summaryrefslogtreecommitdiffstats
path: root/kernel/ptrace.c
Commit message (Collapse)AuthorAgeFilesLines
* mm: make __access_remote_vm() staticLorenzo Stoakes2023-10-181-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Patch series "various improvements to the GUP interface", v2. A series of fixes to simplify and improve the GUP interface with an eye to providing groundwork to future improvements:- * __access_remote_vm() and access_remote_vm() are functionally identical, so make the former static such that in future we can potentially change the external-facing implementation details of this function. * Extend is_valid_gup_args() to cover the missing FOLL_TOUCH case, and simplify things by defining INTERNAL_GUP_FLAGS to check against. * Adjust __get_user_pages_locked() to explicitly treat a failure to pin any pages as an error in all circumstances other than FOLL_NOWAIT being specified, bringing it in line with the nommu implementation of this function. * (With many thanks to Arnd who suggested this in the first instance) Update get_user_page_vma_remote() to explicitly only return a page or an error, simplifying the interface and avoiding the questionable IS_ERR_OR_NULL() pattern. This patch (of 4): access_remote_vm() passes through parameters to __access_remote_vm() directly, so remove the __access_remote_vm() function from mm.h and use access_remote_vm() in the one caller that needs it (ptrace_access_vm()). This allows future adjustments to the GUP-internal __access_remote_vm() function while keeping the access_remote_vm() function stable. Link: https://lkml.kernel.org/r/cover.1696288092.git.lstoakes@gmail.com Link: https://lkml.kernel.org/r/f7877c5039ce1c202a514a8aeeefc5cdd5e32d19.1696288092.git.lstoakes@gmail.com Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com> Reviewed-by: Arnd Bergmann <arnd@arndb.de> Reviewed-by: David Hildenbrand <david@redhat.com> Reviewed-by: Jason Gunthorpe <jgg@nvidia.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Ian Rogers <irogers@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Richard Cochran <richardcochran@gmail.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
* ptrace: Provide set/get interface for syscall user dispatchGregory Price2023-04-161-0/+9
| | | | | | | | | | | | | | | The syscall user dispatch configuration can only be set by the task itself, but lacks a ptrace set/get interface which makes it impossible to implement checkpoint/restore for it. Add the required ptrace requests and the get/set functions in the syscall user dispatch code to make that possible. Signed-off-by: Gregory Price <gregory.price@memverge.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Link: https://lore.kernel.org/r/20230407171834.3558-4-gregory.price@memverge.com
* rseq: Introduce extensible rseq ABIMathieu Desnoyers2022-12-271-1/+1
| | | | | | | | | | | | | | | | | | Introduce the extensible rseq ABI, where the feature size supported by the kernel and the required alignment are communicated to user-space through ELF auxiliary vectors. This allows user-space to call rseq registration with a rseq_len of either 32 bytes for the original struct rseq size (which includes padding), or larger. If rseq_len is larger than 32 bytes, then it must be large enough to contain the feature size communicated to user-space through ELF auxiliary vectors. Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20221122203932.231377-4-mathieu.desnoyers@efficios.com
* freezer,sched: Rewrite core freezer logicPeter Zijlstra2022-09-071-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Rewrite the core freezer to behave better wrt thawing and be simpler in general. By replacing PF_FROZEN with TASK_FROZEN, a special block state, it is ensured frozen tasks stay frozen until thawed and don't randomly wake up early, as is currently possible. As such, it does away with PF_FROZEN and PF_FREEZER_SKIP, freeing up two PF_flags (yay!). Specifically; the current scheme works a little like: freezer_do_not_count(); schedule(); freezer_count(); And either the task is blocked, or it lands in try_to_freezer() through freezer_count(). Now, when it is blocked, the freezer considers it frozen and continues. However, on thawing, once pm_freezing is cleared, freezer_count() stops working, and any random/spurious wakeup will let a task run before its time. That is, thawing tries to thaw things in explicit order; kernel threads and workqueues before doing bringing SMP back before userspace etc.. However due to the above mentioned races it is entirely possible for userspace tasks to thaw (by accident) before SMP is back. This can be a fatal problem in asymmetric ISA architectures (eg ARMv9) where the userspace task requires a special CPU to run. As said; replace this with a special task state TASK_FROZEN and add the following state transitions: TASK_FREEZABLE -> TASK_FROZEN __TASK_STOPPED -> TASK_FROZEN __TASK_TRACED -> TASK_FROZEN The new TASK_FREEZABLE can be set on any state part of TASK_NORMAL (IOW. TASK_INTERRUPTIBLE and TASK_UNINTERRUPTIBLE) -- any such state is already required to deal with spurious wakeups and the freezer causes one such when thawing the task (since the original state is lost). The special __TASK_{STOPPED,TRACED} states *can* be restored since their canonical state is in ->jobctl. With this, frozen tasks need an explicit TASK_FROZEN wakeup and are free of undue (early / spurious) wakeups. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Ingo Molnar <mingo@kernel.org> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Link: https://lore.kernel.org/r/20220822114649.055452969@infradead.org
* ptrace: fix clearing of JOBCTL_TRACED in ptrace_unfreeze_traced()Sven Schnelle2022-07-091-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | CI reported the following splat while running the strace testsuite: WARNING: CPU: 1 PID: 3570031 at kernel/ptrace.c:272 ptrace_check_attach+0x12e/0x178 CPU: 1 PID: 3570031 Comm: strace Tainted: G OE 5.19.0-20220624.rc3.git0.ee819a77d4e7.300.fc36.s390x #1 Hardware name: IBM 3906 M04 704 (z/VM 7.1.0) Call Trace: [<00000000ab4b645a>] ptrace_check_attach+0x132/0x178 ([<00000000ab4b6450>] ptrace_check_attach+0x128/0x178) [<00000000ab4b6cde>] __s390x_sys_ptrace+0x86/0x160 [<00000000ac03fcec>] __do_syscall+0x1d4/0x200 [<00000000ac04e312>] system_call+0x82/0xb0 Last Breaking-Event-Address: [<00000000ab4ea3c8>] wait_task_inactive+0x98/0x190 This is because JOBCTL_TRACED is set, but the task is not in TASK_TRACED state. Caused by ptrace_unfreeze_traced() which does: task->jobctl &= ~TASK_TRACED but it should be: task->jobctl &= ~JOBCTL_TRACED Fixes: 31cae1eaae4f ("sched,signal,ptrace: Rework TASK_TRACED, TASK_STOPPED state") Signed-off-by: Sven Schnelle <svens@linux.ibm.com> Tested-by: Alexander Gordeev <agordeev@linux.ibm.com> Acked-by: Oleg Nesterov <oleg@redhat.com> Acked-by: Peter Zijlstra <peterz@infradead.org> Cc: Eric Biederman <ebiederm@xmission.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Kees Cook <keescook@chromium.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Merge tag 'ptrace_stop-cleanup-for-v5.19' of ↵Linus Torvalds2022-06-031-59/+28
