| Commit message (Collapse) | Author | Age | Files | Lines |
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull non-MM updates from Andrew Morton:
"As usual, lots of singleton and doubleton patches all over the tree
and there's little I can say which isn't in the individual changelogs.
The lengthier patch series are
- 'kdump: use generic functions to simplify crashkernel reservation
in arch', from Baoquan He. This is mainly cleanups and
consolidation of the 'crashkernel=' kernel parameter handling
- After much discussion, David Laight's 'minmax: Relax type checks in
min() and max()' is here. Hopefully reduces some typecasting and
the use of min_t() and max_t()
- A group of patches from Oleg Nesterov which clean up and slightly
fix our handling of reads from /proc/PID/task/... and which remove
task_struct.thread_group"
* tag 'mm-nonmm-stable-2023-11-02-14-08' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (64 commits)
scripts/gdb/vmalloc: disable on no-MMU
scripts/gdb: fix usage of MOD_TEXT not defined when CONFIG_MODULES=n
.mailmap: add address mapping for Tomeu Vizoso
mailmap: update email address for Claudiu Beznea
tools/testing/selftests/mm/run_vmtests.sh: lower the ptrace permissions
.mailmap: map Benjamin Poirier's address
scripts/gdb: add lx_current support for riscv
ocfs2: fix a spelling typo in comment
proc: test ProtectionKey in proc-empty-vm test
proc: fix proc-empty-vm test with vsyscall
fs/proc/base.c: remove unneeded semicolon
do_io_accounting: use sig->stats_lock
do_io_accounting: use __for_each_thread()
ocfs2: replace BUG_ON() at ocfs2_num_free_extents() with ocfs2_error()
ocfs2: fix a typo in a comment
scripts/show_delta: add __main__ judgement before main code
treewide: mark stuff as __ro_after_init
fs: ocfs2: check status values
proc: test /proc/${pid}/statm
compiler.h: move __is_constexpr() to compiler.h
...
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
__read_mostly predates __ro_after_init. Many variables which are marked
__read_mostly should have been __ro_after_init from day 1.
Also, mark some stuff as "const" and "__init" while I'm at it.
[akpm@linux-foundation.org: revert sysctl_nr_open_min, sysctl_nr_open_max changes due to arm warning]
[akpm@linux-foundation.org: coding-style cleanups]
Link: https://lkml.kernel.org/r/4f6bb9c0-abba-4ee4-a7aa-89265e886817@p183
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
|
|\ \
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic
Pull ia64 removal and asm-generic updates from Arnd Bergmann:
- The ia64 architecture gets its well-earned retirement as planned,
now that there is one last (mostly) working release that will be
maintained as an LTS kernel.
- The architecture specific system call tables are updated for the
added map_shadow_stack() syscall and to remove references to the
long-gone sys_lookup_dcookie() syscall.
* tag 'asm-generic-6.7' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic:
hexagon: Remove unusable symbols from the ptrace.h uapi
asm-generic: Fix spelling of architecture
arch: Reserve map_shadow_stack() syscall number for all architectures
syscalls: Cleanup references to sys_lookup_dcookie()
Documentation: Drop or replace remaining mentions of IA64
lib/raid6: Drop IA64 support
Documentation: Drop IA64 from feature descriptions
kernel: Drop IA64 support from sig_fault handlers
arch: Remove Itanium (IA-64) architecture
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
The Itanium architecture is obsolete, and an informal survey [0] reveals
that any residual use of Itanium hardware in production is mostly HP-UX
or OpenVMS based. The use of Linux on Itanium appears to be limited to
enthusiasts that occasionally boot a fresh Linux kernel to see whether
things are still working as intended, and perhaps to churn out some
distro packages that are rarely used in practice.
