| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Provide a mechanism that allows running code in IRQ context. It is
most useful for NMI code that needs to interact with the rest of the
system -- like wakeup a task to drain buffers.
Perf currently has such a mechanism, so extract that and provide it as
a generic feature, independent of perf so that others may also
benefit.
The IRQ context callback is generated through self-IPIs where
possible, or on architectures like powerpc the decrementer (the
built-in timer facility) is set to generate an interrupt immediately.
Architectures that don't have anything like this get to do with a
callback from the timer tick. These architectures can call
irq_work_run() at the tail of any IRQ handlers that might enqueue such
work (like the perf IRQ handler) to avoid undue latencies in
processing the work.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Kyle McMartin <kyle@mcmartin.ca>
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
[ various fixes ]
Signed-off-by: Huang Ying <ying.huang@intel.com>
LKML-Reference: <1287036094.7768.291.camel@yhuang-dev>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The group_sched_in() function uses a transactional approach to schedule
a group of events. In a group, either all events can be scheduled or
none are. To schedule each event in, the function calls event_sched_in().
In case of error, event_sched_out() is called on each event in the group.
The problem is that event_sched_out() does not completely cancel the
effects of event_sched_in(). Furthermore event_sched_out() changes the
state of the event as if it had run which is not true is this particular
case.
Those inconsistencies impact time tracking fields and may lead to events
in a group not all reporting the same time_enabled and time_running values.
This is demonstrated with the example below:
$ task -eunhalted_core_cycles,baclears,baclears -e unhalted_core_cycles,baclears,baclears sleep 5
1946101 unhalted_core_cycles (32.85% scaling, ena=829181, run=556827)
11423 baclears (32.85% scaling, ena=829181, run=556827)
7671 baclears (0.00% scaling, ena=556827, run=556827)
2250443 unhalted_core_cycles (57.83% scaling, ena=962822, run=405995)
11705 baclears (57.83% scaling, ena=962822, run=405995)
11705 baclears (57.83% scaling, ena=962822, run=405995)
Notice that in the first group, the last baclears event does not
report the same timings as its siblings.
This issue comes from the fact that tstamp_stopped is updated
by event_sched_out() as if the event had actually run.
To solve the issue, we must ensure that, in case of error, there is
no change in the event state whatsoever. That means timings must
remain as they were when entering group_sched_in().
To do this we defer updating tstamp_running until we know the
transaction succeeded. Therefore, we have split event_sched_in()
in two parts separating the update to tstamp_running.
Similarly, in case of error, we do not want to update tstamp_stopped.
Therefore, we have split event_sched_out() in two parts separating
the update to tstamp_stopped.
With this patch, we now get the following output:
$ task -eunhalted_core_cycles,baclears,baclears -e unhalted_core_cycles,baclears,baclears sleep 5
2492050 unhalted_core_cycles (71.75% scaling, ena=1093330, run=308841)
11243 baclears (71.75% scaling, ena=1093330, run=308841)
11243 baclears (71.75% scaling, ena=1093330, run=308841)
1852746 unhalted_core_cycles (0.00% scaling, ena=784489, run=784489)
9253 baclears (0.00% scaling, ena=784489, run=784489)
9253 baclears (0.00% scaling, ena=784489, run=784489)
Note that the uneven timing between groups is a side effect of
the process spending most of its time sleeping, i.e., not enough
event rotations (but that's a separate issue).
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <4cb86b4c.41e9d80a.44e9.3e19@mx.google.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
You can only call update_context_time() when the context
is active, i.e., the thread it is attached to is still running.
However, perf_event_read() can be called even when the context
is inactive, e.g., user read() the counters. The call to
update_context_time() must be conditioned on the status of
the context, otherwise, bogus time_enabled, time_running may
be returned. Here is an example on AMD64. The task program
is an example from libpfm4. The -p prints deltas every 1s.
