of css_tryget(). Update accordingly. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Li Zefan <lizefan@huawei.com> Cc: Vivek Goyal <vgoyal@redhat.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Paul Mackerras <paulus@samba.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
| * cgroup: use release_agent_path_lock in cgroup_release_agent_show()Tejun Heo2014-05-131-3/+2
| | | | | | | | | | | | | | | | | | | | | | release_path is now protected by release_agent_path_lock to allow accessing it without grabbing cgroup_mutex; however, cgroup_release_agent_show() was still grabbing cgroup_mutex. Let's convert it to release_agent_path_lock so that we don't have to worry about this one for the planned locking updates. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com>
| * cgroup: use restart_syscall() for retries after offline waits in ↵Tejun Heo2014-05-131-9/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | cgroup_subtree_control_write() After waiting for a child to finish offline, cgroup_subtree_control_write() jumps up to retry from after the input parsing and active protection breaking. This retry makes the scheduled locking update - removal of cgroup_tree_mutex - more difficult. Let's simplify it by returning with restart_syscall() for retries. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com>
| * cgroup: update and fix parsing of "cgroup.subtree_control"Tejun Heo2014-05-131-3/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | I was confused that strsep() was equivalent to strtok_r() in skipping over consecutive delimiters. strsep() just splits at the first occurrence of one of the delimiters which makes the parsing very inflexible, which makes allowing multiple whitespace chars as delimters kinda moot. Let's just be consistently strict and require list of tokens separated by spaces. This is what Documentation/cgroups/unified-hierarchy.txt describes too. Also, parsing may access beyond the end of the string if the string ends with spaces or is zero-length. Make sure it skips zero-length tokens. Note that this also ensures that the parser doesn't puke on multiple consecutive spaces. v2: Add zero-length token skipping. v3: Added missing space after "==". Spotted by Li. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com>
| * cgroup: css_release() shouldn't clear cgroup->subsys[]Tejun Heo2014-05-131-1/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | c1a71504e971 ("cgroup: don't recycle cgroup id until all csses' have been destroyed") made cgroup ID persist until a cgroup is released and add cgroup->subsys[] clearing to css_release() so that css_from_id() doesn't return a css which has already been released which happens before cgroup release; however, the right change here was updating offline_css() to clear cgroup->subsys[] which was done by e32978031016 ("cgroup: cgroup->subsys[] should be cleared after the css is offlined") instead of clearing it from css_release(). We're now clearing cgroup->subsys[] twice. This is okay for traditional hierarchies as a css's lifetime is the same as its cgroup's; however, this confuses unified hierarchy and turning on and off a controller repeatedly using "cgroup.subtree_control" can lead to an oops like the following which happens because cgroup->subsys[] is incorrectly cleared asynchronously by css_release(). BUG: unable to handle kernel NULL pointer dereference at 00000000000000 08 IP: [<ffffffff81130c11>] kill_css+0x21/0x1c0 PGD 1170d067 PUD f0ab067 PMD 0 Oops: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC Modules linked in: CPU: 2 PID: 459 Comm: bash Not tainted 3.15.0-rc2-work+ #5 Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011 task: ffff880009296710 ti: ffff88000e198000 task.ti: ffff88000e198000 RIP: 0010:[<ffffffff81130c11>] [<ffffffff81130c11>] kill_css+0x21/0x1c0 RSP: 0018:ffff88000e199dc8 EFLAGS: 00010202 RAX: 0000000000000001 RBX: 0000000000000000 RCX: 0000000000000001 RDX: 0000000000000001 RSI: ffffffff8238a968 RDI: ffff880009296f98 RBP: ffff88000e199de0 R08: 0000000000000001 R09: 02b0000000000000 R10: 0000000000000000 R11: ffff880009296fc0 R12: 0000000000000001 R13: ffff88000db6fc58 R14: 0000000000000001 R15: ffff8800139dcc00 FS: 00007ff9160c5740(0000) GS:ffff88001fb00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000008 CR3: 0000000013947000 CR4: 00000000000006e0 Stack: ffff88000e199de0 ffffffff82389160 0000000000000001 ffff88000e199e80 ffffffff8113537f 0000000000000007 ffff88000e74af00 ffff88000e199e48 ffff880009296710 ffff88000db6fc00 ffffffff8239c100 0000000000000002 Call Trace: [<ffffffff8113537f>] cgroup_subtree_control_write+0x85f/0xa00 [<ffffffff8112fd18>] cgroup_file_write+0x38/0x1d0 [<ffffffff8126fc97>] kernfs_fop_write+0xe7/0x170 [<ffffffff811f2ae6>] vfs_write+0xb6/0x1c0 [<ffffffff811f35ad>] SyS_write+0x4d/0xc0 [<ffffffff81d0acd2>] system_call_fastpath+0x16/0x1b Code: 5c 41 5d 41 5e 41 5f 5d c3 90 0f 1f 44 00 00 55 48 89 e5 41 54 53 48 89 fb 48 83 ec 08 8b 05 37 ad 29 01 85 c0 0f 85 df 00 00 00 <48> 8b 43 08 48 8b 3b be 01 00 00 00 8b 48 5c d3 e6 e8 49 ff ff RIP [<ffffffff81130c11>] kill_css+0x21/0x1c0 RSP <ffff88000e199dc8> CR2: 0000000000000008 ---[ end trace e7aae1f877c4e1b4 ]--- Remove the unnecessary cgroup->subsys[] clearing from css_release(). Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com>