None of the original companies behind Itanium still produce or support
any hardware or software for the architecture, and it is listed as
'Orphaned' in the MAINTAINERS file, as apparently, none of the engineers
that contributed on behalf of those companies (nor anyone else, for that
matter) have been willing to support or maintain the architecture
upstream or even be responsible for applying the odd fix. The Intel
firmware team removed all IA-64 support from the Tianocore/EDK2
reference implementation of EFI in 2018. (Itanium is the original
architecture for which EFI was developed, and the way Linux supports it
deviates significantly from other architectures.) Some distros, such as
Debian and Gentoo, still maintain [unofficial] ia64 ports, but many have
dropped support years ago.
While the argument is being made [1] that there is a 'for the common
good' angle to being able to build and run existing projects such as the
Grid Community Toolkit [2] on Itanium for interoperability testing, the
fact remains that none of those projects are known to be deployed on
Linux/ia64, and very few people actually have access to such a system in
the first place. Even if there were ways imaginable in which Linux/ia64
could be put to good use today, what matters is whether anyone is
actually doing that, and this does not appear to be the case.
There are no emulators widely available, and so boot testing Itanium is
generally infeasible for ordinary contributors. GCC still supports IA-64
but its compile farm [3] no longer has any IA-64 machines. GLIBC would
like to get rid of IA-64 [4] too because it would permit some overdue
code cleanups. In summary, the benefits to the ecosystem of having IA-64
be part of it are mostly theoretical, whereas the maintenance overhead
of keeping it supported is real.
So let's rip off the band aid, and remove the IA-64 arch code entirely.
This follows the timeline proposed by the Debian/ia64 maintainer [5],
which removes support in a controlled manner, leaving IA-64 in a known
good state in the most recent LTS release. Other projects will follow
once the kernel support is removed.
[0] https://lore.kernel.org/all/CAMj1kXFCMh_578jniKpUtx_j8ByHnt=s7S+yQ+vGbKt9ud7+kQ@mail.gmail.com/
[1] https://lore.kernel.org/all/0075883c-7c51-00f5-2c2d-5119c1820410@web.de/
[2] https://gridcf.org/gct-docs/latest/index.html
[3] https://cfarm.tetaneutral.net/machines/list/
[4] https://lore.kernel.org/all/87bkiilpc4.fsf@mid.deneb.enyo.de/
[5] https://lore.kernel.org/all/ff58a3e76e5102c94bb5946d99187b358def688a.camel@physik.fu-berlin.de/
Acked-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
|
|\ \ \
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
"Fair scheduler (SCHED_OTHER) improvements:
- Remove the old and now unused SIS_PROP code & option
- Scan cluster before LLC in the wake-up path
- Use candidate prev/recent_used CPU if scanning failed for cluster
wakeup
NUMA scheduling improvements:
- Improve the VMA access-PID code to better skip/scan VMAs
- Extend tracing to cover VMA-skipping decisions
- Improve/fix the recently introduced sched_numa_find_nth_cpu() code
- Generalize numa_map_to_online_node()
Energy scheduling improvements:
- Remove the EM_MAX_COMPLEXITY limit
- Add tracepoints to track energy computation
- Make the behavior of the 'sched_energy_aware' sysctl more
consistent
- Consolidate and clean up access to a CPU's max compute capacity
- Fix uclamp code corner cases
RT scheduling improvements:
- Drive dl_rq->overloaded with dl_rq->pushable_dl_tasks updates
- Drive the ->rto_mask with rt_rq->pushable_tasks updates
Scheduler scalability improvements:
- Rate-limit updates to tg->load_avg
- On x86 disable IBRS when CPU is offline to improve single-threaded
performance
- Micro-optimize in_task() and in_interrupt()
- Micro-optimize the PSI code
- Avoid updating PSI triggers and ->rtpoll_total when there are no
state changes
Core scheduler infrastructure improvements:
