summaryrefslogtreecommitdiffstats
path: root/mm/huge_memory.c
Commit message (Collapse)AuthorAgeFilesLines
* mm/thp/autonuma: use TNF flag instead of vm faultAneesh Kumar K.V2017-02-241-1/+1
| | | | | | | | | | | | | | | | | We are using the wrong flag value in task_numa_falt function. This can result in us doing wrong numa fault statistics update, because we update num_pages_migrate and numa_fault_locality etc based on the flag argument passed. Fixes: bae473a423 ("mm: introduce fault_env") Link: http://lkml.kernel.org/r/1487498395-9544-1-git-send-email-aneesh.kumar@linux.vnet.ibm.com Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Rik van Riel <riel@surriel.com> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm/autonuma: let architecture override how the write bit should be stashed ↵Aneesh Kumar K.V2017-02-241-3/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | in a protnone pte. Patch series "Numabalancing preserve write fix", v2. This patch series address an issue w.r.t THP migration and autonuma preserve write feature. migrate_misplaced_transhuge_page() cannot deal with concurrent modification of the page. It does a page copy without following the migration pte sequence. IIUC, this was done to keep the migration simpler and at the time of implemenation we didn't had THP page cache which would have required a more elaborate migration scheme. That means thp autonuma migration expect the protnone with saved write to be done such that both kernel and user cannot update the page content. This patch series enables archs like ppc64 to do that. We are good with the hash translation mode with the current code, because we never create a hardware page table entry for a protnone pte. This patch (of 2): Autonuma preserves the write permission across numa fault to avoid taking a writefault after a numa fault (Commit: b191f9b106ea " mm: numa: preserve PTE write permissions across a NUMA hinting fault"). Architecture can implement protnone in different ways and some may choose to implement that by clearing Read/ Write/Exec bit of pte. Setting the write bit on such pte can result in wrong behaviour. Fix this up by allowing arch to override how to save the write bit on a protnone pte. [aneesh.kumar@linux.vnet.ibm.com: don't mark pte saved write in case of dirty_accountable] Link: http://lkml.kernel.org/r/1487942884-16517-1-git-send-email-aneesh.kumar@linux.vnet.ibm.com [aneesh.kumar@linux.vnet.ibm.com: v3] Link: http://lkml.kernel.org/r/1487498625-10891-2-git-send-email-aneesh.kumar@linux.vnet.ibm.com Link: http://lkml.kernel.org/r/1487050314-3892-2-git-send-email-aneesh.kumar@linux.vnet.ibm.com Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Michael Neuling <mikey@neuling.org> Cc: Rik van Riel <riel@surriel.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Paul Mackerras <paulus@samba.org> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Michael Ellerman <michaele@au1.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: convert try_to_unmap_one() to use page_vma_mapped_walk()Kirill A. Shutemov2017-02-241-12/+4
| | | | | | | | | | | | | | | | | | | | | For consistency, it worth converting all page_check_address() to page_vma_mapped_walk(), so we could drop the former. It also makes freeze_page() as we walk though rmap only once. Link: http://lkml.kernel.org/r/20170129173858.45174-8-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: introduce page_vma_mapped_walk()Kirill A. Shutemov2017-02-241-3/+6
| | | | | | | | | | | | | | | | | | | | | | | | | Introduce a new interface to check if a page is mapped into a vma. It aims to address shortcomings of page_check_address{,_transhuge}. Existing interface is not able to handle PTE-mapped THPs: it only finds the first PTE. The rest lefted unnoticed. page_vma_mapped_walk() iterates over all possible mapping of the page in the vma. Link: http://lkml.kernel.org/r/20170129173858.45174-3-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm, x86: add support for PUD-sized transparent hugepagesMatthew Wilcox2017-02-241-0/+249
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The current transparent hugepage code only supports PMDs. This patch adds support for transparent use of PUDs with DAX. It does not include support for anonymous pages. x86 support code also added. Most of this patch simply parallels the work that was done for huge PMDs. The only major difference is how the new ->pud_entry method in mm_walk works. The ->pmd_entry method replaces the ->pte_entry method, whereas the ->pud_entry method works along with either ->pmd_entry or ->pte_entry. The pagewalk code takes care of locking the PUD before calling ->pud_walk, so handlers do not need to worry whether the PUD is stable. [dave.jiang@intel.com: fix SMP x86 32bit build for native_pud_clear()] Link: http://lkml.kernel.org/r/148719066814.31111.3239231168815337012.stgit@djiang5-desk3.ch.intel.com [dave.jiang@intel.com: native_pud_clear missing on i386 build] Link: http://lkml.kernel.org/r/148640375195.69754.3315433724330910314.stgit@djiang5-desk3.ch.intel.com Link: http://lkml.kernel.org/r/148545059381.17912.8602162635537598445.stgit@djiang5-desk3.ch.intel.com Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com> Signed-off-by: Dave Jiang <dave.jiang@intel.com> Tested-by: Alexander Kapshuk <alexander.kapshuk@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jan Kara <jack@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Nilesh Choudhury <nilesh.choudhury@oracle.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm, thp: add new defer+madvise defrag optionDavid Rientjes2017-02-221-72/+74