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace Pull ptrace_stop cleanups from Eric Biederman: "While looking at the ptrace problems with PREEMPT_RT and the problems Peter Zijlstra was encountering with ptrace in his freezer rewrite I identified some cleanups to ptrace_stop that make sense on their own and move make resolving the other problems much simpler. The biggest issue is the habit of the ptrace code to change task->__state from the tracer to suppress TASK_WAKEKILL from waking up the tracee. No other code in the kernel does that and it is straight forward to update signal_wake_up and friends to make that unnecessary. Peter's task freezer sets frozen tasks to a new state TASK_FROZEN and then it stores them by calling "wake_up_state(t, TASK_FROZEN)" relying on the fact that all stopped states except the special stop states can tolerate spurious wake up and recover their state. The state of stopped and traced tasked is changed to be stored in task->jobctl as well as in task->__state. This makes it possible for the freezer to recover tasks in these special states, as well as serving as a general cleanup. With a little more work in that direction I believe TASK_STOPPED can learn to tolerate spurious wake ups and become an ordinary stop state. The TASK_TRACED state has to remain a special state as the registers for a process are only reliably available when the process is stopped in the scheduler. Fundamentally ptrace needs acess to the saved register values of a task. There are bunch of semi-random ptrace related cleanups that were found while looking at these issues. One cleanup that deserves to be called out is from commit 57b6de08b5f6 ("ptrace: Admit ptrace_stop can generate spuriuos SIGTRAPs"). This makes a change that is technically user space visible, in the handling of what happens to a tracee when a tracer dies unexpectedly. According to our testing and our understanding of userspace nothing cares that spurious SIGTRAPs can be generated in that case" * tag 'ptrace_stop-cleanup-for-v5.19' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: sched,signal,ptrace: Rework TASK_TRACED, TASK_STOPPED state ptrace: Always take siglock in ptrace_resume ptrace: Don't change __state ptrace: Admit ptrace_stop can generate spuriuos SIGTRAPs ptrace: Document that wait_task_inactive can't fail ptrace: Reimplement PTRACE_KILL by always sending SIGKILL signal: Use lockdep_assert_held instead of assert_spin_locked ptrace: Remove arch_ptrace_attach ptrace/xtensa: Replace PT_SINGLESTEP with TIF_SINGLESTEP ptrace/um: Replace PT_DTRACE with TIF_SINGLESTEP signal: Replace __group_send_sig_info with send_signal_locked signal: Rename send_signal send_signal_locked
| * sched,signal,ptrace: Rework TASK_TRACED, TASK_STOPPED statePeter Zijlstra2022-05-111-3/+13
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently ptrace_stop() / do_signal_stop() rely on the special states TASK_TRACED and TASK_STOPPED resp. to keep unique state. That is, this state exists only in task->__state and nowhere else. There's two spots of bother with this: - PREEMPT_RT has task->saved_state which complicates matters, meaning task_is_{traced,stopped}() needs to check an additional variable. - An alternative freezer implementation that itself relies on a special TASK state would loose TASK_TRACED/TASK_STOPPED and will result in misbehaviour. As such, add additional state to task->jobctl to track this state outside of task->__state. NOTE: this doesn't actually fix anything yet, just adds extra state. --EWB * didn't add a unnecessary newline in signal.h * Update t->jobctl in signal_wake_up and ptrace_signal_wake_up instead of in signal_wake_up_state. This prevents the clearing of TASK_STOPPED and TASK_TRACED from getting lost. * Added warnings if JOBCTL_STOPPED or JOBCTL_TRACED are not cleared Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lkml.kernel.org/r/20220421150654.757693825@infradead.org Tested-by: Kees Cook <keescook@chromium.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Link: https://lkml.kernel.org/r/20220505182645.497868-12-ebiederm@xmission.com Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
| * ptrace: Always take siglock in ptrace_resumeEric W. Biederman2022-05-111-11/+2
| | | | | | | | | | | | | | | | | | | | Make code analysis simpler and future changes easier by always taking siglock in ptrace_resume. Tested-by: Kees Cook <keescook@chromium.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Link: https://lkml.kernel.org/r/20220505182645.497868-11-ebiederm@xmission.com Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
| * ptrace: Don't change __stateEric W. Biederman2022-05-111-13/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Stop playing with tsk->__state to remove TASK_WAKEKILL while a ptrace command is executing. Instead remove TASK_WAKEKILL from the definition of TASK_TRACED, and implement a new jobctl flag TASK_PTRACE_FROZEN. This new flag is set in jobctl_freeze_task and cleared when ptrace_stop is awoken or in jobctl_unfreeze_task (when ptrace_stop remains asleep). In signal_wake_up add __TASK_TRACED to state along with TASK_WAKEKILL when the wake up is for a fatal signal. Skip adding __TASK_TRACED when TASK_PTRACE_FROZEN is not set. This has the same effect as changing TASK_TRACED to __TASK_TRACED as all of the wake_ups that use TASK_KILLABLE go through signal_wake_up. Handle a ptrace_stop being called with a pending fatal signal. Previously it would have been handled by schedule simply failing to sleep. As TASK_WAKEKILL is no longer part of TASK_TRACED schedule will sleep with a fatal_signal_pending. The code in signal_wake_up guarantees that the code will be awaked by any fatal signal that codes after TASK_TRACED is set. Previously the __state value of __TASK_TRACED was changed to TASK_RUNNING when woken up or back to TASK_TRACED when the code was left in ptrace_stop. Now when woken up ptrace_stop now clears JOBCTL_PTRACE_FROZEN and when left sleeping ptrace_unfreezed_traced clears JOBCTL_PTRACE_FROZEN. Tested-by: Kees Cook <keescook@chromium.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Link: https://lkml.kernel.org/r/20220505182645.497868-10-ebiederm@xmission.com Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
| * ptrace: Document that wait_task_inactive can't failEric W. Biederman2022-05-111-11/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | After ptrace_freeze_traced succeeds it is known that the tracee has a __state value of __TASK_TRACED and that no __ptrace_unlink will happen because the tracer is waiting for the tracee, and the tracee is in ptrace_stop. The function ptrace_freeze_traced can succeed at any point after ptrace_stop has set TASK_TRACED and dropped siglock. The read_lock on tasklist_lock only excludes ptrace_attach. This means that the !current->ptrace which executes under a read_lock of tasklist_lock will never see a ptrace_freeze_trace as the tracer must have gone away before the tasklist_lock was taken and ptrace_attach can not occur until the read_lock is dropped. As ptrace_freeze_traced depends upon ptrace_attach running before it can run that excludes ptrace_freeze_traced until __state is set to TASK_RUNNING. This means that task_is_traced will fail in ptrace_freeze_attach and ptrace_freeze_attached will fail. On the current->ptrace branch of ptrace_stop which will be reached any time after ptrace_freeze_traced has succeed it is known that __state is __TASK_TRACED and schedule() will be called with that state. Use a WARN_ON_ONCE to document that wait_task_inactive(TASK_TRACED) should never fail. Remove the stale comment about may_ptrace_stop. Strictly speaking this is not true because if PREEMPT_RT is enabled wait_task_inactive can fail because __state can be changed. I don't see this as a problem as the ptrace code is currently broken on PREMPT_RT, and this is one of the issues. Failing and warning when the assumptions of the code are broken is good. Tested-by: Kees Cook <keescook@chromium.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Link: https://lkml.kernel.org/r/20220505182645.497868-8-ebiederm@xmission.com Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
| * ptrace: Reimplement PTRACE_KILL by always sending SIGKILLEric W. Biederman2022-05-111-3/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The current implementation of PTRACE_KILL is buggy and has been for many years as it assumes it's target has stopped in ptrace_stop. At a quick skim it looks like this assumption has existed since ptrace support was added in linux v1.0. While PTRACE_KILL has been deprecated we can not remove it as a quick search with google code search reveals many existing programs calling it. When the ptracee is not stopped at ptrace_stop some fields would be set that are ignored except in ptrace_stop. Making the userspace visible behavior of PTRACE_KILL a noop in those case. As the usual rules are not obeyed it is not clear what the consequences are of calling PTRACE_KILL on a running process. Presumably userspace does not do this as it achieves nothing. Replace the implementation of PTRACE_KILL with a simple send_sig_info(SIGKILL) followed by a return 0. This changes the observable user space behavior only in that PTRACE_KILL on a process not stopped in ptrace_stop will also kill it. As that has always been the intent of the code this seems like a reasonable change. Cc: stable@vger.kernel.org Reported-by: Al Viro <viro@zeniv.linux.org.uk> Suggested-by: Al Viro <viro@zeniv.linux.org.uk> Tested-by: Kees Cook <keescook@chromium.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Link: https://lkml.kernel.org/r/20220505182645.497868-7-ebiederm@xmission.com Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