- Use saved_state to reduce some spurious freezer wakeups
- Bring in a handful of fast-headers improvements to scheduler
headers
- Make the scheduler UAPI headers more widely usable by user-space
- Simplify the control flow of scheduler syscalls by using lock
guards
- Fix sched_setaffinity() vs. CPU hotplug race
Scheduler debuggability improvements:
- Disallow writing invalid values to sched_rt_period_us
- Fix a race in the rq-clock debugging code triggering warnings
- Fix a warning in the bandwidth distribution code
- Micro-optimize in_atomic_preempt_off() checks
- Enforce that the tasklist_lock is held in for_each_thread()
- Print the TGID in sched_show_task()
- Remove the /proc/sys/kernel/sched_child_runs_first sysctl
... and misc cleanups & fixes"
* tag 'sched-core-2023-10-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (82 commits)
sched/fair: Remove SIS_PROP
sched/fair: Use candidate prev/recent_used CPU if scanning failed for cluster wakeup
sched/fair: Scan cluster before scanning LLC in wake-up path
sched: Add cpus_share_resources API
sched/core: Fix RQCF_ACT_SKIP leak
sched/fair: Remove unused 'curr' argument from pick_next_entity()
sched/nohz: Update comments about NEWILB_KICK
sched/fair: Remove duplicate #include
sched/psi: Update poll => rtpoll in relevant comments
sched: Make PELT acronym definition searchable
sched: Fix stop_one_cpu_nowait() vs hotplug
sched/psi: Bail out early from irq time accounting
sched/topology: Rename 'DIE' domain to 'PKG'
sched/psi: Delete the 'update_total' function parameter from update_triggers()
sched/psi: Avoid updating PSI triggers and ->rtpoll_total when there are no state changes
sched/headers: Remove comment referring to rq::cpu_load, since this has been removed
sched/numa: Complete scanning of inactive VMAs when there is no alternative
sched/numa: Complete scanning of partial VMAs regardless of PID activity
sched/numa: Move up the access pid reset logic
sched/numa: Trace decisions related to skipping VMAs
...
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
SIS_UTIL seems to work well, lets remove the old thing.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Vincent Guittot <vincent.guittot@linaro.org>
Link: https://lkml.kernel.org/r/20231020134337.GD33965@noisy.programming.kicks-ass.net
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Add cpus_share_resources() API. This is the preparation for the
optimization of select_idle_cpu() on platforms with cluster scheduler
level.
On a machine with clusters cpus_share_resources() will test whether
two cpus are within the same cluster. On a non-cluster machine it
will behaves the same as cpus_share_cache(). So we use "resources"
here for cache resources.
Signed-off-by: Barry Song <song.bao.hua@hisilicon.com>
Signed-off-by: Yicong Yang <yangyicong@hisilicon.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Gautham R. Shenoy <gautham.shenoy@amd.com>
Reviewed-by: Tim Chen <tim.c.chen@linux.intel.com>
Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org>
Tested-and-reviewed-by: Chen Yu <yu.c.chen@intel.com>
Tested-by: K Prateek Nayak <kprateek.nayak@amd.com>
Link: https://lkml.kernel.org/r/20231019033323.54147-2-yangyicong@huawei.com
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Igor Raits and Bagas Sanjaya report a RQCF_ACT_SKIP leak warning.
This warning may be triggered in the following situations:
CPU0 CPU1
__schedule()
*rq->clock_update_flags <<= 1;* unregister_fair_sched_group()
pick_next_task_fair+0x4a/0x410 destroy_cfs_bandwidth()
newidle_balance+0x115/0x3e0 for_each_possible_cpu(i) *i=0*
rq_unpin_lock(this_rq, rf) __cfsb_csd_unthrottle()
raw_spin_rq_unlock(this_rq)
rq_lock(*CPU0_rq*, &rf)
rq_clock_start_loop_update()
rq->clock_update_flags & RQCF_ACT_SKIP <--
raw_spin_rq_lock(this_rq)
The purpose of RQCF_ACT_SKIP is to skip the update rq clock,
but the update is very early in __schedule(), but we clear
RQCF_*_SKIP very late, causing it to span that gap above
and triggering this warning.