| * cgroup: cgroup_idr_lock should be bhTejun Heo2014-05-131-6/+6
| | | | | | | | | | | | | | | | cgroup_idr_remove() can be invoked from bh leading to lockdep detecting possible AA deadlock (IN_BH/ON_BH). Make the lock bh-safe. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com>
| * cgroup: fix offlining child waiting in cgroup_subtree_control_write()Tejun Heo2014-05-131-1/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | cgroup_subtree_control_write() waits for offline to complete child-by-child before enabling a controller; however, it has a couple bugs. * It doesn't initialize the wait_queue_t. This can lead to infinite hang on the following schedule() among other things. * It forgets to pin the child before releasing cgroup_tree_mutex and performing schedule(). The child may already be gone by the time it wakes up and invokes finish_wait(). Pin the child being waited on. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com>
| * Merge branch 'for-3.15-fixes' of ↵Tejun Heo2014-05-131-1/+1
| |\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup into for-3.16 Pull to receive e37a06f10994 ("cgroup: fix the retry path of cgroup_mount()") to avoid unnecessary conflicts with planned cgroup_tree_mutex removal and also to be able to remove the temp fix added by 36c38fb7144a ("blkcg: use trylock on blkcg_pol_mutex in blkcg_reset_stats()") afterwards. Signed-off-by: Tejun Heo <tj@kernel.org>
| * | kernel/cgroup.c: fix 2 kernel-doc warningsFabian Frederick2014-05-051-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Fix typo and variable name. tj: Updated @cgrp argument description in cgroup_destroy_css_killed() Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Fabian Frederick <fabf@skynet.be> Signed-off-by: Tejun Heo <tj@kernel.org>
| * | cgroup, memcg: implement css->id and convert css_from_id() to use itTejun Heo2014-05-041-21/+38
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Until now, cgroup->id has been used to identify all the associated csses and css_from_id() takes cgroup ID and returns the matching css by looking up the cgroup and then dereferencing the css associated with it; however, now that the lifetimes of cgroup and css are separate, this is incorrect and breaks on the unified hierarchy when a controller is disabled and enabled back again before the previous instance is released. This patch adds css->id which is a subsystem-unique ID and converts css_from_id() to look up by the new css->id instead. memcg is the only user of css_from_id() and also converted to use css->id instead. For traditional hierarchies, this shouldn't make any functional difference. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jianyu Zhan <nasa4836@gmail.com> Acked-by: Li Zefan <lizefan@huawei.com>
| * | cgroup: update init_css() into init_and_link_css()Tejun Heo2014-05-041-8/+10
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | init_css() takes the cgroup the new css belongs to as an argument and initializes the new css's ->cgroup and ->parent pointers but doesn't acquire the matching reference counts. After the previous patch, create_css() puts init_css() and reference acquisition right next to each other. Let's move reference acquistion into init_css() and rename the function to init_and_link_css(). This makes sense and is easier to follow. This makes the root csses to hold a reference on cgrp_dfl_root.cgrp, which is harmless. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com>
| * | cgroup: use RCU free in create_css() failure pathTejun Heo2014-05-041-6/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently, when create_css() fails in the middle, the half-initialized css is freed by invoking cgroup_subsys->css_free() directly. This patch updates the function so that it invokes RCU free path instead. As the RCU free path puts the parent css and owning cgroup, their references are now acquired right after a new css is successfully allocated. This doesn't make any visible difference now but is to enable implementing css->id and RCU protected lookup by such IDs. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com>
| * | cgroup: protect cgroup_root->cgroup_idr with a spinlockTejun Heo2014-05-041-8/+43
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently, cgroup_root->cgroup_idr is protected by cgroup_mutex, which ends up requiring cgroup_put() to be invoked under sleepable context. This is okay for now but is an unusual requirement and we'll soon add css->id which will have the same problem but won't be able to simply grab cgroup_mutex as removal will have to happen from css_release() which can't sleep. Introduce cgroup_idr_lock and idr_alloc/replace/remove() wrappers which protects the idr operations with the lock and use them for cgroup_root->cgroup_idr. cgroup_put() no longer needs to grab cgroup_mutex and css_from_id() is updated to always require RCU read lock instead of either RCU read lock or cgroup_mutex, which doesn't affect the existing users. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com>