$ task -p -e cpu_clk_unhalted sleep 5
2,266,610 cpu_clk_unhalted (0.00% scaling, ena=2,158,982, run=2,158,982)
0 cpu_clk_unhalted (0.00% scaling, ena=2,158,982, run=2,158,982)
0 cpu_clk_unhalted (0.00% scaling, ena=2,158,982, run=2,158,982)
0 cpu_clk_unhalted (0.00% scaling, ena=2,158,982, run=2,158,982)
0 cpu_clk_unhalted (0.00% scaling, ena=2,158,982, run=2,158,982)
5,242,358,071 cpu_clk_unhalted (99.95% scaling, ena=5,000,359,984, run=2,319,270)
Whereas if you don't read deltas, e.g., no call to perf_event_read() until
the process terminates:
$ task -e cpu_clk_unhalted sleep 5
2,497,783 cpu_clk_unhalted (0.00% scaling, ena=2,376,899, run=2,376,899)
Notice that time_enable, time_running are bogus in the first example
causing bogus scaling.
This patch fixes the problem, by conditionally calling update_context_time()
in perf_event_read().
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: stable@kernel.org
LKML-Reference: <4cb856dc.51edd80a.5ae0.38fb@mx.google.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|\
| |
| |
| |
| |
| | |
Conflicts:
arch/arm/oprofile/common.c
kernel/perf_event.c
|
| |\
| | |
| | |
| | | |
git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-2.6-trace into perf/core
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
The config option used by archs to let the build system know that
the C version of the recordmcount works for said arch is currently
called HAVE_C_MCOUNT_RECORD which enables BUILD_C_RECORDMCOUNT. To
be more consistent with the name that all archs may use, it has been
renamed to HAVE_C_RECORDMCOUNT. This will be less confusing since
we are building a C recordmcount and not a mcount_record.
Suggested-by: Ingo Molnar <mingo@elte.hu>
Cc: <linux-arch@vger.kernel.org>
Cc: Michal Marek <mmarek@suse.cz>
Cc: linux-kbuild@vger.kernel.org
Cc: John Reiser <jreiser@bitwagon.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
This patch adds the support for the C version of recordmcount and
compile times show ~ 12% improvement.
After verifying this works, other archs can add:
HAVE_C_MCOUNT_RECORD
in its Kconfig and it will use the C version of recordmcount
instead of the perl version.
Cc: <linux-arch@vger.kernel.org>
Cc: Michal Marek <mmarek@suse.cz>
Cc: linux-kbuild@vger.kernel.org
Cc: John Reiser <jreiser@bitwagon.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
|
| |\ \
| | |/
| |/|
| | | |
git://git.kernel.org/pub/scm/linux/kernel/git/frederic/random-tracing into perf/core
|
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Fix
kernel/trace/trace_functions_graph.c: In function ‘trace_print_graph_duration’:
kernel/trace/trace_functions_graph.c:652: warning: comparison of distinct pointer types lacks a cast
when building 36-rc6 on a 32-bit due to the strict type check failing
in the min() macro.
Signed-off-by: Borislav Petkov <bp@alien8.de>
Cc: Chase Douglas <chase.douglas@canonical.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@elte.hu>
LKML-Reference: <20100929080823.GA13595@liondog.tnic>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
|
| |/
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Fix selftest to clear flags field for reusing probes
because the flags field can be modified by Kprobes.
This also set NULL to kprobe.addr instead of 0.
Signed-off-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Cc: 2nddept-manager@sdl.hitachi.co.jp
LKML-Reference: <20101014031024.4100.50107.stgit@ltc236.sdl.hitachi.co.jp>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| |\
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | | |
Conflicts:
arch/x86/kernel/module.c
Merge reason: Resolve the conflict, pick up fixes.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | |\
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip
* 'core-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
rcu: rcu_read_lock_bh_held(): disabling irqs also disables bh
generic-ipi: Fix deadlock in __smp_call_function_single
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
Just got my 6 way machine to a state where cpu 0 is in an
endless loop within __smp_call_function_single.
All other cpus are idle.
The call trace on cpu 0 looks like this:
__smp_call_function_single
scheduler_tick
update_process_times
tick_sched_timer
__run_hrtimer
hrtimer_interrupt
clock_comparator_work
do_extint
ext_int_handler
----> timer irq
cpu_idle
__smp_call_function_single() got called from nohz_balancer_kick()
(inlined) with the remote cpu being 1, wait being 0 and the per
cpu variable remote_sched_softirq_cb (call_single_data) of the
current cpu (0).