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | There is no thp defrag option that currently allows MADV_HUGEPAGE regions to do direct compaction and reclaim while all other thp allocations simply trigger kswapd and kcompactd in the background and fail immediately. The "defer" setting simply triggers background reclaim and compaction for all regions, regardless of MADV_HUGEPAGE, which makes it unusable for our userspace where MADV_HUGEPAGE is being used to indicate the application is willing to wait for work for thp memory to be available. The "madvise" setting will do direct compaction and reclaim for these MADV_HUGEPAGE regions, but does not trigger kswapd and kcompactd in the background for anybody else. For reasonable usage, there needs to be a mesh between the two options. This patch introduces a fifth mode, "defer+madvise", that will do direct reclaim and compaction for MADV_HUGEPAGE regions and trigger background reclaim and compaction for everybody else so that hugepages may be available in the near future. A proposal to allow direct reclaim and compaction for MADV_HUGEPAGE regions as part of the "defer" mode, making it a very powerful setting and avoids breaking userspace, was offered: http://marc.info/?t=148236612700003 This additional mode is a compromise. A second proposal to allow both "defer" and "madvise" to be selected at the same time was also offered: http://marc.info/?t=148357345300001. This is possible, but there was a concern that it might break existing userspaces the parse the output of the defrag mode, so the fifth option was introduced instead. This patch also cleans up the helper function for storing to "enabled" and "defrag" since the former supports three modes while the latter supports five and triple_flag_store() was getting unnecessarily messy. Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1701101614330.41805@chino.kir.corp.google.com Signed-off-by: David Rientjes <rientjes@google.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Michal Hocko <mhocko@kernel.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm/huge_memory.c: respect FOLL_FORCE/FOLL_COW for thpKeno Fischer2017-01-241-1/+17
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In commit 19be0eaffa3a ("mm: remove gup_flags FOLL_WRITE games from __get_user_pages()"), the mm code was changed from unsetting FOLL_WRITE after a COW was resolved to setting the (newly introduced) FOLL_COW instead. Simultaneously, the check in gup.c was updated to still allow writes with FOLL_FORCE set if FOLL_COW had also been set. However, a similar check in huge_memory.c was forgotten. As a result, remote memory writes to ro regions of memory backed by transparent huge pages cause an infinite loop in the kernel (handle_mm_fault sets FOLL_COW and returns 0 causing a retry, but follow_trans_huge_pmd bails out immidiately because `(flags & FOLL_WRITE) && !pmd_write(*pmd)` is true. While in this state the process is stil SIGKILLable, but little else works (e.g. no ptrace attach, no other signals). This is easily reproduced with the following code (assuming thp are set to always): #include <assert.h> #include <fcntl.h> #include <stdint.h> #include <stdio.h> #include <string.h> #include <sys/mman.h> #include <sys/stat.h> #include <sys/types.h> #include <sys/wait.h> #include <unistd.h> #define TEST_SIZE 5 * 1024 * 1024 int main(void) { int status; pid_t child; int fd = open("/proc/self/mem", O_RDWR); void *addr = mmap(NULL, TEST_SIZE, PROT_READ, MAP_ANONYMOUS | MAP_PRIVATE, 0, 0); assert(addr != MAP_FAILED); pid_t parent_pid = getpid(); if ((child = fork()) == 0) { void *addr2 = mmap(NULL, TEST_SIZE, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, 0, 0); assert(addr2 != MAP_FAILED); memset(addr2, 'a', TEST_SIZE); pwrite(fd, addr2, TEST_SIZE, (uintptr_t)addr); return 0; } assert(child == waitpid(child, &status, 0)); assert(WIFEXITED(status) && WEXITSTATUS(status) == 0); return 0; } Fix this by updating follow_trans_huge_pmd in huge_memory.c analogously to the update in gup.c in the original commit. The same pattern exists in follow_devmap_pmd. However, we should not be able to reach that check with FOLL_COW set, so add WARN_ONCE to make sure we notice if we ever do. [akpm@linux-foundation.org: coding-style fixes] Link: http://lkml.kernel.org/r/20170106015025.GA38411@juliacomputing.com Signed-off-by: Keno Fischer <keno@juliacomputing.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Greg Thelen <gthelen@google.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Willy Tarreau <w@1wt.eu> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Kees Cook <keescook@chromium.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Hugh Dickins <hughd@google.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: pmd dirty emulation in page fault handlerMinchan Kim2017-01-101-2/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Andreas reported [1] made a test in jemalloc hang in THP mode in arm64: http://lkml.kernel.org/r/mvmmvfy37g1.fsf@hawking.suse.de The problem is currently page fault handler doesn't supports dirty bit emulation of pmd for non-HW dirty-bit architecture so that application stucks until VM marked the pmd dirty. How the emulation work depends on the architecture. In case of arm64, when it set up pte firstly, it sets pte PTE_RDONLY to get a chance to mark the pte dirty via triggering page fault when store access happens. Once the page fault occurs, VM marks the pmd dirty and arch code for setting pmd will clear PTE_RDONLY for application to proceed. IOW, if VM doesn't mark the pmd dirty, application hangs forever by repeated fault(i.e., store op but the pmd is PTE_RDONLY). This patch enables pmd dirty-bit emulation for those architectures. [1] b8d3c4c3009d, mm/huge_memory.c: don't split THP page when MADV_FREE syscall is called Fixes: b8d3c4c3009d ("mm/huge_memory.c: don't split THP page when MADV_FREE syscall is called") Link: http://lkml.kernel.org/r/1482506098-6149-1-git-send-email-minchan@kernel.org Signed-off-by: Minchan Kim <minchan@kernel.org> Reported-by: Andreas Schwab <schwab@suse.de> Tested-by: Andreas Schwab <schwab@suse.de> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Jason Evans <je@fb.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: <stable@vger.kernel.org> [4.5+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: get rid of __GFP_OTHER_NODEMichal Hocko2017-01-101-2/+1
| | | | | | | | | | | | | | | | | | | | | | | | The flag was introduced by commit 78afd5612deb ("mm: add __GFP_OTHER_NODE flag") to allow proper accounting of remote node allocations done by kernel daemons on behalf of a process - e.g. khugepaged. After "mm: fix remote numa hits statistics" we do not need and actually use the flag so we can safely remove it because all allocations which are satisfied from their "home" node are accounted properly. [mhocko@suse.com: fix build] Link: http://lkml.kernel.org/r/20170106122225.GK5556@dhcp22.suse.cz Link: http://lkml.kernel.org/r/20170102153057.9451-3-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Mel Gorman <mgorman@suse.de> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Michal Hocko <mhocko@suse.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Taku Izumi <izumi.taku@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: join struct fault_env and vm_faultJan Kara2016-12-141-86/+87