In __schedule() we can clear the RQCF_*_SKIP flag immediately
after update_rq_clock() to avoid this RQCF_ACT_SKIP leak warning.
And set rq->clock_update_flags to RQCF_UPDATED to avoid
rq->clock_update_flags < RQCF_ACT_SKIP warning that may be triggered later.
Fixes: ebb83d84e49b ("sched/core: Avoid multiple calling update_rq_clock() in __cfsb_csd_unthrottle()")
Closes: https://lore.kernel.org/all/20230913082424.73252-1-jiahao.os@bytedance.com
Reported-by: Igor Raits <igor.raits@gmail.com>
Reported-by: Bagas Sanjaya <bagasdotme@gmail.com>
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Hao Jia <jiahao.os@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/all/a5dd536d-041a-2ce9-f4b7-64d8d85c86dc@gmail.com
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Kuyo reported sporadic failures on a sched_setaffinity() vs CPU
hotplug stress-test -- notably affine_move_task() remains stuck in
wait_for_completion(), leading to a hung-task detector warning.
Specifically, it was reported that stop_one_cpu_nowait(.fn =
migration_cpu_stop) returns false -- this stopper is responsible for
the matching complete().
The race scenario is:
CPU0 CPU1
// doing _cpu_down()
__set_cpus_allowed_ptr()
task_rq_lock();
takedown_cpu()
stop_machine_cpuslocked(take_cpu_down..)
<PREEMPT: cpu_stopper_thread()
MULTI_STOP_PREPARE
...
__set_cpus_allowed_ptr_locked()
affine_move_task()
task_rq_unlock();
<PREEMPT: cpu_stopper_thread()\>
ack_state()
MULTI_STOP_RUN
take_cpu_down()
__cpu_disable();
stop_machine_park();
stopper->enabled = false;
/>
/>
stop_one_cpu_nowait(.fn = migration_cpu_stop);
if (stopper->enabled) // false!!!
That is, by doing stop_one_cpu_nowait() after dropping rq-lock, the
stopper thread gets a chance to preempt and allows the cpu-down for
the target CPU to complete.
OTOH, since stop_one_cpu_nowait() / cpu_stop_queue_work() needs to
issue a wakeup, it must not be ran under the scheduler locks.
Solve this apparent contradiction by keeping preemption disabled over
the unlock + queue_stopper combination:
preempt_disable();
task_rq_unlock(...);
if (!stop_pending)
stop_one_cpu_nowait(...)
preempt_enable();
This respects the lock ordering contraints while still avoiding the
above race. That is, if we find the CPU is online under rq-lock, the
targeted stop_one_cpu_nowait() must succeed.
Apply this pattern to all similar stop_one_cpu_nowait() invocations.
Fixes: 6d337eab041d ("sched: Fix migrate_disable() vs set_cpus_allowed_ptr()")
Reported-by: "Kuyo Chang (張建文)" <Kuyo.Chang@mediatek.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: "Kuyo Chang (張建文)" <Kuyo.Chang@mediatek.com>
Link: https://lkml.kernel.org/r/20231010200442.GA16515@noisy.programming.kicks-ass.net
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Remove the rq::cpu_capacity_orig field and use arch_scale_cpu_capacity()
instead.
The scheduler uses 3 methods to get access to a CPU's max compute capacity:
- arch_scale_cpu_capacity(cpu) which is the default way to get a CPU's capacity.
- cpu_capacity_orig field which is periodically updated with
arch_scale_cpu_capacity().
- capacity_orig_of(cpu) which encapsulates rq->cpu_capacity_orig.
There is no real need to save the value returned by arch_scale_cpu_capacity()
in struct rq. arch_scale_cpu_capacity() returns:
- either a per_cpu variable.
- or a const value for systems which have only one capacity.
Remove rq::cpu_capacity_orig and use arch_scale_cpu_capacity() everywhere.