Then it loops forever when it tries to grab the lock of the
call_single_data, since it is already locked and enqueued on cpu 0.
My theory how this could have happened: for some reason the
scheduler decided to call __smp_call_function_single() on it's own
cpu, and sends an IPI to itself. The interrupt stays pending
since IRQs are disabled. If then the hypervisor schedules the
cpu away it might happen that upon rescheduling both the IPI and
the timer IRQ are pending. If then interrupts are enabled again
it depends which one gets scheduled first.
If the timer interrupt gets delivered first we end up with the
local deadlock as seen in the calltrace above.
Let's make __smp_call_function_single() check if the target cpu is
the current cpu and execute the function immediately just like
smp_call_function_single does. That should prevent at least the
scenario described here.
It might also be that the scheduler is not supposed to call
__smp_call_function_single with the remote cpu being the current
cpu, but that is a different issue.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Jens Axboe <jaxboe@fusionio.com>
Cc: Venkatesh Pallipadi <venki@google.com>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
LKML-Reference: <20100910114729.GB2827@osiris.boeblingen.de.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
With all the recent module loading cleanups, we've minimized the code
that sits under module_mutex, fixing various deadlocks and making it
possible to do most of the module loading in parallel.
However, that whole conversion totally missed the rather obscure code
that adds a new module to the list for BUG() handling. That code was
doubly obscure because (a) the code itself lives in lib/bugs.c (for
dubious reasons) and (b) it gets called from the architecture-specific
"module_finalize()" rather than from generic code.
Calling it from arch-specific code makes no sense what-so-ever to begin
with, and is now actively wrong since that code isn't protected by the
module loading lock any more.
So this commit moves the "module_bug_{finalize,cleanup}()" calls away
from the arch-specific code, and into the generic code - and in the
process protects it with the module_mutex so that the list operations
are now safe.
Future fixups:
- move the module list handling code into kernel/module.c where it
belongs.
- get rid of 'module_bug_list' and just use the regular list of modules
(called 'modules' - imagine that) that we already create and maintain
for other reasons.
Reported-and-tested-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Adrian Bunk <bunk@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: stable@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
The kfifo_dma family of functions use sg_mark_end() on the last element in
their scatterlist. This forces use of a fresh scatterlist for each DMA
operation, which makes recycling a single scatterlist impossible.
Change the behavior of the kfifo_dma functions to match the usage of the
dma_map_sg function. This means that users must respect the returned
nents value. The sample code is updated to reflect the change.
This bug is trivial to cause: call kfifo_dma_in_prepare() such that it
prepares a scatterlist with a single entry comprising the whole fifo.
This is the case when you map the entirety of a newly created empty fifo.
This causes the setup_sgl() function to mark the first scatterlist entry
as the end of the chain, no matter what comes after it.
Afterwards, add and remove some data from the fifo such that another call
to kfifo_dma_in_prepare() will create two scatterlist entries. It returns
nents=2. However, due to the previous sg_mark_end() call, sg_is_last()
will now return true for the first scatterlist element. This causes the
sample code to print a single scatterlist element when it should print
two.
By removing the call to sg_mark_end(), we make the API as similar as
possible to the DMA mapping API. All users are required to respect the
returned nents.
Signed-off-by: Ira W. Snyder <iws@ovro.caltech.edu>
Cc: Stefani Seibold <stefani@seibold.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
The below bug in fork led to the rmap walk finding the parent huge-pmd
twice instead of just once, because the anon_vma_chain objects of the
child vma still point to the vma->vm_mm of the parent.
The patch fixes it by making the rmap walk accurate during fork. It's not
a big deal normally but it worth being accurate considering the cost is
the same.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Johannes Weiner <jweiner@redhat.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | | |
This patch fixes an error in perf_event_open() when the pid
provided by the user is invalid. find_lively_task_by_vpid()
does not return NULL on error but an error code. Without the
fix the error code was silently passed to find_get_context()
which would eventually cause a invalid pointer dereference.