| | | | | | | | | | | | | | | | | | | Currently we have two different structures for passing fault information around - struct vm_fault and struct fault_env. DAX will need more information in struct vm_fault to handle its faults so the content of that structure would become event closer to fault_env. Furthermore it would need to generate struct fault_env to be able to call some of the generic functions. So at this point I don't think there's much use in keeping these two structures separate. Just embed into struct vm_fault all that is needed to use it for both purposes. Link: http://lkml.kernel.org/r/1479460644-25076-2-git-send-email-jack@suse.cz Signed-off-by: Jan Kara <jack@suse.cz> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: make transparent hugepage size publicHugh Dickins2016-12-121-0/+10
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | Test programs want to know the size of a transparent hugepage. While it is commonly the same as the size of a hugetlbfs page (shown as Hugepagesize in /proc/meminfo), that is not always so: powerpc implements transparent hugepages in a different way from hugetlbfs pages, so it's coincidence when their sizes are the same; and x86 and others can support more than one hugetlbfs page size. Add /sys/kernel/mm/transparent_hugepage/hpage_pmd_size to show the THP size in bytes - it's the same for Anonymous and Shmem hugepages. Call it hpage_pmd_size (after HPAGE_PMD_SIZE) rather than hpage_size, in case some transparent support for pud and pgd pages is added later. Link: http://lkml.kernel.org/r/alpine.LSU.2.11.1612052200290.13021@eggly.anvils Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Greg Thelen <gthelen@google.com> Cc: David Rientjes <rientjes@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Jan Kara <jack@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: THP page cache support for ppc64Aneesh Kumar K.V2016-12-121-0/+17
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Add arch specific callback in the generic THP page cache code that will deposit and withdarw preallocated page table. Archs like ppc64 use this preallocated table to store the hash pte slot information. Testing: kernel build of the patch series on tmpfs mounted with option huge=always The related thp stat: thp_fault_alloc 72939 thp_fault_fallback 60547 thp_collapse_alloc 603 thp_collapse_alloc_failed 0 thp_file_alloc 253763 thp_file_mapped 4251 thp_split_page 51518 thp_split_page_failed 1 thp_deferred_split_page 73566 thp_split_pmd 665 thp_zero_page_alloc 3 thp_zero_page_alloc_failed 0 [akpm@linux-foundation.org: remove unneeded parentheses, per Kirill] Link: http://lkml.kernel.org/r/20161113150025.17942-2-aneesh.kumar@linux.vnet.ibm.com Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Michael Neuling <mikey@neuling.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Balbir Singh <bsingharora@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: move vma_is_anonymous check within pmd_move_must_withdrawAneesh Kumar K.V2016-12-121-2/+16
| | | | | | | | | | | | | | | | | | | | | | | Independent of whether the vma is for anonymous memory, some arches like ppc64 would like to override pmd_move_must_withdraw(). One option is to encapsulate the vma_is_anonymous() check for general architectures inside pmd_move_must_withdraw() so that is always called and architectures that need unconditional overriding can override this function. ppc64 needs to override the function when the MMU is configured to use hash PTE's. [bsingharora@gmail.com: reworked changelog] Link: http://lkml.kernel.org/r/20161113150025.17942-1-aneesh.kumar@linux.vnet.ibm.com Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc) Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Michael Neuling <mikey@neuling.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Balbir Singh <bsingharora@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: add tlb_remove_check_page_size_change to track page size changeAneesh Kumar K.V2016-12-121-0/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | With commit e77b0852b551 ("mm/mmu_gather: track page size with mmu gather and force flush if page size change") we added the ability to force a tlb flush when the page size change in a mmu_gather loop. We did that by checking for a page size change every time we added a page to mmu_gather for lazy flush/remove. We can improve that by moving the page size change check early and not doing it every time we add a page. This also helps us to do tlb flush when invalidating a range covering dax mapping. Wrt dax mapping we don't have a backing struct page and hence we don't call tlb_remove_page, which earlier forced the tlb flush on page size change. Moving the page size change check earlier means we will do the same even for dax mapping. We also avoid doing this check on architecture other than powerpc. In a later patch we will remove page size check from tlb_remove_page(). Link: http://lkml.kernel.org/r/20161026084839.27299-5-aneesh.kumar@linux.vnet.ibm.com Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: use the correct page size when removing the pageAneesh Kumar K.V2016-12-121-2/+2
| | | | | | | | | | | | We are removing a pmd hugepage here. Use the correct page size. Link: http://lkml.kernel.org/r/20161026084839.27299-2-aneesh.kumar@linux.vnet.ibm.com Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Merge branch 'mm-pat-for-linus' of ↵Linus Torvalds2016-12-121-2/+3
|\ | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull mm/PAT cleanup from Ingo Molnar: "A single cleanup for a generic interface that was originally introduced for PAT" * 'mm-pat-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/pat, mm: Make track_pfn_insert() return void
| * x86/pat, mm: Make track_pfn_insert() return voidBorislav Petkov2016-11-091-2/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | It only returns 0 so we can save us the testing of its retval everywhere. Signed-off-by: Borislav Petkov <bp@suse.de> Cc: Toshi Kani <toshi.kani@hp.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Brian Gerst <brgerst@gmail.com> Cc: mcgrof@suse.com Cc: dri-devel@lists.freedesktop.org Cc: Andy Lutomirski <luto@kernel.org> Cc: Dave Airlie <airlied@redhat.com> Cc: dan.j.williams@intel.com Cc: torvalds@linux-foundation.org Link: http://lkml.kernel.org/r/20161026174839.rusfxkm3xt4ennhe@pd.tnic Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