| * ptrace: Remove arch_ptrace_attachEric W. Biederman2022-05-111-18/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The last remaining implementation of arch_ptrace_attach is ia64's ptrace_attach_sync_user_rbs which was added at the end of 2007 in commit aa91a2e90044 ("[IA64] Synchronize RBS on PTRACE_ATTACH"). Reading the comments and examining the code ptrace_attach_sync_user_rbs has the sole purpose of saving registers to the stack when ptrace_attach changes TASK_STOPPED to TASK_TRACED. In all other cases arch_ptrace_stop takes care of the register saving. In commit d79fdd6d96f4 ("ptrace: Clean transitions between TASK_STOPPED and TRACED") modified ptrace_attach to wake up the thread and enter ptrace_stop normally even when the thread starts out stopped. This makes ptrace_attach_sync_user_rbs completely unnecessary. So just remove it. I read through the code to verify that ptrace_attach_sync_user_rbs is unnecessary. What I found is that the code is quite dead. Reading ptrace_attach_sync_user_rbs it is easy to see that the it does nothing unless __state == TASK_STOPPED. Calling arch_ptrace_attach (aka ptrace_attach_sync_user_rbs) after ptrace_traceme it is easy to see that because we are talking about the current process the value of __state is TASK_RUNNING. Which means ptrace_attach_sync_user_rbs does nothing. The only other call of arch_ptrace_attach (aka ptrace_attach_sync_user_rbs) is after ptrace_attach. If the task is running (and PTRACE_SEIZE is not specified), a SIGSTOP is sent which results in do_signal_stop setting JOBCTL_TRAP_STOP on the target task (as it is ptraced) and the target task stopping in ptrace_stop with __state == TASK_TRACED. If the task was already stopped then ptrace_attach sets JOBCTL_TRAPPING and JOBCTL_TRAP_STOP, wakes it out of __TASK_STOPPED, and waits until the JOBCTL_TRAPPING_BIT is clear. At which point the task stops in ptrace_stop. In both cases there are a couple of funning excpetions such as if the traced task receiveds a SIGCONT, or is set a fatal signal. However in all of those cases the tracee never stops in __state TASK_STOPPED. Which is a long way of saying that ptrace_attach_sync_user_rbs is guaranteed never to do anything. Cc: linux-ia64@vger.kernel.org Tested-by: Kees Cook <keescook@chromium.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Link: https://lkml.kernel.org/r/20220505182645.497868-4-ebiederm@xmission.com Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
* | ptrace: remove redudant check of #ifdef PTRACE_SINGLESTEPTiezhu Yang2022-04-291-6/+0
|/ | | | | | | | | | | | | | | Patch series "ptrace: do some cleanup". This patch (of 3): PTRACE_SINGLESTEP is always defined as 9 in include/uapi/linux/ptrace.h, remove redudant check of #ifdef PTRACE_SINGLESTEP. Link: https://lkml.kernel.org/r/1649240981-11024-2-git-send-email-yangtiezhu@loongson.cn Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
* ptrace: Check PTRACE_O_SUSPEND_SECCOMP permission on PTRACE_SEIZEJann Horn2022-03-221-15/+32
| | | | | | | | | | | | | | | | | | | | | Setting PTRACE_O_SUSPEND_SECCOMP is supposed to be a highly privileged operation because it allows the tracee to completely bypass all seccomp filters on kernels with CONFIG_CHECKPOINT_RESTORE=y. It is only supposed to be settable by a process with global CAP_SYS_ADMIN, and only if that process is not subject to any seccomp filters at all. However, while these permission checks were done on the PTRACE_SETOPTIONS path, they were missing on the PTRACE_SEIZE path, which also sets user-specified ptrace flags. Move the permissions checks out into a helper function and let both ptrace_attach() and ptrace_setoptions() call it. Cc: stable@kernel.org Fixes: 13c4a90119d2 ("seccomp: add ptrace options for suspend/resume") Signed-off-by: Jann Horn <jannh@google.com> Link: https://lkml.kernel.org/r/20220319010838.1386861-1-jannh@google.com Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
* ptrace: Remove second setting of PT_SEIZED in ptrace_attachEric W. Biederman2022-01-081-2/+0
| | | | | | | The code is totally redundant remove it. Link: https://lkml.kernel.org/r/20220103213312.9144-6-ebiederm@xmission.com Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
* sched: Change task_struct::statePeter Zijlstra2021-06-181-6/+6
| | | | | | | | | | | | Change the type and name of task_struct::state. Drop the volatile and shrink it to an 'unsigned int'. Rename it in order to find all uses such that we can use READ_ONCE/WRITE_ONCE as appropriate. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com> Acked-by: Will Deacon <will@kernel.org> Acked-by: Daniel Thompson <daniel.thompson@linaro.org> Link: https://lore.kernel.org/r/20210611082838.550736351@infradead.org
* ptrace: make ptrace() fail if the tracee changed its pid unexpectedlyOleg Nesterov2021-05-121-1/+17
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Suppose we have 2 threads, the group-leader L and a sub-theread T, both parked in ptrace_stop(). Debugger tries to resume both threads and does ptrace(PTRACE_CONT, T); ptrace(PTRACE_CONT, L); If the sub-thread T execs in between, the 2nd PTRACE_CONT doesn not resume the old leader L, it resumes the post-exec thread T which was actually now stopped in PTHREAD_EVENT_EXEC. In this case the PTHREAD_EVENT_EXEC event is lost, and the tracer can't know that the tracee changed its pid. This patch makes ptrace() fail in this case until debugger does wait() and consumes PTHREAD_EVENT_EXEC which reports old_pid. This affects all ptrace requests except the "asynchronous" PTRACE_INTERRUPT/KILL. The patch doesn't add the new PTRACE_ option to not complicate the API, and I _hope_ this won't cause any noticeable regression: - If debugger uses PTRACE_O_TRACEEXEC and the thread did an exec and the tracer does a ptrace request without having consumed the exec event, it's 100% sure that the thread the ptracer thinks it is targeting does not exist anymore, or isn't the same as the one it thinks it is targeting. - To some degree this patch adds nothing new. In the scenario above ptrace(L) can fail with -ESRCH if it is called after the execing sub-thread wakes the leader up and before it "steals" the leader's pid. Test-case: #include <stdio.h> #include <unistd.h> #include <signal.h> #include <sys/ptrace.h> #include <sys/wait.h> #include <errno.h> #include <pthread.h> #include <assert.h> void *tf(void *arg) { execve("/usr/bin/true", NULL, NULL); assert(0); return NULL; } int main(void) { int leader = fork(); if (!leader) { kill(getpid(), SIGSTOP); pthread_t th; pthread_create(&th, NULL, tf, NULL); for (;;) pause(); return 0; } waitpid(leader, NULL, WSTOPPED); ptrace(PTRACE_SEIZE, leader, 0, PTRACE_O_TRACECLONE | PTRACE_O_TRACEEXEC); waitpid(leader, NULL, 0); ptrace(PTRACE_CONT, leader, 0,0); waitpid(leader, NULL, 0); int status, thread = waitpid(-1, &status, 0); assert(thread > 0 && thread != leader); assert(status == 0x80137f); ptrace(PTRACE_CONT, thread, 0,0); /* * waitid() because waitpid(leader, &status, WNOWAIT) does not * report status. Why ???? * * Why WEXITED? because we have another kernel problem connected * to mt-exec. */ siginfo_t info; assert(waitid(P_PID, leader, &info, WSTOPPED|WEXITED|WNOWAIT) == 0); assert(info.si_pid == leader && info.si_status == 0x0405); /* OK, it sleeps in ptrace(PTRACE_EVENT_EXEC == 0x04) */ assert(ptrace(PTRACE_CONT, leader, 0,0) == -1); assert(errno == ESRCH); assert(leader == waitpid(leader, &status, WNOHANG)); assert(status == 0x04057f); assert(ptrace(PTRACE_CONT, leader, 0,0) == 0); return 0; } Signed-off-by: Oleg Nesterov <oleg@redhat.com> Reported-by: Simon Marchi <simon.marchi@efficios.com> Acked-by: "Eric W. Biederman" <ebiederm@xmission.com> Acked-by: Pedro Alves <palves@redhat.com> Acked-by: Simon Marchi <simon.marchi@efficios.com> Acked-by: Jan Kratochvil <jan.kratochvil@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Merge tag 'v5.12-rc8' into sched/core, to pick up fixesIngo Molnar2021-04-201-1/+1