| * | cgroup, memcg: allocate cgroup ID from 1Tejun Heo2014-05-041-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently, cgroup->id is allocated from 0, which is always assigned to the root cgroup; unfortunately, memcg wants to use ID 0 to indicate invalid IDs and ends up incrementing all IDs by one. It's reasonable to reserve 0 for special purposes. This patch updates cgroup core so that ID 0 is not used and the root cgroups get ID 1. The ID incrementing is removed form memcg. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Li Zefan <lizefan@huawei.com>
| * | cgroup: make flags and subsys_masks unsigned intTejun Heo2014-05-041-19/+18
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | There's no reason to use atomic bitops for cgroup_subsys_state->flags, cgroup_root->flags and various subsys_masks. This patch updates those to use bitwise and/or operations instead and converts them form unsigned long to unsigned int. This makes the fields occupy (marginally) smaller space and makes it clear that they don't require atomicity. This patch doesn't cause any behavior difference. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com>
| * | cgroup: Use more current logging styleJoe Perches2014-04-251-13/+15
| | | | | | | | | | | | | | | | | | | | | | | | | | | Use pr_fmt and remove embedded prefixes. Realign modified multi-line statements to open parenthesis. Convert embedded function name to "%s: ", __func__ Signed-off-by: Joe Perches <joe@perches.com> Signed-off-by: Tejun Heo <tj@kernel.org>
| * | cgroup: replace pr_warning with preferred pr_warnJianyu Zhan2014-04-251-10/+10
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | As suggested by scripts/checkpatch.pl, substitude all pr_warning() with pr_warn(). No functional change. Signed-off-by: Jianyu Zhan <nasa4836@gmail.com> Signed-off-by: Tejun Heo <tj@kernel.org>
| * | cgroup: remove orphaned cgroup_pidlist_seq_operationsJianyu Zhan2014-04-251-11/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 6612f05b88fa309c9 ("cgroup: unify pidlist and other file handling") has removed the only user of cgroup_pidlist_seq_operations : cgroup_pidlist_open(). This patch removes it. Signed-off-by: Jianyu Zhan <nasa4836@gmail.com> Signed-off-by: Tejun Heo <tj@kernel.org>
| * | cgroup: clean up obsolete comment for parse_cgroupfs_options()Jianyu Zhan2014-04-251-8/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 1d5be6b287c8efc87 ("cgroup: move module ref handling into rebind_subsystems()") makes parse_cgroupfs_options() no longer takes refcounts on subsystems. And unified hierachy makes parse_cgroupfs_options not need to call with cgroup_mutex held to protect the cgroup_subsys[]. So this patch removes BUG_ON() and the comment. As the comment doesn't contain useful information afterwards, the whole comment is removed. Signed-off-by: Jianyu Zhan <nasa4836@gmail.com> Signed-off-by: Tejun Heo <tj@kernel.org>
| * | cgroup: implement cgroup.populated for the default hierarchyTejun Heo2014-04-251-4/+61
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | cgroup users often need a way to determine when a cgroup's subhierarchy becomes empty so that it can be cleaned up. cgroup currently provides release_agent for it; unfortunately, this mechanism is riddled with issues. * It delivers events by forking and execing a userland binary specified as the release_agent. This is a long deprecated method of notification delivery. It's extremely heavy, slow and cumbersome to integrate with larger infrastructure. * There is single monitoring point at the root. There's no way to delegate management of a subtree. * The event isn't recursive. It triggers when a cgroup doesn't have any tasks or child cgroups. Events for internal nodes trigger only after all children are removed. This again makes it impossible to delegate management of a subtree. * Events are filtered from the kernel side. "notify_on_release" file is used to subscribe to or suppress release event. This is unnecessarily complicated and probably done this way because event delivery itself was expensive. This patch implements interface file "cgroup.populated" which can be used to monitor whether the cgroup's subhierarchy has tasks in it or not. Its value is 0 if there is no task in the cgroup and its descendants; otherwise, 1, and kernfs_notify() notificaiton is triggers when the value changes, which can be monitored through poll and [di]notify. This is a lot ligther and simpler and trivially allows delegating management of subhierarchy - subhierarchy monitoring can block further propgation simply by putting itself or another process in the root of the subhierarchy and monitor events that it's interested in from there without interfering with monitoring higher in the tree. v2: Patch description updated as per Serge. v3: "cgroup.subtree_populated" renamed to "cgroup.populated". The subtree_ prefix was a bit confusing because "cgroup.subtree_control" uses it to denote the tree rooted at the cgroup sans the cgroup itself while the populated state includes the cgroup itself. Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Serge Hallyn <serge.hallyn@ubuntu.com> Acked-by: Li Zefan <lizefan@huawei.com> Cc: Lennart Poettering <lennart@poettering.net>