No functional changes.
Some performance tests on Arm64:
- small SMP device (hikey): no noticeable changes
- HMP device (RB5): hackbench shows minor improvement (1-2%)
- large smp (thx2): hackbench and tbench shows minor improvement (1%)
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Link: https://lore.kernel.org/r/20231009103621.374412-2-vincent.guittot@linaro.org
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Multiple blocked tasks are printed when the system hangs. They may have
the same parent pid, but belong to different task groups.
Printing tgid lets users better know whether these tasks are from the same
task group or not.
Signed-off-by: Yajun Deng <yajun.deng@linux.dev>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230720080516.1515297-1-yajun.deng@linux.dev
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
The following commit:
9b3c4ab3045e ("sched,rcu: Rework try_invoke_on_locked_down_task()")
... renamed try_invoke_on_locked_down_task() to task_call_func(),
but forgot to update the comment in try_to_wake_up().
But it turns out that the smp_rmb() doesn't live in task_call_func()
either, it was moved to __task_needs_rq_lock() in:
91dabf33ae5d ("sched: Fix race in task_call_func()")
Fix that now.
Also fix the s/smb/smp typo while at it.
Reported-by: Zhang Qiao <zhangqiao22@huawei.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230731085759.11443-1-zhangqiao22@huawei.com
|
| |\ \ \
| | | |/
| | |/|
| | | |
| | | |
| | | | |
the branch
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
<linux/psi.h> and "autogroup.h" are included twice, remove the duplicate header
inclusion.
Signed-off-by: Yu Liao <liaoyu15@huawei.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230802021501.2511569-1-liaoyu15@huawei.com
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
It was useful to track feec() placement decision and debug the spare
capacity and optimization issues vs uclamp_max.
Signed-off-by: Qais Yousef (Google) <qyousef@layalina.io>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230916232955.2099394-4-qyousef@layalina.io
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
sched_submit_work()
Simplify the conditional logic for checking worker flags
by splitting the original compound `if` statement into
separate `if` and `else if` clauses.
This modification not only retains the previous functionality,
but also reduces a single `if` check, improving code clarity
and potentially enhancing performance.
Signed-off-by: Wang Jinchao <wangjinchao@xfusion.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/ZOIMvURE99ZRAYEj@fedora
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
in_atomic_preempt_off() already gets called in schedule_debug() once,
which is the only caller of __schedule_bug().
Skip the second call within __schedule_bug(), it should always be true
at this point.
[ mingo: Clarified the changelog. ]
Signed-off-by: Liming Wu <liming.wu@jaguarmicro.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230825023501.1848-1-liming.wu@jaguarmicro.com
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
The name is a bit opaque - make it clear that this is about wakeup
preemption.
Also rename the ->check_preempt_curr() methods similarly.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
After commit f5d39b020809 ("freezer,sched: Rewrite core freezer logic"),
tasks that transition directly from TASK_FREEZABLE to TASK_FROZEN are
always woken up on the thaw path. Prior to that commit, tasks could ask
freezer to consider them "frozen enough" via freezer_do_not_count(). The
commit replaced freezer_do_not_count() with a TASK_FREEZABLE state which
allows freezer to immediately mark the task as TASK_FROZEN without
waking up the task. This is efficient for the suspend path, but on the
thaw path, the task is always woken up even if the task didn't need to
wake up and goes back to its TASK_(UN)INTERRUPTIBLE state. Although
these tasks are capable of handling of the wakeup, we can observe a
power/perf impact from the extra wakeup.
We observed on Android many tasks wait in the TASK_FREEZABLE state
(particularly due to many of them being binder clients). We observed
nearly 4x the number of tasks and a corresponding linear increase in
latency and power consumption when thawing the system. The latency
increased from ~15ms to ~50ms.
Avoid the spurious wakeups by saving the state of TASK_FREEZABLE tasks.