|\ | | | | | | Signed-off-by: Ingo Molnar <mingo@kernel.org>
| * Revert "kernel: treat PF_IO_WORKER like PF_KTHREAD for ptrace/signals"Jens Axboe2021-03-271-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | This reverts commit 6fb8f43cede0e4bd3ead847de78d531424a96be9. The IO threads do allow signals now, including SIGSTOP, and we can allow ptrace attach. Attaching won't reveal anything interesting for the IO threads, but it will allow eg gdb to attach to a task with io_urings and IO threads without complaining. And once attached, it will allow the usual introspection into regular threads. Signed-off-by: Jens Axboe <axboe@kernel.dk>
* | rseq, ptrace: Add PTRACE_GET_RSEQ_CONFIGURATION requestPiotr Figiel2021-03-171-0/+25
|/ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | For userspace checkpoint and restore (C/R) a way of getting process state containing RSEQ configuration is needed. There are two ways this information is going to be used: - to re-enable RSEQ for threads which had it enabled before C/R - to detect if a thread was in a critical section during C/R Since C/R preserves TLS memory and addresses RSEQ ABI will be restored using the address registered before C/R. Detection whether the thread is in a critical section during C/R is needed to enforce behavior of RSEQ abort during C/R. Attaching with ptrace() before registers are dumped itself doesn't cause RSEQ abort. Restoring the instruction pointer within the critical section is problematic because rseq_cs may get cleared before the control is passed to the migrated application code leading to RSEQ invariants not being preserved. C/R code will use RSEQ ABI address to find the abort handler to which the instruction pointer needs to be set. To achieve above goals expose the RSEQ ABI address and the signature value with the new ptrace request PTRACE_GET_RSEQ_CONFIGURATION. This new ptrace request can also be used by debuggers so they are aware of stops within restartable sequences in progress. Signed-off-by: Piotr Figiel <figiel@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Michal Miroslaw <emmir@google.com> Reviewed-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Acked-by: Oleg Nesterov <oleg@redhat.com> Link: https://lkml.kernel.org/r/20210226135156.1081606-1-figiel@google.com
* kernel: treat PF_IO_WORKER like PF_KTHREAD for ptrace/signalsJens Axboe2021-02-211-1/+1
| | | | Signed-off-by: Jens Axboe <axboe@kernel.dk>
* Merge branch 'akpm' (patches from Andrew)Linus Torvalds2020-12-151-1/+1
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Merge misc updates from Andrew Morton: - a few random little subsystems - almost all of the MM patches which are staged ahead of linux-next material. I'll trickle to post-linux-next work in as the dependents get merged up. Subsystems affected by this patch series: kthread, kbuild, ide, ntfs, ocfs2, arch, and mm (slab-generic, slab, slub, dax, debug, pagecache, gup, swap, shmem, memcg, pagemap, mremap, hmm, vmalloc, documentation, kasan, pagealloc, memory-failure, hugetlb, vmscan, z3fold, compaction, oom-kill, migration, cma, page-poison, userfaultfd, zswap, zsmalloc, uaccess, zram, and cleanups). * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (200 commits) mm: cleanup kstrto*() usage mm: fix fall-through warnings for Clang mm: slub: convert sysfs sprintf family to sysfs_emit/sysfs_emit_at mm: shmem: convert shmem_enabled_show to use sysfs_emit_at mm:backing-dev: use sysfs_emit in macro defining functions mm: huge_memory: convert remaining use of sprintf to sysfs_emit and neatening mm: use sysfs_emit for struct kobject * uses mm: fix kernel-doc markups zram: break the strict dependency from lzo zram: add stat to gather incompressible pages since zram set up zram: support page writeback mm/process_vm_access: remove redundant initialization of iov_r mm/zsmalloc.c: rework the list_add code in insert_zspage() mm/zswap: move to use crypto_acomp API for hardware acceleration mm/zswap: fix passing zero to 'PTR_ERR' warning mm/zswap: make struct kernel_param_ops definitions const userfaultfd/selftests: hint the test runner on required privilege userfaultfd/selftests: fix retval check for userfaultfd_open() userfaultfd/selftests: always dump something in modes userfaultfd: selftests: make __{s,u}64 format specifiers portable ...
| * mm: cleanup: remove unused tsk arg from __access_remote_vmJohn Hubbard2020-12-151-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Despite a comment that said that page fault accounting would be charged to whatever task_struct* was passed into __access_remote_vm(), the tsk argument was actually unused. Making page fault accounting actually use this task struct is quite a project, so there is no point in keeping the tsk argument. Delete both the comment, and the argument. [rppt@linux.ibm.com: changelog addition] Link: https://lkml.kernel.org/r/20201026074137.4147787-1-jhubbard@nvidia.com Signed-off-by: John Hubbard <jhubbard@nvidia.com> Reviewed-by: Mike Rapoport <rppt@linux.ibm.com> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | Merge tag 'core-entry-2020-12-14' of ↵Linus Torvalds2020-12-141-8/+8
|\ \ | |/ |/| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull core entry/exit updates from Thomas Gleixner: "A set of updates for entry/exit handling: - More generalization of entry/exit functionality - The consolidation work to reclaim TIF flags on x86 and also for non-x86 specific TIF flags which are solely relevant for syscall related work and have been moved into their own storage space. The x86 specific part had to be merged in to avoid a major conflict. - The TIF_NOTIFY_SIGNAL work which replaces the inefficient signal delivery mode of task work and results in an impressive performance improvement for io_uring. The non-x86 consolidation of this is going to come seperate via Jens. - The selective syscall redirection facility which provides a clean and efficient way to support the non-Linux syscalls of WINE by catching them at syscall entry and redirecting them to the user space emulation. This can be utilized for other purposes as well and has been designed carefully to avoid overhead for the regular fastpath. This includes the core changes and the x86 support code. - Simplification of the context tracking entry/exit handling for the users of the generic entry code which guarantee the proper ordering and protection. - Preparatory changes to make the generic entry code accomodate S390 specific requirements which are mostly related to their syscall restart mechanism" * tag 'core-entry-2020-12-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (36 commits) entry: Add syscall_exit_to_user_mode_work() entry: Add exit_to_user_mode() wrapper entry_Add_enter_from_user_mode_wrapper entry: Rename exit_to_user_mode() entry: Rename enter_from_user_mode() docs: Document Syscall User Dispatch selftests: Add benchmark for syscall user dispatch selftests: Add kselftest for syscall user dispatch entry: Support Syscall User Dispatch on common syscall entry kernel: Implement selective syscall userspace redirection signal: Expose SYS_USER_DISPATCH si_code type x86: vdso: Expose sigreturn address on vdso to the kernel MAINTAINERS: Add entry for common entry code entry: Fix boot for !CONFIG_GENERIC_ENTRY x86: Support HAVE_CONTEXT_TRACKING_OFFSTACK context_tracking: Only define schedule_user() on !HAVE_CONTEXT_TRACKING_OFFSTACK archs sched: Detect call to schedule from critical entry code context_tracking: Don't implement exception_enter/exit() on CONFIG_HAVE_CONTEXT_TRACKING_OFFSTACK context_tracking: Introduce HAVE_CONTEXT_TRACKING_OFFSTACK x86: Reclaim unused x86 TI flags ...