Signed-off-by: Stephane Eranian <eranian@google.com>
Cc: peterz@infradead.org
Cc: paulus@samba.org
Cc: davem@davemloft.net
Cc: fweisbec@gmail.com
Cc: perfmon2-devel@lists.sf.net
Cc: eranian@gmail.com
Cc: robert.richter@amd.com
LKML-Reference: <4ca9a5d1.e8e9d80a.3dbb.ffff8f2e@mx.google.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| |\ \ \
| | | | |
| | | | |
| | | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-2.6-trace into perf/core
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
Make use of the jump label infrastructure for tracepoints.
Signed-off-by: Jason Baron <jbaron@redhat.com>
LKML-Reference: <a9ba2056e2c9cf332c3c300b577463ce66ff23a8.1284733808.git.jbaron@redhat.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
Add a jump_label_text_reserved(void *start, void *end), so that other
pieces of code that want to modify kernel text, can first verify that
jump label has not reserved the instruction.
Acked-by: Masami Hiramatsu <mhiramat@redhat.com>
Signed-off-by: Jason Baron <jbaron@redhat.com>
LKML-Reference: <06236663a3a7b1c1f13576bb9eccb6d9c17b7bfe.1284733808.git.jbaron@redhat.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
Initialize the workqueue data structures *before* they are registered
so that they are ready for callbacks.
Signed-off-by: Jason Baron <jbaron@redhat.com>
LKML-Reference: <e3a3383fc370ac7086625bebe89d9480d7caf372.1284733808.git.jbaron@redhat.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
base patch to implement 'jump labeling'. Based on a new 'asm goto' inline
assembly gcc mechanism, we can now branch to labels from an 'asm goto'
statment. This allows us to create a 'no-op' fastpath, which can subsequently
be patched with a jump to the slowpath code. This is useful for code which
might be rarely used, but which we'd like to be able to call, if needed.
Tracepoints are the current usecase that these are being implemented for.
Acked-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Jason Baron <jbaron@redhat.com>
LKML-Reference: <ee8b3595967989fdaf84e698dc7447d315ce972a.1284733808.git.jbaron@redhat.com>
[ cleaned up some formating ]
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
|
| |\ \ \ \
| | | |/ /
| | |/| |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
Conflicts:
kernel/hw_breakpoint.c
Merge reason: resolve the conflict.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
The per-pmu per-cpu context patch converted things from
get_cpu_var() to this_cpu_ptr(), but that only works if
rcu_read_lock() actually disables preemption, and since
there is no such guarantee, we need to fix that.
Use the newly introduced {get,put}_cpu_ptr().
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Tejun Heo <tj@kernel.org>
LKML-Reference: <20100917093009.308453028@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| |\ \ \ \
| | |_|/ /
| |/| | |
| | | | |
| | | | |
| | | | | |
Merge reason: Pick up the latest fixes in -rc5.
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
Revert the timer per cpu-context timers because of unfortunate
nohz interaction. Fixing that would have been somewhat ugly, so
go back to driving things from the regular tick. Provide a
jiffies interval feature for people who want slower rotations.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Stephane Eranian <eranian@google.com>
Cc: Robert Richter <robert.richter@amd.com>
Cc: Yinghai Lu <yinghai@kernel.org>
LKML-Reference: <20100917093009.519845633@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
Use the right cpu-context.. spotted by preempt warning on
hot-unplug
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Stephane Eranian <eranian@google.com>
Cc: Robert Richter <robert.richter@amd.com>
LKML-Reference: <20100917093009.461794357@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
Aside from allowing software events into a !software group,
allow adding !software events to pure software groups.
Once we've moved the software group and attached the first
!software event, the group will no longer be a pure software
group and hence no longer be eligible for movement, at which
point the straight ctx comparison is correct again.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Stephane Eranian <eranian@google.com>
Cc: Robert Richter <robert.richter@amd.com>
Cc: Paul Mackerras <paulus@samba.org>
LKML-Reference: <20100917093009.410784731@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
Events were not grouped anymore. The reason was that in
perf_event_open(), the field event->group_leader was
initialized before the function looked up the group_fd
to find the event leader. This patch fixes this by
reordering the code correctly.