* | mremap: move_ptes: check pte dirty after its removalAaron Lu2016-11-291-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Linus found there still is a race in mremap after commit 5d1904204c99 ("mremap: fix race between mremap() and page cleanning"). As described by Linus: "the issue is that another thread might make the pte be dirty (in the hardware walker, so no locking of ours will make any difference) *after* we checked whether it was dirty, but *before* we removed it from the page tables" Fix it by moving the check after we removed it from the page table. Suggested-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Aaron Lu <aaron.lu@intel.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | mremap: fix race between mremap() and page cleanningAaron Lu2016-11-171-1/+8
|/ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Prior to 3.15, there was a race between zap_pte_range() and page_mkclean() where writes to a page could be lost. Dave Hansen discovered by inspection that there is a similar race between move_ptes() and page_mkclean(). We've been able to reproduce the issue by enlarging the race window with a msleep(), but have not been able to hit it without modifying the code. So, we think it's a real issue, but is difficult or impossible to hit in practice. The zap_pte_range() issue is fixed by commit 1cf35d47712d("mm: split 'tlb_flush_mmu()' into tlb flushing and memory freeing parts"). And this patch is to fix the race between page_mkclean() and mremap(). Here is one possible way to hit the race: suppose a process mmapped a file with READ | WRITE and SHARED, it has two threads and they are bound to 2 different CPUs, e.g. CPU1 and CPU2. mmap returned X, then thread 1 did a write to addr X so that CPU1 now has a writable TLB for addr X on it. Thread 2 starts mremaping from addr X to Y while thread 1 cleaned the page and then did another write to the old addr X again. The 2nd write from thread 1 could succeed but the value will get lost. thread 1 thread 2 (bound to CPU1) (bound to CPU2) 1: write 1 to addr X to get a writeable TLB on this CPU 2: mremap starts 3: move_ptes emptied PTE for addr X and setup new PTE for addr Y and then dropped PTL for X and Y 4: page laundering for N by doing fadvise FADV_DONTNEED. When done, pageframe N is deemed clean. 5: *write 2 to addr X 6: tlb flush for addr X 7: munmap (Y, pagesize) to make the page unmapped 8: fadvise with FADV_DONTNEED again to kick the page off the pagecache 9: pread the page from file to verify the value. If 1 is there, it means we have lost the written 2. *the write may or may not cause segmentation fault, it depends on if the TLB is still on the CPU. Please note that this is only one specific way of how the race could occur, it didn't mean that the race could only occur in exact the above config, e.g. more than 2 threads could be involved and fadvise() could be done in another thread, etc. For anonymous pages, they could race between mremap() and page reclaim: THP: a huge PMD is moved by mremap to a new huge PMD, then the new huge PMD gets unmapped/splitted/pagedout before the flush tlb happened for the old huge PMD in move_page_tables() and we could still write data to it. The normal anonymous page has similar situation. To fix this, check for any dirty PTE in move_ptes()/move_huge_pmd() and if any, did the flush before dropping the PTL. If we did the flush for every move_ptes()/move_huge_pmd() call then we do not need to do the flush in move_pages_tables() for the whole range. But if we didn't, we still need to do the whole range flush. Alternatively, we can track which part of the range is flushed in move_ptes()/move_huge_pmd() and which didn't to avoid flushing the whole range in move_page_tables(). But that would require multiple tlb flushes for the different sub-ranges and should be less efficient than the single whole range flush. KBuild test on my Sandybridge desktop doesn't show any noticeable change. v4.9-rc4: real 5m14.048s user 32m19.800s sys 4m50.320s With this commit: real 5m13.888s user 32m19.330s sys 4m51.200s Reported-by: Dave Hansen <dave.hansen@intel.com> Signed-off-by: Aaron Lu <aaron.lu@intel.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: vm_page_prot: update with WRITE_ONCE/READ_ONCEAndrea Arcangeli2016-10-071-1/+1
| | | | | | | | | | | | | | vma->vm_page_prot is read lockless from the rmap_walk, it may be updated concurrently and this prevents the risk of reading intermediate values. Link: http://lkml.kernel.org/r/1474660305-19222-1-git-send-email-aarcange@redhat.com Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Jan Vorlicek <janvorli@microsoft.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* thp: reduce usage of huge zero page's atomic counterAaron Lu2016-10-071-11/+25
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The global zero page is used to satisfy an anonymous read fault. If THP(Transparent HugePage) is enabled then the global huge zero page is used. The global huge zero page uses an atomic counter for reference counting and is allocated/freed dynamically according to its counter value. CPU time spent on that counter will greatly increase if there are a lot of processes doing anonymous read faults. This patch proposes a way to reduce the access to the global counter so that the CPU load can be reduced accordingly. To do this, a new flag of the mm_struct is introduced: MMF_USED_HUGE_ZERO_PAGE. With this flag, the process only need to touch the global counter in two cases: 1 The first time it uses the global huge zero page; 2 The time when mm_user of its mm_struct reaches zero. Note that right now, the huge zero page is eligible to be freed as soon as its last use goes away. With this patch, the page will not be eligible to be freed until the exit of the last process from which it was ever used. And with the use of mm_user, the kthread is not eligible to use huge zero page either. Since no kthread is using huge zero page today, there is no difference after applying this patch. But if that is not desired, I can change it to when mm_count reaches zero. Case used for test on Haswell EP: usemem -n 72 --readonly -j 0x200000 100G Which spawns 72 processes and each will mmap 100G anonymous space and then do read only access to that space sequentially with a step of 2MB. CPU cycles from perf report for base commit: 54.03% usemem [kernel.kallsyms] [k] get_huge_zero_page CPU cycles from perf report for this commit: 0.11% usemem [kernel.kallsyms] [k] mm_get_huge_zero_page Performance(throughput) of the workload for base commit: 1784430792 Performance(throughput) of the workload for this commit: 4726928591 164% increase. Runtime of the workload for base commit: 707592 us Runtime of the workload for this commit: 303970 us 50% drop. Link: http://lkml.kernel.org/r/fe51a88f-446a-4622-1363-ad1282d71385@intel.com Signed-off-by: Aaron Lu <aaron.lu@intel.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Huang Ying <ying.huang@intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* thp, dax: add thp_get_unmapped_area for pmd mappingsToshi Kani2016-10-071-0/+43