| * | cgroup: implement dynamic subtree controller enable/disable on the default ↵Tejun Heo2014-04-231-2/+365
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | hierarchy cgroup is switching away from multiple hierarchies and will use one unified default hierarchy where controllers can be dynamically enabled and disabled per subtree. The default hierarchy will serve as the unified hierarchy to which all controllers are attached and a css on the default hierarchy would need to also serve the tasks of descendant cgroups which don't have the controller enabled - ie. the tree may be collapsed from leaf towards root when viewed from specific controllers. This has been implemented through effective css in the previous patches. This patch finally implements dynamic subtree controller enable/disable on the default hierarchy via a new knob - "cgroup.subtree_control" which controls which controllers are enabled on the child cgroups. Let's assume a hierarchy like the following. root - A - B - C \ D root's "cgroup.subtree_control" determines which controllers are enabled on A. A's on B. B's on C and D. This coincides with the fact that controllers on the immediate sub-level are used to distribute the resources of the parent. In fact, it's natural to assume that resource control knobs of a child belong to its parent. Enabling a controller in "cgroup.subtree_control" declares that distribution of the respective resources of the cgroup will be controlled. Note that this means that controller enable states are shared among siblings. The default hierarchy has an extra restriction - only cgroups which don't contain any task may have controllers enabled in "cgroup.subtree_control". Combined with the other properties of the default hierarchy, this guarantees that, from the view point of controllers, tasks are only on the leaf cgroups. In other words, only leaf csses may contain tasks. This rules out situations where child cgroups compete against internal tasks of the parent, which is a competition between two different types of entities without any clear way to determine resource distribution between the two. Different controllers handle it differently and all the implemented behaviors are ambiguous, ad-hoc, cumbersome and/or just wrong. Having this structural constraints imposed from cgroup core removes the burden from controller implementations and enables showing one consistent behavior across all controllers. When a controller is enabled or disabled, css associations for the controller in the subtrees of each child should be updated. After enabling, the whole subtree of a child should point to the new css of the child. After disabling, the whole subtree of a child should point to the cgroup's css. This is implemented by first updating cgroup states such that cgroup_e_css() result points to the appropriate css and then invoking cgroup_update_dfl_csses() which migrates all tasks in the affected subtrees to the self cgroup on the default hierarchy. * When read, "cgroup.subtree_control" lists all the currently enabled controllers on the children of the cgroup. * White-space separated list of controller names prefixed with either '+' or '-' can be written to "cgroup.subtree_control". The ones prefixed with '+' are enabled on the controller and '-' disabled. * A controller can be enabled iff the parent's "cgroup.subtree_control" enables it and disabled iff no child's "cgroup.subtree_control" has it enabled. * If a cgroup has tasks, no controller can be enabled via "cgroup.subtree_control". Likewise, if "cgroup.subtree_control" has some controllers enabled, tasks can't be migrated into the cgroup. * All controllers which aren't bound on other hierarchies are automatically associated with the root cgroup of the default hierarchy. All the controllers which are bound to the default hierarchy are listed in the read-only file "cgroup.controllers" in the root directory. * "cgroup.controllers" in all non-root cgroups is read-only file whose content is equal to that of "cgroup.subtree_control" of the parent. This indicates which controllers can be used in the cgroup's "cgroup.subtree_control". This is still experimental and there are some holes, one of which is that ->can_attach() failure during cgroup_update_dfl_csses() may leave the cgroups in an undefined state. The issues will be addressed by future patches. v2: Non-root cgroups now also have "cgroup.controllers". Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com>