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Robert Richter <robert.richter@amd.com>
LKML-Reference: <20100917093009.360420946@chello.nl>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
This removes following warnings when build with C=1
warning: context imbalance in 'kretprobe_hash_lock' - wrong count at exit
warning: context imbalance in 'kretprobe_table_lock' - wrong count at exit
warning: context imbalance in 'kretprobe_hash_unlock' - unexpected unlock
warning: context imbalance in 'kretprobe_table_unlock' - unexpected unlock
Signed-off-by: Namhyung Kim <namhyung@gmail.com>
Acked-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
LKML-Reference: <1284512670-2369-6-git-send-email-namhyung@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
Make following (internal) functions static to make sparse
happier :-)
* get_optimized_kprobe: only called from static functions
* kretprobe_table_unlock: _lock function is static
* kprobes_optinsn_template_holder: never called but holding asm code
Signed-off-by: Namhyung Kim <namhyung@gmail.com>
Acked-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
LKML-Reference: <1284512670-2369-4-git-send-email-namhyung@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
Verify jprobe's entry point is a function entry point
using kallsyms' offset value.
Signed-off-by: Namhyung Kim <namhyung@gmail.com>
Acked-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
LKML-Reference: <1284512670-2369-3-git-send-email-namhyung@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
Remove call to kernel_text_address() in register_jprobes()
because it is called right after in register_kprobe().
Signed-off-by: Namhyung Kim <namhyung@gmail.com>
Acked-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
LKML-Reference: <1284512670-2369-2-git-send-email-namhyung@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
The kernel perf event creation path shouldn't use find_task_by_vpid()
because a vpid exists in a specific namespace. find_task_by_vpid() uses
current's pid namespace which isn't always the correct namespace to use
for the vpid in all the places perf_event_create_kernel_counter() (and
thus find_get_context()) is called.
The goal is to clean up pid namespace handling and prevent bugs like:
https://bugzilla.kernel.org/show_bug.cgi?id=17281
Instead of using pids switch find_get_context() to use task struct
pointers directly. The syscall is responsible for resolving the pid to
a task struct. This moves the pid namespace resolution into the syscall
much like every other syscall that takes pid parameters.
Signed-off-by: Matt Helsley <matthltc@us.ibm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Robin Green <greenrd@greenrd.org>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
LKML-Reference: <a134e5e392ab0204961fd1a62c84a222bf5874a9.1284407763.git.matthltc@us.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
Split out the code which searches for non-exiting tasks into its own
helper. Creating this helper not only makes the code slightly more
readable it prepares to move the search out of find_get_context() in
a subsequent commit.
Signed-off-by: Matt Helsley <matthltc@us.ibm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Robin Green <greenrd@greenrd.org>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
LKML-Reference: <561205417b450b8a4bf7488374541d64b4690431.1284407762.git.matthltc@us.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
Hardware breakpoints can't be registered within pid namespaces
because tsk->pid is passed rather than the pid in the current
namespace.
(See https://bugzilla.kernel.org/show_bug.cgi?id=17281 )
This is a quick fix demonstrating the problem but is not the
best method of solving the problem since passing pids internally
is not the best way to avoid pid namespace bugs. Subsequent patches
will show a better solution.
Much thanks to Frederic Weisbecker <fweisbec@gmail.com> for doing the
bulk of the work finding this bug.
Signed-off-by: Matt Helsley <matthltc@us.ibm.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Robin Green <greenrd@greenrd.org>
Cc: Prasad <prasad@linux.vnet.ibm.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
LKML-Reference: <f63454af09fb1915717251570423eb9ddd338340.1284407762.git.matthltc@us.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | | |
In case you boot with the watchdog disabled, i.e., nowatchdog, then,
if you try to disable it via /proc/sys/kernel/watchdog, you get
a kernel crash. The reason is that you are trying to cancel a hrtimer
which has never been initialized.
This patch fixes this by skipping execution of
watchdog_disable_all_cpus() when the watchdog is marked
disabled from boot.