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When CONFIG_FS_DAX_PMD is set, DAX supports mmap() using pmd page size. This feature relies on both mmap virtual address and FS block (i.e. physical address) to be aligned by the pmd page size. Users can use mkfs options to specify FS to align block allocations. However, aligning mmap address requires code changes to existing applications for providing a pmd-aligned address to mmap(). For instance, fio with "ioengine=mmap" performs I/Os with mmap() [1]. It calls mmap() with a NULL address, which needs to be changed to provide a pmd-aligned address for testing with DAX pmd mappings. Changing all applications that call mmap() with NULL is undesirable. Add thp_get_unmapped_area(), which can be called by filesystem's get_unmapped_area to align an mmap address by the pmd size for a DAX file. It calls the default handler, mm->get_unmapped_area(), to find a range and then aligns it for a DAX file. The patch is based on Matthew Wilcox's change that allows adding support of the pud page size easily. [1]: https://github.com/axboe/fio/blob/master/engines/mmap.c Link: http://lkml.kernel.org/r/1472497881-9323-2-git-send-email-toshi.kani@hpe.com Signed-off-by: Toshi Kani <toshi.kani@hpe.com> Reviewed-by: Dan Williams <dan.j.williams@intel.com> Cc: Matthew Wilcox <mawilcox@microsoft.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Jan Kara <jack@suse.cz> Cc: Theodore Ts'o <tytso@mit.edu> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Merge branch 'linus' into sched/core, to pick up fixesIngo Molnar2016-09-301-3/+0
|\ | | | | | | Signed-off-by: Ingo Molnar <mingo@kernel.org>
| * mm: check VMA flags to avoid invalid PROT_NONE NUMA balancingLorenzo Stoakes2016-09-251-3/+0
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The NUMA balancing logic uses an arch-specific PROT_NONE page table flag defined by pte_protnone() or pmd_protnone() to mark PTEs or huge page PMDs respectively as requiring balancing upon a subsequent page fault. User-defined PROT_NONE memory regions which also have this flag set will not normally invoke the NUMA balancing code as do_page_fault() will send a segfault to the process before handle_mm_fault() is even called. However if access_remote_vm() is invoked to access a PROT_NONE region of memory, handle_mm_fault() is called via faultin_page() and __get_user_pages() without any access checks being performed, meaning the NUMA balancing logic is incorrectly invoked on a non-NUMA memory region. A simple means of triggering this problem is to access PROT_NONE mmap'd memory using /proc/self/mem which reliably results in the NUMA handling functions being invoked when CONFIG_NUMA_BALANCING is set. This issue was reported in bugzilla (issue 99101) which includes some simple repro code. There are BUG_ON() checks in do_numa_page() and do_huge_pmd_numa_page() added at commit c0e7cad to avoid accidentally provoking strange behaviour by attempting to apply NUMA balancing to pages that are in fact PROT_NONE. The BUG_ON()'s are consistently triggered by the repro. This patch moves the PROT_NONE check into mm/memory.c rather than invoking BUG_ON() as faulting in these pages via faultin_page() is a valid reason for reaching the NUMA check with the PROT_NONE page table flag set and is therefore not always a bug. Link: https://bugzilla.kernel.org/show_bug.cgi?id=99101 Reported-by: Trevor Saunders <tbsaunde@tbsaunde.org> Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com> Acked-by: Rik van Riel <riel@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* | Merge branch 'linus' into sched/core, to pick up fixesIngo Molnar2016-09-221-2/+2
|\| | | | | | | Signed-off-by: Ingo Molnar <mingo@kernel.org>
| * mm: fix show_smap() for zone_device-pmd rangesDan Williams2016-09-091-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Attempting to dump /proc/<pid>/smaps for a process with pmd dax mappings currently results in the following VM_BUG_ONs: kernel BUG at mm/huge_memory.c:1105! task: ffff88045f16b140 task.stack: ffff88045be14000 RIP: 0010:[<ffffffff81268f9b>] [<ffffffff81268f9b>] follow_trans_huge_pmd+0x2cb/0x340 [..] Call Trace: [<ffffffff81306030>] smaps_pte_range+0xa0/0x4b0 [<ffffffff814c2755>] ? vsnprintf+0x255/0x4c0 [<ffffffff8123c46e>] __walk_page_range+0x1fe/0x4d0 [<ffffffff8123c8a2>] walk_page_vma+0x62/0x80 [<ffffffff81307656>] show_smap+0xa6/0x2b0 kernel BUG at fs/proc/task_mmu.c:585! RIP: 0010:[<ffffffff81306469>] [<ffffffff81306469>] smaps_pte_range+0x499/0x4b0 Call Trace: [<ffffffff814c2795>] ? vsnprintf+0x255/0x4c0 [<ffffffff8123c46e>] __walk_page_range+0x1fe/0x4d0 [<ffffffff8123c8a2>] walk_page_vma+0x62/0x80 [<ffffffff81307696>] show_smap+0xa6/0x2b0 These locations are sanity checking page flags that must be set for an anonymous transparent huge page, but are not set for the zone_device pages associated with dax mappings. Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* | sched/numa, mm: Revert to checking pmd/pte_write instead of VMA flagsRik van Riel2016-09-131-1/+1
|/ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Commit: 4d9424669946 ("mm: convert p[te|md]_mknonnuma and remaining page table manipulations") changed NUMA balancing from _PAGE_NUMA to using PROT_NONE, and was quickly found to introduce a regression with NUMA grouping. It was followed up by these commits: 53da3bc2ba9e ("mm: fix up numa read-only thread grouping logic") bea66fbd11af ("mm: numa: group related processes based on VMA flags instead of page table flags") b191f9b106ea ("mm: numa: preserve PTE write permissions across a NUMA hinting fault") The first of those two commits try alternate approaches to NUMA grouping, which apparently do not work as well as looking at the PTE write permissions. The latter patch preserves the PTE write permissions across a NUMA protection fault. However, it forgets to revert the condition for whether or not to group tasks together back to what it was before v3.19, even though the information is now preserved in the page tables once again. This patch brings the NUMA grouping heuristic back to what it was before commit 4d9424669946, which the changelogs of subsequent commits suggest worked best. We have all the information again. We should probably use it. Signed-off-by: Rik van Riel <riel@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: aarcange@redhat.com Cc: linux-mm@kvack.org Cc: mgorman@suse.de Link: http://lkml.kernel.org/r/20160908213053.07c992a9@annuminas.surriel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