If the task was running before entering TASK_FROZEN state
(__refrigerator()) or if the task received a wake up for the saved
state, then the task is woken on thaw. saved_state from PREEMPT_RT locks
can be re-used because freezer would not stomp on the rtlock wait flow:
TASK_RTLOCK_WAIT isn't considered freezable.
Reported-by: Prakash Viswalingam <quic_prakashv@quicinc.com>
Signed-off-by: Elliot Berman <quic_eberman@quicinc.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
In preparation for freezer to also use saved_state, remove the
CONFIG_PREEMPT_RT compilation guard around saved_state.
On the arm64 platform I tested which did not have CONFIG_PREEMPT_RT,
there was no statistically significant deviation by applying this patch.
Test methodology:
perf bench sched message -g 40 -l 40
Signed-off-by: Elliot Berman <quic_eberman@quicinc.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Use equivalent do-while loop instead of infinite for loop.
There are no asm code changes.
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230228161426.4508-1-ubizjak@gmail.com
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Random remaining guard use...
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Use guards to reduce gotos and simplify control flow.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Use guards to reduce gotos and simplify control flow.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Use guards to reduce gotos and simplify control flow.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Use guards to reduce gotos and simplify control flow.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Use guards to reduce gotos and simplify control flow.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Use guards to reduce gotos and simplify control flow.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
| | |/
| |/|
| | |
| | |
| | |
| | |
| | | |
Use guards to reduce gotos and simplify control flow.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
|\ \ \
| | |/
| |/|
| | | |
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
| |/
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Initial booting is setting the task flag to idle (PF_IDLE) by the call
path sched_init() -> init_idle(). Having the task idle and calling
call_rcu() in kernel/rcu/tiny.c means that TIF_NEED_RESCHED will be
set. Subsequent calls to any cond_resched() will enable IRQs,
potentially earlier than the IRQ setup has completed. Recent changes
have caused just this scenario and IRQs have been enabled early.
This causes a warning later in start_kernel() as interrupts are enabled
before they are fully set up.
Fix this issue by setting the PF_IDLE flag later in the boot sequence.
Although the boot task was marked as idle since (at least) d80e4fda576d,
I am not sure that it is wrong to do so. The forced context-switch on
idle task was introduced in the tiny_rcu update, so I'm going to claim
this fixes 5f6130fa52ee.
Fixes: 5f6130fa52ee ("tiny_rcu: Directly force QS when call_rcu_[bh|sched]() on idle_task")
Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/linux-mm/CAMuHMdWpvpWoDa=Ox-do92czYRvkok6_x6pYUH+ZouMcJbXy+Q@mail.gmail.com/
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
With PREEMPT_RT there is a rt_mutex recursion problem where
sched_submit_work() can use an rtlock (aka spinlock_t). More
specifically what happens is:
mutex_lock() /* really rt_mutex */
...
__rt_mutex_slowlock_locked()
task_blocks_on_rt_mutex()
// enqueue current task as waiter
// do PI chain walk
rt_mutex_slowlock_block()
schedule()
sched_submit_work()
...
spin_lock() /* really rtlock */
...
__rt_mutex_slowlock_locked()
task_blocks_on_rt_mutex()
// enqueue current task as waiter *AGAIN*
// *CONFUSION*
Fix this by making rt_mutex do the sched_submit_work() early, before
it enqueues itself as a waiter -- before it even knows *if* it will
wait.
[[ basically Thomas' patch but with different naming and a few asserts
added ]]
Originally-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20230908162254.999499-5-bigeasy@linutronix.de
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
There are currently two implementations of this basic __schedule()
loop, and there is soon to be a third.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20230908162254.999499-4-bigeasy@linutronix.de
|
|/
|
|
|
|
|
|
|
|
|
|
|
| |
Even though sched_submit_work() is ran from preemptible context,
it is discouraged to have it use blocking locks due to the recursion
potential.