| * ptrace: Migrate TIF_SYSCALL_EMU to use SYSCALL_WORK flagGabriel Krisman Bertazi2020-11-161-5/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | On architectures using the generic syscall entry code the architecture independent syscall work is moved to flags in thread_info::syscall_work. This removes architecture dependencies and frees up TIF bits. Define SYSCALL_WORK_SYSCALL_EMU, use it in the generic entry code and convert the code which uses the TIF specific helper functions to use the new *_syscall_work() helpers which either resolve to the new mode for users of the generic entry code or to the TIF based functions for the other architectures. Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Andy Lutomirski <luto@kernel.org> Link: https://lore.kernel.org/r/20201116174206.2639648-8-krisman@collabora.com
| * ptrace: Migrate to use SYSCALL_TRACE flagGabriel Krisman Bertazi2020-11-161-3/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | On architectures using the generic syscall entry code the architecture independent syscall work is moved to flags in thread_info::syscall_work. This removes architecture dependencies and frees up TIF bits. Define SYSCALL_WORK_SYSCALL_TRACE, use it in the generic entry code and convert the code which uses the TIF specific helper functions to use the new *_syscall_work() helpers which either resolve to the new mode for users of the generic entry code or to the TIF based functions for the other architectures. Signed-off-by: Gabriel Krisman Bertazi <krisman@collabora.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Andy Lutomirski <luto@kernel.org> Link: https://lore.kernel.org/r/20201116174206.2639648-7-krisman@collabora.com
* | ptrace: Set PF_SUPERPRIV when checking capabilityMickaël Salaün2020-11-171-11/+5
|/ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Commit 69f594a38967 ("ptrace: do not audit capability check when outputing /proc/pid/stat") replaced the use of ns_capable() with has_ns_capability{,_noaudit}() which doesn't set PF_SUPERPRIV. Commit 6b3ad6649a4c ("ptrace: reintroduce usage of subjective credentials in ptrace_has_cap()") replaced has_ns_capability{,_noaudit}() with security_capable(), which doesn't set PF_SUPERPRIV neither. Since commit 98f368e9e263 ("kernel: Add noaudit variant of ns_capable()"), a new ns_capable_noaudit() helper is available. Let's use it! As a result, the signature of ptrace_has_cap() is restored to its original one. Cc: Christian Brauner <christian.brauner@ubuntu.com> Cc: Eric Paris <eparis@redhat.com> Cc: Jann Horn <jannh@google.com> Cc: Kees Cook <keescook@chromium.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Serge E. Hallyn <serge@hallyn.com> Cc: Tyler Hicks <tyhicks@linux.microsoft.com> Cc: stable@vger.kernel.org Fixes: 6b3ad6649a4c ("ptrace: reintroduce usage of subjective credentials in ptrace_has_cap()") Fixes: 69f594a38967 ("ptrace: do not audit capability check when outputing /proc/pid/stat") Signed-off-by: Mickaël Salaün <mic@linux.microsoft.com> Reviewed-by: Jann Horn <jannh@google.com> Signed-off-by: Kees Cook <keescook@chromium.org> Link: https://lore.kernel.org/r/20201030123849.770769-2-mic@digikod.net
* ptrace: reintroduce usage of subjective credentials in ptrace_has_cap()Christian Brauner2020-01-181-5/+10
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Commit 69f594a38967 ("ptrace: do not audit capability check when outputing /proc/pid/stat") introduced the ability to opt out of audit messages for accesses to various proc files since they are not violations of policy. While doing so it somehow switched the check from ns_capable() to has_ns_capability{_noaudit}(). That means it switched from checking the subjective credentials of the task to using the objective credentials. This is wrong since. ptrace_has_cap() is currently only used in ptrace_may_access() And is used to check whether the calling task (subject) has the CAP_SYS_PTRACE capability in the provided user namespace to operate on the target task (object). According to the cred.h comments this would mean the subjective credentials of the calling task need to be used. This switches ptrace_has_cap() to use security_capable(). Because we only call ptrace_has_cap() in ptrace_may_access() and in there we already have a stable reference to the calling task's creds under rcu_read_lock() there's no need to go through another series of dereferences and rcu locking done in ns_capable{_noaudit}(). As one example where this might be particularly problematic, Jann pointed out that in combination with the upcoming IORING_OP_OPENAT feature, this bug might allow unprivileged users to bypass the capability checks while asynchronously opening files like /proc/*/mem, because the capability checks for this would be performed against kernel credentials. To illustrate on the former point about this being exploitable: When io_uring creates a new context it records the subjective credentials of the caller. Later on, when it starts to do work it creates a kernel thread and registers a callback. The callback runs with kernel creds for ktask->real_cred and ktask->cred. To prevent this from becoming a full-blown 0-day io_uring will call override_cred() and override ktask->cred with the subjective credentials of the creator of the io_uring instance. With ptrace_has_cap() currently looking at ktask->real_cred this override will be ineffective and the caller will be able to open arbitray proc files as mentioned above. Luckily, this is currently not exploitable but will turn into a 0-day once IORING_OP_OPENAT{2} land in v5.6. Fix it now! Cc: Oleg Nesterov <oleg@redhat.com> Cc: Eric Paris <eparis@redhat.com> Cc: stable@vger.kernel.org Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Serge Hallyn <serge@hallyn.com> Reviewed-by: Jann Horn <jannh@google.com> Fixes: 69f594a38967 ("ptrace: do not audit capability check when outputing /proc/pid/stat") Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
* ptrace: add PTRACE_GET_SYSCALL_INFO requestElvira Khabirova2019-07-161-1/+100
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | PTRACE_GET_SYSCALL_INFO is a generic ptrace API that lets ptracer obtain details of the syscall the tracee is blocked in. There are two reasons for a special syscall-related ptrace request. Firstly, with the current ptrace API there are cases when ptracer cannot retrieve necessary information about syscalls. Some examples include: * The notorious int-0x80-from-64-bit-task issue. See [1] for details. In short, if a 64-bit task performs a syscall through int 0x80, its tracer has no reliable means to find out that the syscall was, in fact, a compat syscall, and misidentifies it. * Syscall-enter-stop and syscall-exit-stop look the same for the tracer. Common practice is to keep track of the sequence of ptrace-stops in order not to mix the two syscall-stops up. But it is not as simple as it looks; for example, strace had a (just recently fixed) long-standing bug where attaching strace to a tracee that is performing the execve system call led to the tracer identifying the following syscall-exit-stop as syscall-enter-stop, which messed up all the state tracking. * Since the introduction of commit 84d77d3f06e7 ("ptrace: Don't allow accessing an undumpable mm"), both PTRACE_PEEKDATA and process_vm_readv become unavailable when the process dumpable flag is cleared. On such architectures as ia64 this results in all syscall arguments being unavailable for the tracer. Secondly, ptracers also have to support a lot of arch-specific code for obtaining information about the tracee. For some architectures, this requires a ptrace(PTRACE_PEEKUSER, ...) invocation for every syscall argument and return value. ptrace(2) man page: long ptrace(enum __ptrace_request request, pid_t pid, void *addr, void *data); ... PTRACE_GET_SYSCALL_INFO Retrieve information about the syscall that caused the stop. The information is placed into the buffer pointed by "data" argument, which should be a pointer to a buffer of type "struct ptrace_syscall_info". The "addr" argument contains the size of the buffer pointed to by "data" argument (i.e., sizeof(struct ptrace_syscall_info)). The return value contains the number of bytes available to be written by the kernel. If the size of data to be written by the kernel exceeds the size specified by "addr" argument, the output is truncated. [ldv@altlinux.org: selftests/seccomp/seccomp_bpf: update for PTRACE_GET_SYSCALL_INFO] Link: http://lkml.kernel.org/r/20190708182904.GA12332@altlinux.org Link: http://lkml.kernel.org/r/20190510152842.GF28558@altlinux.org Signed-off-by: Elvira Khabirova <lineprinter@altlinux.org> Co-developed-by: Dmitry V. Levin <ldv@altlinux.org> Signed-off-by: Dmitry V. Levin <ldv@altlinux.