* soft_dirty: fix soft_dirty during THP splitAndrea Arcangeli2016-08-261-1/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | While adding proper userfaultfd_wp support with bits in pagetable and swap entry to avoid false positives WP userfaults through swap/fork/ KSM/etc, I've been adding a framework that mostly mirrors soft dirty. So I noticed in one place I had to add uffd_wp support to the pagetables that wasn't covered by soft_dirty and I think it should have. Example: in the THP migration code migrate_misplaced_transhuge_page() pmd_mkdirty is called unconditionally after mk_huge_pmd. entry = mk_huge_pmd(new_page, vma->vm_page_prot); entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); That sets soft dirty too (it's a false positive for soft dirty, the soft dirty bit could be more finegrained and transfer the bit like uffd_wp will do.. pmd/pte_uffd_wp() enforces the invariant that when it's set pmd/pte_write is not set). However in the THP split there's no unconditional pmd_mkdirty after mk_huge_pmd and pte_swp_mksoft_dirty isn't called after the migration entry is created. The code sets the dirty bit in the struct page instead of setting it in the pagetable (which is fully equivalent as far as the real dirty bit is concerned, as the whole point of pagetable bits is to be eventually flushed out of to the page, but that is not equivalent for the soft-dirty bit that gets lost in translation). This was found by code review only and totally untested as I'm working to actually replace soft dirty and I don't have time to test potential soft dirty bugfixes as well :). Transfer the soft_dirty from pmd to pte during THP splits. This fix avoids losing the soft_dirty bit and avoids userland memory corruption in the checkpoint. Fixes: eef1b3ba053aa6 ("thp: implement split_huge_pmd()") Link: http://lkml.kernel.org/r/1471610515-30229-2-git-send-email-aarcange@redhat.com Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Pavel Emelyanov <xemul@virtuozzo.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm, thp: remove __GFP_NORETRY from khugepaged and madvised allocationsVlastimil Babka2016-07-281-13/+16
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | After the previous patch, we can distinguish costly allocations that should be really lightweight, such as THP page faults, with __GFP_NORETRY. This means we don't need to recognize khugepaged allocations via PF_KTHREAD anymore. We can also change THP page faults in areas where madvise(MADV_HUGEPAGE) was used to try as hard as khugepaged, as the process has indicated that it benefits from THP's and is willing to pay some initial latency costs. We can also make the flags handling less cryptic by distinguishing GFP_TRANSHUGE_LIGHT (no reclaim at all, default mode in page fault) from GFP_TRANSHUGE (only direct reclaim, khugepaged default). Adding __GFP_NORETRY or __GFP_KSWAPD_RECLAIM is done where needed. The patch effectively changes the current GFP_TRANSHUGE users as follows: * get_huge_zero_page() - the zero page lifetime should be relatively long and it's shared by multiple users, so it's worth spending some effort on it. We use GFP_TRANSHUGE, and __GFP_NORETRY is not added. This also restores direct reclaim to this allocation, which was unintentionally removed by commit e4a49efe4e7e ("mm: thp: set THP defrag by default to madvise and add a stall-free defrag option") * alloc_hugepage_khugepaged_gfpmask() - this is khugepaged, so latency is not an issue. So if khugepaged "defrag" is enabled (the default), do reclaim via GFP_TRANSHUGE without __GFP_NORETRY. We can remove the PF_KTHREAD check from page alloc. As a side-effect, khugepaged will now no longer check if the initial compaction was deferred or contended. This is OK, as khugepaged sleep times between collapsion attempts are long enough to prevent noticeable disruption, so we should allow it to spend some effort. * migrate_misplaced_transhuge_page() - already was masking out __GFP_RECLAIM, so just convert to GFP_TRANSHUGE_LIGHT which is equivalent. * alloc_hugepage_direct_gfpmask() - vma's with VM_HUGEPAGE (via madvise) are now allocating without __GFP_NORETRY. Other vma's keep using __GFP_NORETRY if direct reclaim/compaction is at all allowed (by default it's allowed only for madvised vma's). The rest is conversion to GFP_TRANSHUGE(_LIGHT). [mhocko@suse.com: suggested GFP_TRANSHUGE_LIGHT] Link: http://lkml.kernel.org/r/20160721073614.24395-7-vbabka@suse.cz Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm, THP: clean up return value of madvise_free_huge_pmdHuang Ying2016-07-281-7/+8
| | | | | | | | | | | | | | | | | | | | The definition of return value of madvise_free_huge_pmd is not clear before. According to the suggestion of Minchan Kim, change the type of return value to bool and return true if we do MADV_FREE successfully on entire pmd page, otherwise, return false. Comments are added too. Link: http://lkml.kernel.org/r/1467135452-16688-2-git-send-email-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Acked-by: Minchan Kim <minchan@kernel.org> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Jerome Marchand <jmarchan@redhat.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: move most file-based accounting to the nodeMel Gorman2016-07-281-2/+2
| | | | | | | | | | | | | | | | | | | | | | | There are now a number of accounting oddities such as mapped file pages being accounted for on the node while the total number of file pages are accounted on the zone. This can be coped with to some extent but it's confusing so this patch moves the relevant file-based accounted. Due to throttling logic in the page allocator for reliable OOM detection, it is still necessary to track dirty and writeback pages on a per-zone basis. [mgorman@techsingularity.net: fix NR_ZONE_WRITE_PENDING accounting] Link: http://lkml.kernel.org/r/1468404004-5085-5-git-send-email-mgorman@techsingularity.net Link: http://lkml.kernel.org/r/1467970510-21195-20-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm, vmscan: move LRU lists to nodeMel Gorman2016-07-281-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This moves the LRU lists from the zone to the node and related data such as counters, tracing, congestion tracking and writeback tracking. Unfortunately, due to reclaim and compaction retry logic, it is