Enforce this.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20230908162254.999499-2-bigeasy@linutronix.de
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
- The biggest change is introduction of a new iteration of the
SCHED_FAIR interactivity code: the EEVDF ("Earliest Eligible Virtual
Deadline First") scheduler
EEVDF too is a virtual-time scheduler, with two parameters (weight
and relative deadline), compared to CFS that had weight only. It
completely reworks the base scheduler: placement, preemption, picking
-- everything
LWN.net, as usual, has a terrific writeup about EEVDF:
https://lwn.net/Articles/925371/
Preemption (both tick and wakeup) is driven by testing against a
fresh pick. Because the tree is now effectively an interval tree, and
the selection is no longer the 'leftmost' task, over-scheduling is
less of a problem. A lot of the CFS heuristics are removed or
replaced by more natural latency-space parameters & constructs
In terms of expected performance regressions: we will and can fix
everything where a 'good' workload misbehaves with the new scheduler,
but EEVDF inevitably changes workload scheduling in a binary fashion,
hopefully for the better in the overwhelming majority of cases, but
in some cases it won't, especially in adversarial loads that got
lucky with the previous code, such as some variants of hackbench. We
are trying hard to err on the side of fixing all performance
regressions, but we expect some inevitable post-release iterations of
that process
- Improve load-balancing on hybrid x86 systems: enable cluster
scheduling (again)
- Improve & fix bandwidth-scheduling on nohz systems
- Improve bandwidth-throttling
- Use lock guards to simplify and de-goto-ify control flow
- Misc improvements, cleanups and fixes
* tag 'sched-core-2023-08-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (43 commits)
sched/eevdf/doc: Modify the documented knob to base_slice_ns as well
sched/eevdf: Curb wakeup-preemption
sched: Simplify sched_core_cpu_{starting,deactivate}()
sched: Simplify try_steal_cookie()
sched: Simplify sched_tick_remote()
sched: Simplify sched_exec()
sched: Simplify ttwu()
sched: Simplify wake_up_if_idle()
sched: Simplify: migrate_swap_stop()
sched: Simplify sysctl_sched_uclamp_handler()
sched: Simplify get_nohz_timer_target()
sched/rt: sysctl_sched_rr_timeslice show default timeslice after reset
sched/rt: Fix sysctl_sched_rr_timeslice intial value
sched/fair: Block nohz tick_stop when cfs bandwidth in use
sched, cgroup: Restore meaning to hierarchical_quota
MAINTAINERS: Add Peter explicitly to the psi section
sched/psi: Select KERNFS as needed
sched/topology: Align group flags when removing degenerate domain
sched/fair: remove util_est boosting
sched/fair: Propagate enqueue flags into place_entity()
...
|
| |
| |
| |
| |
| |
| |
| |
| | |
Use guards to reduce gotos and simplify control flow.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lore.kernel.org/r/20230801211812.371787909@infradead.org
|
| |
| |
| |
| |
| |
| |
| |
| | |
Use guards to reduce gotos and simplify control flow.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lore.kernel.org/r/20230801211812.304154828@infradead.org
|
| |
| |
| |
| |
| |
| |
| |
| | |
Use guards to reduce gotos and simplify control flow.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lore.kernel.org/r/20230801211812.236247952@infradead.org
|
| |
| |
| |
| |
| |
| |
| |
| | |
Use guards to reduce gotos and simplify control flow.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lore.kernel.org/r/20230801211812.168490417@infradead.org
|
| |
| |
| |
| |
| |
| |
| |
| | |
Use guards to reduce gotos and simplify control flow.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lore.kernel.org/r/20230801211812.101069260@infradead.org
|
| |
| |
| |
| |
| |
| |
| |
| | |
Use guards to reduce gotos and simplify control flow.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lore.kernel.org/r/20230801211812.032678917@infradead.org
|
| |
| |
| |
| |
| |
| |
| |
| | |
Use guards to reduce gotos and simplify control flow.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lore.kernel.org/r/20230801211811.964370836@infradead.org
|
| |
| |
| |
| |
| |
| |
| |
| | |
Use guards to reduce gotos and simplify control flow.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lore.kernel.org/r/20230801211811.896559109@infradead.org
|
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Use guards to reduce gotos and simplify control flow.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Link: https://lore.kernel.org/r/20230801211811.828443100@infradead.org
|
| |\
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Pick up the EEVDF work into the main branch - it's looking good so far.