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: Andy Lutomirski <luto@kernel.org> Cc: Eugene Syromyatnikov <esyr@redhat.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Greentime Hu <greentime@andestech.com> Cc: Helge Deller <deller@gmx.de> [parisc] Cc: James E.J. Bottomley <jejb@parisc-linux.org> Cc: James Hogan <jhogan@kernel.org> Cc: kbuild test robot <lkp@intel.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul Burton <paul.burton@mips.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Richard Kuo <rkuo@codeaurora.org> Cc: Shuah Khan <shuah@kernel.org> Cc: Vincent Chen <deanbo422@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Merge tag 'arm64-upstream' of ↵Linus Torvalds2019-07-081-0/+3
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 updates from Catalin Marinas: - arm64 support for syscall emulation via PTRACE_SYSEMU{,_SINGLESTEP} - Wire up VM_FLUSH_RESET_PERMS for arm64, allowing the core code to manage the permissions of executable vmalloc regions more strictly - Slight performance improvement by keeping softirqs enabled while touching the FPSIMD/SVE state (kernel_neon_begin/end) - Expose a couple of ARMv8.5 features to user (HWCAP): CondM (new XAFLAG and AXFLAG instructions for floating point comparison flags manipulation) and FRINT (rounding floating point numbers to integers) - Re-instate ARM64_PSEUDO_NMI support which was previously marked as BROKEN due to some bugs (now fixed) - Improve parking of stopped CPUs and implement an arm64-specific panic_smp_self_stop() to avoid warning on not being able to stop secondary CPUs during panic - perf: enable the ARM Statistical Profiling Extensions (SPE) on ACPI platforms - perf: DDR performance monitor support for iMX8QXP - cache_line_size() can now be set from DT or ACPI/PPTT if provided to cope with a system cache info not exposed via the CPUID registers - Avoid warning on hardware cache line size greater than ARCH_DMA_MINALIGN if the system is fully coherent - arm64 do_page_fault() and hugetlb cleanups - Refactor set_pte_at() to avoid redundant READ_ONCE(*ptep) - Ignore ACPI 5.1 FADTs reported as 5.0 (infer from the 'arm_boot_flags' introduced in 5.1) - CONFIG_RANDOMIZE_BASE now enabled in defconfig - Allow the selection of ARM64_MODULE_PLTS, currently only done via RANDOMIZE_BASE (and an erratum workaround), allowing modules to spill over into the vmalloc area - Make ZONE_DMA32 configurable * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (54 commits) perf: arm_spe: Enable ACPI/Platform automatic module loading arm_pmu: acpi: spe: Add initial MADT/SPE probing ACPI/PPTT: Add function to return ACPI 6.3 Identical tokens ACPI/PPTT: Modify node flag detection to find last IDENTICAL x86/entry: Simplify _TIF_SYSCALL_EMU handling arm64: rename dump_instr as dump_kernel_instr arm64/mm: Drop [PTE|PMD]_TYPE_FAULT arm64: Implement panic_smp_self_stop() arm64: Improve parking of stopped CPUs arm64: Expose FRINT capabilities to userspace arm64: Expose ARMv8.5 CondM capability to userspace arm64: defconfig: enable CONFIG_RANDOMIZE_BASE arm64: ARM64_MODULES_PLTS must depend on MODULES arm64: bpf: do not allocate executable memory arm64/kprobes: set VM_FLUSH_RESET_PERMS on kprobe instruction pages arm64/mm: wire up CONFIG_ARCH_HAS_SET_DIRECT_MAP arm64: module: create module allocations without exec permissions arm64: Allow user selection of ARM64_MODULE_PLTS acpi/arm64: ignore 5.1 FADTs that are reported as 5.0 arm64: Allow selecting Pseudo-NMI again ...
| * ptrace: move clearing of TIF_SYSCALL_EMU flag to coreSudeep Holla2019-06-051-0/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | While the TIF_SYSCALL_EMU is set in ptrace_resume independent of any architecture, currently only powerpc and x86 unset the TIF_SYSCALL_EMU flag in ptrace_disable which gets called from ptrace_detach. Let's move the clearing of TIF_SYSCALL_EMU flag to __ptrace_unlink which gets executed from ptrace_detach and also keep it along with or close to clearing of TIF_SYSCALL_TRACE. Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Acked-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Sudeep Holla <sudeep.holla@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
* | ptrace: Fix ->ptracer_cred handling for PTRACE_TRACEMEJann Horn2019-07-051-3/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Fix two issues: When called for PTRACE_TRACEME, ptrace_link() would obtain an RCU reference to the parent's objective credentials, then give that pointer to get_cred(). However, the object lifetime rules for things like struct cred do not permit unconditionally turning an RCU reference into a stable reference. PTRACE_TRACEME records the parent's credentials as if the parent was acting as the subject, but that's not the case. If a malicious unprivileged child uses PTRACE_TRACEME and the parent is privileged, and at a later point, the parent process becomes attacker-controlled (because it drops privileges and calls execve()), the attacker ends up with control over two processes with a privileged ptrace relationship, which can be abused to ptrace a suid binary and obtain root privileges. Fix both of these by always recording the credentials of the process that is requesting the creation of the ptrace relationship: current_cred() can't change under us, and current is the proper subject for access control. This change is theoretically userspace-visible, but I am not aware of any code that it will actually break. Fixes: 64b875f7ac8a ("ptrace: Capture the ptracer's creds not PT_PTRACE_CAP") Signed-off-by: Jann Horn <jannh@google.com> Acked-by: Oleg Nesterov <oleg@redhat.com> Cc: stable@vger.kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | Merge branch 'for-linus' of ↵Linus Torvalds2019-06-111-2/+18
|\ \ | |/ |/| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace Pull ptrace fixes from Eric Biederman: "This is just two very minor fixes: - prevent ptrace from reading unitialized kernel memory found twice by syzkaller - restore a missing smp_rmb in ptrace_may_access and add comment tp it so it is not removed by accident again. Apologies for being a little slow about getting this to you, I am still figuring out how to develop with a little baby in the house" * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: ptrace: restore smp_rmb() in __ptrace_may_access() signal/ptrace: Don't leak unitialized kernel memory with PTRACE_PEEK_SIGINFO
| * ptrace: restore smp_rmb() in __ptrace_may_access()Jann Horn2019-06-111-0/+10
| | | | | | | | | | | | | | | | | | | | | | | | | | Restore the read memory barrier in __ptrace_may_access() that was deleted a couple years ago. Also add comments on this barrier and the one it pairs with to explain why they're there (as far as I understand). Fixes: bfedb589252c ("mm: Add a user_ns owner to mm_struct and fix ptrace permission checks") Cc: stable@vger.kernel.org Acked-by: Kees Cook <keescook@chromium.org> Acked-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Jann Horn <jannh@google.com> Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