necessary to account for the number of LRU pages on both zone and node logic. Most reclaim logic is based on the node counters but the retry logic uses the zone counters which do not distinguish inactive and active sizes. It would be possible to leave the LRU counters on a per-zone basis but it's a heavier calculation across multiple cache lines that is much more frequent than the retry checks. Other than the LRU counters, this is mostly a mechanical patch but note that it introduces a number of anomalies. For example, the scans are per-zone but using per-node counters. We also mark a node as congested when a zone is congested. This causes weird problems that are fixed later but is easier to review. In the event that there is excessive overhead on 32-bit systems due to the nodes being on LRU then there are two potential solutions 1. Long-term isolation of highmem pages when reclaim is lowmem When pages are skipped, they are immediately added back onto the LRU list. If lowmem reclaim persisted for long periods of time, the same highmem pages get continually scanned. The idea would be that lowmem keeps those pages on a separate list until a reclaim for highmem pages arrives that splices the highmem pages back onto the LRU. It potentially could be implemented similar to the UNEVICTABLE list. That would reduce the skip rate with the potential corner case is that highmem pages have to be scanned and reclaimed to free lowmem slab pages. 2. Linear scan lowmem pages if the initial LRU shrink fails This will break LRU ordering but may be preferable and faster during memory pressure than skipping LRU pages. Link: http://lkml.kernel.org/r/1467970510-21195-4-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm, vmscan: move lru_lock to the nodeMel Gorman2016-07-281-3/+3
| | | | | | | | | | | | | | | | | | | | | Node-based reclaim requires node-based LRUs and locking. This is a preparation patch that just moves the lru_lock to the node so later patches are easier to review. It is a mechanical change but note this patch makes contention worse because the LRU lock is hotter and direct reclaim and kswapd can contend on the same lock even when reclaiming from different zones. Link: http://lkml.kernel.org/r/1467970510-21195-3-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Reviewed-by: Minchan Kim <minchan@kernel.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* thp: fix comments of __pmd_trans_huge_lock()Huang Ying2016-07-261-3/+3
| | | | | | | | | | To make the comments consistent with the already changed code. Link: http://lkml.kernel.org/r/1466200004-6196-1-git-send-email-ying.huang@intel.com Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* thp: introduce CONFIG_TRANSPARENT_HUGE_PAGECACHEKirill A. Shutemov2016-07-261-1/+1
| | | | | | | | | | | | | | | | | | | | For file mappings, we don't deposit page tables on THP allocation because it's not strictly required to implement split_huge_pmd(): we can just clear pmd and let following page faults to reconstruct the page table. But Power makes use of deposited page table to address MMU quirk. Let's hide THP page cache, including huge tmpfs, under separate config option, so it can be forbidden on Power. We can revert the patch later once solution for Power found. Link: http://lkml.kernel.org/r/1466021202-61880-36-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* thp: extract khugepaged from mm/huge_memory.cKirill A. Shutemov2016-07-261-1484/+9
| | | | | | | | | | | | khugepaged implementation grew to the point when it deserve separate file in source. Let's move it to mm/khugepaged.c. Link: http://lkml.kernel.org/r/1466021202-61880-32-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* shmem, thp: respect MADV_{NO,}HUGEPAGE for file mappingsKirill A. Shutemov2016-07-261-14/+5
| | | | | | | | | | | | | | | | | Let's wire up existing madvise() hugepage hints for file mappings. MADV_HUGEPAGE advise shmem to allocate huge page on page fault in the VMA. It only has effect if the filesystem is mounted with huge=advise or huge=within_size. MADV_NOHUGEPAGE prevents hugepage from being allocated on page fault in the VMA. It doesn't prevent a huge page from being allocated by other means, i.e. page fault into different mapping or write(2) into file. Link: http://lkml.kernel.org/r/1466021202-61880-31-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* shmem: add huge pages supportKirill A. Shutemov2016-07-261-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | Here's basic implementation of huge pages support for shmem/tmpfs. It's all pretty streight-forward: - shmem_getpage() allcoates huge page if it can and try to inserd into radix tree with shmem_add_to_page_cache(); - shmem_add_to_page_cache() puts the page onto radix-tree if there's space for it; - shmem_undo_range() removes huge pages, if it fully within range. Partial truncate of huge pages zero out this part of THP. This have visible effect on fallocate(FALLOC_FL_PUNCH_HOLE) behaviour. As we don't really create hole in this case, lseek(SEEK_HOLE) may have inconsistent results depending what pages happened to be allocated. - no need to change shmem_fault: core-mm will map an compound page as huge if VMA is suitable; Link: http://lkml.kernel.org/r/1466021202-61880-30-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* shmem: prepare huge= mount option and sysfs knobKirill A. Shutemov2016-07-261-0/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch adds new mount option "huge=". It can have following values: - "always": Attempt to allocate huge pages every time we need a new page; - "never": Do not allocate huge pages; - "within_size": Only allocate huge page if it will be fully within i_size. Also respect fadvise()/madvise() hints; - "advise: Only allocate huge pages if requested with fadvise()/madvise(); Default is "never" for now. "mount -o remount,huge= /mountpoint" works fine after mount: remounting huge=never will not attempt to break up huge pages at all, just stop more from being allocated. No new config option: put this under CONFIG_TRANSPARENT_HUGEPAGE, which is the appropriate option to protect those who don't want the new bloat, and with which we shall share some pmd code. Prohibit the option when !CONFIG_TRANSPARENT_HUGEPAGE, just as mpol is invalid without CONFIG_NUMA (was hidden in mpol_parse_str(): make it explicit). Allow enabling THP only if the machine has_transparent_hugepage(). But what about Shmem with no user-visible mount? SysV SHM, memfds, shared anonymous mmaps (of /dev/zero or MAP_ANONYMOUS), GPU drivers' DRM objects, Ashmem. Though unlikely to suit all usages, provide sysfs knob /sys/kernel/mm/transparent_hugepage/shmem_enabled to experiment with huge on those. And allow shmem_enabled two further values: - "deny": For use in emergencies, to force the huge option off from all mounts; - "force": Force the huge option on for all - very useful for testing; Based on patch by Hugh Dickins. Link: http://lkml.kernel.org/r/1466021202-61880-28-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm, rmap: account shmem thp pagesKirill A. Shutemov2016-07-261-1/+3