Conflicts:
kernel/sched/features.h
Signed-off-by: Ingo Molnar <mingo@kernel.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
EEVDF uses this tunable as the base request/slice -- make sure the
name reflects this.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230531124604.205287511@infradead.org
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Where CFS is currently a WFQ based scheduler with only a single knob,
the weight. The addition of a second, latency oriented parameter,
makes something like WF2Q or EEVDF based a much better fit.
Specifically, EEVDF does EDF like scheduling in the left half of the
tree -- those entities that are owed service. Except because this is a
virtual time scheduler, the deadlines are in virtual time as well,
which is what allows over-subscription.
EEVDF has two parameters:
- weight, or time-slope: which is mapped to nice just as before
- request size, or slice length: which is used to compute
the virtual deadline as: vd_i = ve_i + r_i/w_i
Basically, by setting a smaller slice, the deadline will be earlier
and the task will be more eligible and ran earlier.
Tick driven preemption is driven by request/slice completion; while
wakeup preemption is driven by the deadline.
Because the tree is now effectively an interval tree, and the
selection is no longer 'leftmost', over-scheduling is less of a
problem.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230531124603.931005524@infradead.org
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
With the introduction of avg_vruntime, it is possible to approximate
lag (the entire purpose of introducing it in fact). Use this to do lag
based placement over sleep+wake.
Specifically, the FAIR_SLEEPERS thing places things too far to the
left and messes up the deadline aspect of EEVDF.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230531124603.794929315@infradead.org
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
CFS bandwidth limits and NOHZ full don't play well together. Tasks
can easily run well past their quotas before a remote tick does
accounting. This leads to long, multi-period stalls before such
tasks can run again. Currently, when presented with these conflicting
requirements the scheduler is favoring nohz_full and letting the tick
be stopped. However, nohz tick stopping is already best-effort, there
are a number of conditions that can prevent it, whereas cfs runtime
bandwidth is expected to be enforced.
Make the scheduler favor bandwidth over stopping the tick by setting
TICK_DEP_BIT_SCHED when the only running task is a cfs task with
runtime limit enabled. We use cfs_b->hierarchical_quota to
determine if the task requires the tick.
Add check in pick_next_task_fair() as well since that is where
we have a handle on the task that is actually going to be running.
Add check in sched_can_stop_tick() to cover some edge cases such
as nr_running going from 2->1 and the 1 remains the running task.
Reviewed-By: Ben Segall <bsegall@google.com>
Signed-off-by: Phil Auld <pauld@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230712133357.381137-3-pauld@redhat.com
|
| |/
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
In cgroupv2 cfs_b->hierarchical_quota is set to -1 for all task
groups due to the previous fix simply taking the min. It should
reflect a limit imposed at that level or by an ancestor. Even
though cgroupv2 does not require child quota to be less than or
equal to that of its ancestors the task group will still be
constrained by such a quota so this should be shown here. Cgroupv1
continues to set this correctly.
In both cases, add initialization when a new task group is created
based on the current parent's value (or RUNTIME_INF in the case of
root_task_group). Otherwise, the field is wrong until a quota is
changed after creation and __cfs_schedulable() is called.
Fixes: c53593e5cb69 ("sched, cgroup: Don't reject lower cpu.max on ancestors")
Signed-off-by: Phil Auld <pauld@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Ben Segall <bsegall@google.com>
Acked-by: Tejun Heo <tj@kernel.org>
Link: https://lore.kernel.org/r/20230714125746.812891-1-pauld@redhat.com
|