| * signal/ptrace: Don't leak unitialized kernel memory with PTRACE_PEEK_SIGINFOEric W. Biederman2019-05-301-2/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Recently syzbot in conjunction with KMSAN reported that ptrace_peek_siginfo can copy an uninitialized siginfo to userspace. Inspecting ptrace_peek_siginfo confirms this. The problem is that off when initialized from args.off can be initialized to a negaive value. At which point the "if (off >= 0)" test to see if off became negative fails because off started off negative. Prevent the core problem by adding a variable found that is only true if a siginfo is found and copied to a temporary in preparation for being copied to userspace. Prevent args.off from being truncated when being assigned to off by testing that off is <= the maximum possible value of off. Convert off to an unsigned long so that we should not have to truncate args.off, we have well defined overflow behavior so if we add another check we won't risk fighting undefined compiler behavior, and so that we have a type whose maximum value is easy to test for. Cc: Andrei Vagin <avagin@gmail.com> Cc: stable@vger.kernel.org Reported-by: syzbot+0d602a1b0d8c95bdf299@syzkaller.appspotmail.com Fixes: 84c751bd4aeb ("ptrace: add ability to retrieve signals without removing from a queue (v4)") Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
* | treewide: Add SPDX license identifier for missed filesThomas Gleixner2019-05-211-0/+1
|/ | | | | | | | | | | | | | | | | Add SPDX license identifiers to all files which: - Have no license information of any form - Have EXPORT_.*_SYMBOL_GPL inside which was used in the initial scan/conversion to ignore the file These files fall under the project license, GPL v2 only. The resulting SPDX license identifier is: GPL-2.0-only Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
* ptrace: take into account saved_sigmask in PTRACE{GET,SET}SIGMASKAndrei Vagin2019-03-291-2/+13
| | | | | | | | | | | | | | | | | | | | | | | | There are a few system calls (pselect, ppoll, etc) which replace a task sigmask while they are running in a kernel-space When a task calls one of these syscalls, the kernel saves a current sigmask in task->saved_sigmask and sets a syscall sigmask. On syscall-exit-stop, ptrace traps a task before restoring the saved_sigmask, so PTRACE_GETSIGMASK returns the syscall sigmask and PTRACE_SETSIGMASK does nothing, because its sigmask is replaced by saved_sigmask, when the task returns to user-space. This patch fixes this problem. PTRACE_GETSIGMASK returns saved_sigmask if it's set. PTRACE_SETSIGMASK drops the TIF_RESTORE_SIGMASK flag. Link: http://lkml.kernel.org/r/20181120060616.6043-1-avagin@gmail.com Fixes: 29000caecbe8 ("ptrace: add ability to get/set signal-blocked mask") Signed-off-by: Andrei Vagin <avagin@gmail.com> Acked-by: Oleg Nesterov <oleg@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Remove 'type' argument from access_ok() functionLinus Torvalds2019-01-031-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Nobody has actually used the type (VERIFY_READ vs VERIFY_WRITE) argument of the user address range verification function since we got rid of the old racy i386-only code to walk page tables by hand. It existed because the original 80386 would not honor the write protect bit when in kernel mode, so you had to do COW by hand before doing any user access. But we haven't supported that in a long time, and these days the 'type' argument is a purely historical artifact. A discussion about extending 'user_access_begin()' to do the range checking resulted this patch, because there is no way we're going to move the old VERIFY_xyz interface to that model. And it's best done at the end of the merge window when I've done most of my merges, so let's just get this done once and for all. This patch was mostly done with a sed-script, with manual fix-ups for the cases that weren't of the trivial 'access_ok(VERIFY_xyz' form. There were a couple of notable cases: - csky still had the old "verify_area()" name as an alias. - the iter_iov code had magical hardcoded knowledge of the actual values of VERIFY_{READ,WRITE} (not that they mattered, since nothing really used it) - microblaze used the type argument for a debug printout but other than those oddities this should be a total no-op patch. I tried to fix up all architectures, did fairly extensive grepping for access_ok() uses, and the changes are trivial, but I may have missed something. Any missed conversion should be trivially fixable, though. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* ptrace: Remove unused ptrace_may_access_sched() and MODE_IBRSThomas Gleixner2018-11-281-10/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The IBPB control code in x86 removed the usage. Remove the functionality which was introduced for this. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Casey Schaufler <casey.schaufler@intel.com> Cc: Asit Mallick <asit.k.mallick@intel.com> Cc: Arjan van de Ven <arjan@linux.intel.com> Cc: Jon Masters <jcm@redhat.com> Cc: Waiman Long <longman9394@gmail.com> Cc: Greg KH <gregkh@linuxfoundation.org> Cc: Dave Stewart <david.c.stewart@intel.com> Cc: Kees Cook <keescook@chromium.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20181125185005.559149393@linutronix.de
* Merge branch 'siginfo-linus' of ↵Linus Torvalds2018-10-241-14/+12
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace Pull siginfo updates from Eric Biederman: "I have been slowly sorting out siginfo and this is the culmination of that work. The primary result is in several ways the signal infrastructure has been made less error prone. The code has been updated so that manually specifying SEND_SIG_FORCED is never necessary. The conversion to the new siginfo sending functions is now complete, which makes it difficult to send a signal without filling in the proper siginfo fields. At the tail end of the patchset comes the optimization of decreasing the size of struct siginfo in the kernel from 128 bytes to about 48 bytes on 64bit. The fundamental observation that enables this is by definition none of the known ways to use struct siginfo uses the extra bytes. This comes at the cost of a small user space observable difference. For the rare case of siginfo being injected into the kernel only what can be copied into kernel_siginfo is delivered to the destination, the rest of the bytes are set to 0. For cases where the signal and the si_code are known this is safe, because we know those bytes are not used. For cases where the signal and si_code combination is unknown the bits that won't fit into struct kernel_siginfo are tested to verify they are zero, and the send fails if they are not. I made an extensive search through userspace code and I could not find anything that would break because of the above change. If it turns out I did break something it will take just the revert of a single change to restore kernel_siginfo to the same size as userspace siginfo. Testing did reveal dependencies on preferring the signo passed to sigqueueinfo over si->signo, so bit the bullet and added the complexity necessary to handle that case. Testing also revealed bad things can happen if a negative signal number is passed into the system calls. Something no sane application will do but something a malicious program or a fuzzer might do. So I have fixed the code that performs the bounds checks to ensure negative signal numbers are handled" * 'siginfo-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (80 commits) signal: Guard against negative signal numbers in copy_siginfo_from_user32 signal: Guard against negative signal numbers in copy_siginfo_from_user signal: In sigqueueinfo prefer sig not si_signo signal: Use a smaller struct siginfo in the kernel signal: Distinguish between kernel_siginfo and siginfo signal: Introduce copy_siginfo_from_user and use it's return value signal: Remove the need for __ARCH_SI_PREABLE_SIZE and SI_PAD_SIZE signal: Fail sigqueueinfo if si_signo != sig signal/sparc: Move EMT_TAGOVF into the generic siginfo.h signal/unicore32: Use force_sig_fault where appropriate signal/unicore32: Generate siginfo in ucs32_notify_die signal/unicore32: Use send_sig_fault where appropriate signal/arc: Use force_sig_fault where appropriate signal/arc: Push siginfo generation into unhandled_exception signal/ia64: Use force_sig_fault where appropriate signal/ia64: Use the force_sig(SIGSEGV,...) in ia64_rt_sigreturn signal/ia64: Use the generic force_sigsegv in setup_frame signal/arm/kvm: Use send_sig_mceerr signal/arm: Use send_sig_fault where appropriate signal/arm: Use force_sig_fault where appropriate ...