| | | | | | | | | | | | Let's add ShmemHugePages and ShmemPmdMapped fields into meminfo and smaps. It indicates how many times we allocate and map shmem THP. NR_ANON_TRANSPARENT_HUGEPAGES is renamed to NR_ANON_THPS. Link: http://lkml.kernel.org/r/1466021202-61880-27-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* thp, mlock: do not mlock PTE-mapped file huge pagesKirill A. Shutemov2016-07-261-7/+20
| | | | | | | | | | | | | | | As with anon THP, we only mlock file huge pages if we can prove that the page is not mapped with PTE. This way we can avoid mlock leak into non-mlocked vma on split. We rely on PageDoubleMap() under lock_page() to check if the the page may be PTE mapped. PG_double_map is set by page_add_file_rmap() when the page mapped with PTEs. Link: http://lkml.kernel.org/r/1466021202-61880-21-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* thp: file pages support for split_huge_page()Kirill A. Shutemov2016-07-261-45/+115
| | | | | | | | | | | | | | | | | | | | | | | | | | | Basic scheme is the same as for anon THP. Main differences: - File pages are on radix-tree, so we have head->_count offset by HPAGE_PMD_NR. The count got distributed to small pages during split. - mapping->tree_lock prevents non-lockless access to pages under split over radix-tree; - Lockless access is prevented by setting the head->_count to 0 during split; - After split, some pages can be beyond i_size. We drop them from radix-tree. - We don't setup migration entries. Just unmap pages. It helps handling cases when i_size is in the middle of the page: no need handle unmap pages beyond i_size manually. Link: http://lkml.kernel.org/r/1466021202-61880-20-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* thp: prepare change_huge_pmd() for file thpKirill A. Shutemov2016-07-261-1/+2
| | | | | | | | | | | change_huge_pmd() has assert which is not relvant for file page. For shared mapping it's perfectly fine to have page table entry writable, without explicit mkwrite. Link: http://lkml.kernel.org/r/1466021202-61880-18-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* thp: skip file huge pmd on copy_huge_pmd()Kirill A. Shutemov2016-07-261-18/+16
| | | | | | | | | | | | | | | | copy_page_range() has a check for "Don't copy ptes where a page fault will fill them correctly." It works on VMA level. We still copy all page table entries from private mappings, even if they map page cache. We can simplify copy_huge_pmd() a bit by skipping file PMDs. We don't map file private pages with PMDs, so they only can map page cache. It's safe to skip them as they can be re-faulted later. Link: http://lkml.kernel.org/r/1466021202-61880-17-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* thp: handle file pages in split_huge_pmd()Kirill A. Shutemov2016-07-261-2/+10
| | | | | | | | | | | | | | | | | Splitting THP PMD is simple: just unmap it as in DAX case. This way we can avoid memory overhead on page table allocation to deposit. It's probably a good idea to try to allocation page table with GFP_ATOMIC in __split_huge_pmd_locked() to avoid refaulting the area, but clearing pmd should be good enough for now. Unlike DAX, we also remove the page from rmap and drop reference. pmd_young() is transfered to PageReferenced(). Link: http://lkml.kernel.org/r/1466021202-61880-15-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* thp: support file pages in zap_huge_pmd()Kirill A. Shutemov2016-07-261-3/+9
| | | | | | | | | | | | | | | split_huge_pmd() for file mappings (and DAX too) is implemented by just clearing pmd entry as we can re-fill this area from page cache on pte level later. This means we don't need deposit page tables when file THP is mapped. Therefore we shouldn't try to withdraw a page table on zap_huge_pmd() file THP PMD. Link: http://lkml.kernel.org/r/1466021202-61880-14-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: introduce do_set_pmd()Kirill A. Shutemov2016-07-261-5/+0
| | | | | | | | | | | | | | With postponed page table allocation we have chance to setup huge pages. do_set_pte() calls do_set_pmd() if following criteria met: - page is compound; - pmd entry in pmd_none(); - vma has suitable size and alignment; Link: http://lkml.kernel.org/r/1466021202-61880-12-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* rmap: support file thpKirill A. Shutemov2016-07-261-3/+7
| | | | | | | | | | | | | | | Naive approach: on mapping/unmapping the page as compound we update ->_mapcount on each 4k page. That's not efficient, but it's not obvious how we can optimize this. We can look into optimization later. PG_double_map optimization doesn't work for file pages since lifecycle of file pages is different comparing to anon pages: file page can be mapped again at any time. Link: http://lkml.kernel.org/r/1466021202-61880-11-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* mm: introduce fault_envKirill A. Shutemov2016-07-261-149/+131
| | | | | | | | | | | | | | | | | | | | | | The idea borrowed from Peter's patch from patchset on speculative page faults[1]: Instead of passing around the endless list of function arguments, replace the lot with a single structure so we can change context without endless function signature changes. The changes are mostly mechanical with exception of faultaround code: filemap_map_pages() got reworked a bit. This patch is preparation for the next one. [1] http://lkml.kernel.org/r/20141020222841.302891540@infradead.org Link: http://lkml.kernel.org/r/1466021202-61880-9-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* khugepaged: recheck pmd after mmap_sem re-acquiredKirill A. Shutemov2016-07-261-0/+6
| | | | | | | | | | | | Vlastimil noted[1] that pmd can be no longer valid after we drop mmap_sem. We need recheck it once mmap_sem taken again. [1] http://lkml.kernel.org/r/12918dcd-a695-c6f4-e06f-69141c5f357f@suse.cz Link: http://lkml.kernel.org/r/1466021202-61880-6-git-send-email-kirill.shutemov@linux.intel.com Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>