Signed-off-by: Stephane Eranian <eranian@google.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <4c8f7a23.cae9d80a.2c11.0bb4@mx.google.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| |\ \ \ \
| | | | | |
| | | | | |
| | | | | | |
git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-2.6-trace into perf/core
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
If we do:
# cd /sys/kernel/debug
# echo 'do_IRQ:traceon schedule:traceon sys_write:traceon' > \
set_ftrace_filter
# cat set_ftrace_filter
We get the following output:
#### all functions enabled ####
sys_write:traceon:unlimited
schedule:traceon:unlimited
do_IRQ:traceon:unlimited
This outputs two lists. One is the fact that all functions are
currently enabled for function tracing, the other has three probed
functions, which happen to have 'traceon' as their commands.
Currently, when reading the first list (functions enabled) the
seq_file code will receive a "NULL" from the t_next() function
causing it to exit early. This makes "read()" from userspace stop
reading the code at this boarder. Although read is allowed to do this,
some (broken) applications might consider this an end of file and
stop early.
This patch adds the start of the second list to t_next() when it
finishes the first list. It is a simple change and gives the
set_ftrace_filter file nicer reading ability.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
This patch keeps track of the index within the elements of
set_ftrace_filter and if the position goes backwards, it nicely
resets and starts from the beginning again.
This allows for lseek and pread to work properly now.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
The set_ftrace_filter uses seq_file and reads from two lists. The
pointer returned by t_next() can either be of type struct dyn_ftrace
or struct ftrace_func_probe. If there is a bug (there was one)
the wrong pointer may be used and the reference can cause an oops.
This patch makes t_next() and friends only return the iterator structure
which now has a pointer of type struct dyn_ftrace and struct
ftrace_func_probe. The t_show() can now test if the pointer is NULL or
not and if the pointer exists, it is guaranteed to be of the correct type.
Now if there's a bug, only wrong data will be shown but not an oops.
Cc: Chris Wright <chrisw@sous-sol.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
After the filtered functions are read, the probed functions are read
from the hash in set_ftrace_filter. When the hashed probed functions
are read, the *pos passed in is reset. Instead of modifying the pos
given to the read function, just record the pos where the filtered
functions ended and subtract from that.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
The enums for FTRACE_ENABLE_MCOUNT and FTRACE_DISABLE_MCOUNT were
used as commands to ftrace_run_update_code(). But these commands
were used by the old nasty ftrace daemon that has long been slain.
This is a clean up patch to remove the references to these enums
and simplify the code a little.
Reported-by: Wu Zhangjin <wuzhangjin@gmail.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
When the function graph tracer funcgraph-irq option is zero, disable
tracing in IRQs. This makes the option have two effects.
1) When reading the trace file, do not display the functions that
happen in interrupt context (when detected)
2) [*new*] When recording a trace, skip those that are detected
to be in interrupt by the 'in_irq()' function
Note, in_irq() is updated at irq_enter() and irq_exit(). There are
still functions that are recorded by the function graph tracer that
is in interrupt context but outside the irq_enter/exit() routines.
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
It's handy to be able to disable the irq related output
and not to have to jump over each irq related code, when
you have no interrest in it.
The option is by default enabled, so there's no change to
current behaviour. It affects only the final output, so all
the irq related data stay in the ring buffer.
Signed-off-by: Jiri Olsa <jolsa@redhat.com>
LKML-Reference: <20100907145344.GC1912@jolsa.brq.redhat.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
With the context rework stuff we can actually end up freeing an event
before it gets attached to a context.
Reported-by: Cyrill Gorcunov <gorcunov@gmail.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
Simplify things and simply synchronize against two RCU variants for
PMU unregister -- we don't care about performance, its module unload
if anything.
Reported-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
We ought to return -ENOENT when non of the registered PMUs
recognise the requested event.
This fixes a boot crash that occurs if no PMU is available
but the NMI watchdog tries to register an event.
Reported-by: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
Even though we call it from the inherit path, where the child is
not yet accessible, we need to hold ctx->lock, add_event_to_ctx()
assumes IRQs are disabled.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | | |
I missed a perf_event_ctxp user when converting it to an array. Pull this
last user into perf_event.c as well and fix it up.
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
LKML-Reference: <new-submission>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|