| * signal: Distinguish between kernel_siginfo and siginfoEric W. Biederman2018-10-031-5/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Linus recently observed that if we did not worry about the padding member in struct siginfo it is only about 48 bytes, and 48 bytes is much nicer than 128 bytes for allocating on the stack and copying around in the kernel. The obvious thing of only adding the padding when userspace is including siginfo.h won't work as there are sigframe definitions in the kernel that embed struct siginfo. So split siginfo in two; kernel_siginfo and siginfo. Keeping the traditional name for the userspace definition. While the version that is used internally to the kernel and ultimately will not be padded to 128 bytes is called kernel_siginfo. The definition of struct kernel_siginfo I have put in include/signal_types.h A set of buildtime checks has been added to verify the two structures have the same field offsets. To make it easy to verify the change kernel_siginfo retains the same size as siginfo. The reduction in size comes in a following change. Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
| * signal: Introduce copy_siginfo_from_user and use it's return valueEric W. Biederman2018-10-031-7/+5
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In preparation for using a smaller version of siginfo in the kernel introduce copy_siginfo_from_user and use it when siginfo is copied from userspace. Make the pattern for using copy_siginfo_from_user and copy_siginfo_from_user32 to capture the return value and return that value on error. This is a necessary prerequisite for using a smaller siginfo in the kernel than the kernel exports to userspace. Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
| * signal: Use SEND_SIG_PRIV not SEND_SIG_FORCED with SIGKILL and SIGSTOPEric W. Biederman2018-09-111-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | Now that siginfo is never allocated for SIGKILL and SIGSTOP there is no difference between SEND_SIG_PRIV and SEND_SIG_FORCED for SIGKILL and SIGSTOP. This makes SEND_SIG_FORCED unnecessary and redundant in the presence of SIGKILL and SIGSTOP. Therefore change users of SEND_SIG_FORCED that are sending SIGKILL or SIGSTOP to use SEND_SIG_PRIV instead. This removes the last users of SEND_SIG_FORCED. Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
* | x86/speculation: Apply IBPB more strictly to avoid cross-process data leakJiri Kosina2018-09-261-0/+10
|/ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Currently, IBPB is only issued in cases when switching into a non-dumpable process, the rationale being to protect such 'important and security sensitive' processess (such as GPG) from data leaking into a different userspace process via spectre v2. This is however completely insufficient to provide proper userspace-to-userpace spectrev2 protection, as any process can poison branch buffers before being scheduled out, and the newly scheduled process immediately becomes spectrev2 victim. In order to minimize the performance impact (for usecases that do require spectrev2 protection), issue the barrier only in cases when switching between processess where the victim can't be ptraced by the potential attacker (as in such cases, the attacker doesn't have to bother with branch buffers at all). [ tglx: Split up PTRACE_MODE_NOACCESS_CHK into PTRACE_MODE_SCHED and PTRACE_MODE_IBPB to be able to do ptrace() context tracking reasonably fine-grained ] Fixes: 18bf3c3ea8 ("x86/speculation: Use Indirect Branch Prediction Barrier in context switch") Originally-by: Tim Chen <tim.c.chen@linux.intel.com> Signed-off-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "WoodhouseDavid" <dwmw@amazon.co.uk> Cc: Andi Kleen <ak@linux.intel.com> Cc: "SchauflerCasey" <casey.schaufler@intel.com> Link: https://lkml.kernel.org/r/nycvar.YFH.7.76.1809251437340.15880@cbobk.fhfr.pm
* pids: introduce find_get_task_by_vpid() helperMike Rapoport2018-02-061-21/+6
| | | | | | | | | | | There are several functions that do find_task_by_vpid() followed by get_task_struct(). We can use a helper function instead. Link: http://lkml.kernel.org/r/1509602027-11337-1-git-send-email-rppt@linux.vnet.ibm.com Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com> Acked-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Merge branch 'next-seccomp' of ↵Linus Torvalds2018-01-311-0/+4
|\ | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security Pull seccomp updates from James Morris: "Add support for retrieving seccomp metadata" * 'next-seccomp' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security: ptrace, seccomp: add support for retrieving seccomp metadata seccomp: hoist out filter resolving logic
| * ptrace, seccomp: add support for retrieving seccomp metadataTycho Andersen2017-11-281-0/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | With the new SECCOMP_FILTER_FLAG_LOG, we need to be able to extract these flags for checkpoint restore, since they describe the state of a filter. So, let's add PTRACE_SECCOMP_GET_METADATA, similar to ..._GET_FILTER, which returns the metadata of the nth filter (right now, just the flags). Hopefully this will be future proof, and new per-filter metadata can be added to this struct. Signed-off-by: Tycho Andersen <tycho@docker.com> CC: Kees Cook <keescook@chromium.org> CC: Andy Lutomirski <luto@amacapital.net> CC: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Kees Cook <keescook@chromium.org>
* | ptrace: Use copy_siginfo in setsiginfo and getsiginfoEric W. Biederman2018-01-161-2/+2
| | | | | | | | | | | | | | | | Now that copy_siginfo copies all of the fields this is safe, safer (as all of the bits are guaranteed to be copied), clearer, and less error prone than using a structure copy. Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
* | signal: Remove the code to clear siginfo before calling copy_siginfo_from_user32Eric W. Biederman2018-01-151-1/+0
|/ | | | | | The new unified copy_siginfo_from_user32 takes care of this. Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
* signal: Remove kernel interal si_code magicEric W. Biederman2017-07-241-4/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | struct siginfo is a union and the kernel since 2.4 has been hiding a union tag in the high 16bits of si_code using the values: __SI_KILL __SI_TIMER __SI_POLL __SI_FAULT __SI_CHLD __SI_RT __SI_MESGQ __SI_SYS While this looks plausible on the surface, in practice this situation has not worked well. - Injected positive signals are not copied to user space properly unless they have these magic high bits set. - Injected positive signals are not reported properly by signalfd unless they have these magic high bits set. - These kernel internal values leaked to userspace via ptrace_peek_siginfo - It was possible to inject these kernel internal values and cause the the kernel to misbehave. - Kernel developers got confused and expected these kernel internal values in userspace in kernel self tests. - Kernel developers got confused and set si_code to __SI_FAULT which is SI_USER in userspace which causes userspace to think an ordinary user sent the signal and that it was not kernel generated. - The values make it impossible to reorganize the code to transform siginfo_copy_to_user into a plain copy_to_user. As si_code must be massaged before being passed to userspace. So remove these kernel internal si codes and make the kernel code simpler and more maintainable. To replace these kernel internal magic si_codes introduce the helper function siginfo_layout, that takes a signal number and an si_code and computes which union member of siginfo is being used. Have siginfo_layout return an enumeration so that gcc will have enough information to warn if a switch statement does not handle all of union members. A couple of architectures have a messed up ABI that defines signal specific duplications of SI_USER which causes more special cases in siginfo_layout than I would like. The good news is only problem architectures pay the cost. Update all of the code that used the previous magic __SI_ values to use the new SIL_ values and to call siginfo_layout to get those values. Escept where not all of the cases are handled remove the defaults in the switch statements so that if a new case is missed in the future the lack will show up at compile time. Modify the code that copies siginfo si_code to userspace to just copy the value and not cast si_code to a short first. The high bits are no longer used to hold a magic union member. Fixup the siginfo header files to stop including the __SI_ values in their constants and for the headers that were missing it to properly update the number of si_codes for each signal type. The fixes to copy_siginfo_from_user32 implementations has the interesting property that several of them perviously should never have worked as the __SI_ values they depended up where kernel internal. With that dependency gone those implementations should work much better. The idea of not passing the __SI_ values out to userspace and then not reinserting them has been tested with criu and criu worked without changes. Ref: 2.4.0-test1 Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>