summaryrefslogtreecommitdiffstats
path: root/mm/hugetlb.c
Commit message (Collapse)AuthorAgeFilesLines
* hugetlb: fix memory leak associated with vma_lock structureMike Kravetz2022-10-201-8/+27
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The hugetlb vma_lock structure hangs off the vm_private_data pointer of sharable hugetlb vmas. The structure is vma specific and can not be shared between vmas. At fork and various other times, vmas are duplicated via vm_area_dup(). When this happens, the pointer in the newly created vma must be cleared and the structure reallocated. Two hugetlb specific routines deal with this hugetlb_dup_vma_private and hugetlb_vm_op_open. Both routines are called for newly created vmas. hugetlb_dup_vma_private would always clear the pointer and hugetlb_vm_op_open would allocate the new vms_lock structure. This did not work in the case of this calling sequence pointed out in [1]. move_vma copy_vma new_vma = vm_area_dup(vma); new_vma->vm_ops->open(new_vma); --> new_vma has its own vma lock. is_vm_hugetlb_page(vma) clear_vma_resv_huge_pages hugetlb_dup_vma_private --> vma->vm_private_data is set to NULL When clearing hugetlb_dup_vma_private we actually leak the associated vma_lock structure. The vma_lock structure contains a pointer to the associated vma. This information can be used in hugetlb_dup_vma_private and hugetlb_vm_op_open to ensure we only clear the vm_private_data of newly created (copied) vmas. In such cases, the vma->vma_lock->vma field will not point to the vma. Update hugetlb_dup_vma_private and hugetlb_vm_op_open to not clear vm_private_data if vma->vma_lock->vma == vma. Also, log a warning if hugetlb_vm_op_open ever encounters the case where vma_lock has already been correctly allocated for the vma. [1] https://lore.kernel.org/linux-mm/5154292a-4c55-28cd-0935-82441e512fc3@huawei.com/ Link: https://lkml.kernel.org/r/20221019201957.34607-1-mike.kravetz@oracle.com Fixes: 131a79b474e9 ("hugetlb: fix vma lock handling during split vma and range unmapping") Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Miaohe Lin <linmiaohe@huawei.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Prakash Sangappa <prakash.sangappa@oracle.com> Cc: Sven Schnelle <svens@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
* mm,hugetlb: take hugetlb_lock before decrementing h->resv_huge_pagesRik van Riel2022-10-201-1/+1
| | | | | | | | | | | | | | | | | | | | | | | The h->*_huge_pages counters are protected by the hugetlb_lock, but alloc_huge_page has a corner case where it can decrement the counter outside of the lock. This could lead to a corrupted value of h->resv_huge_pages, which we have observed on our systems. Take the hugetlb_lock before decrementing h->resv_huge_pages to avoid a potential race. Link: https://lkml.kernel.org/r/20221017202505.0e6a4fcd@imladris.surriel.com Fixes: a88c76954804 ("mm: hugetlb: fix hugepage memory leak caused by wrong reserve count") Signed-off-by: Rik van Riel <riel@surriel.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Glen McCready <gkmccready@meta.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
* Merge tag 'mm-stable-2022-10-13' of ↵Linus Torvalds2022-10-141-12/+60
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull more MM updates from Andrew Morton: - fix a race which causes page refcounting errors in ZONE_DEVICE pages (Alistair Popple) - fix userfaultfd test harness instability (Peter Xu) - various other patches in MM, mainly fixes * tag 'mm-stable-2022-10-13' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (29 commits) highmem: fix kmap_to_page() for kmap_local_page() addresses mm/page_alloc: fix incorrect PGFREE and PGALLOC for high-order page mm/selftest: uffd: explain the write missing fault check mm/hugetlb: use hugetlb_pte_stable in migration race check mm/hugetlb: fix race condition of uffd missing/minor handling zram: always expose rw_page LoongArch: update local TLB if PTE entry exists mm: use update_mmu_tlb() on the second thread kasan: fix array-bounds warnings in tests hmm-tests: add test for migrate_device_range() nouveau/dmem: evict device private memory during release nouveau/dmem: refactor nouveau_dmem_fault_copy_one() mm/migrate_device.c: add migrate_device_range() mm/migrate_device.c: refactor migrate_vma and migrate_deivce_coherent_page() mm/memremap.c: take a pgmap reference on page allocation mm: free device private pages have zero refcount mm/memory.c: fix race when faulting a device private page mm/damon: use damon_sz_region() in appropriate place mm/damon: move sz_damon_region to damon_sz_region lib/test_meminit: add checks for the allocation functions ...
| * mm/hugetlb: use hugetlb_pte_stable in migration race checkPeter Xu2022-10-121-4/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | After hugetlb_pte_stable() introduced, we can also rewrite the migration race condition against page allocation to use the new helper too. Link: https://lkml.kernel.org/r/20221004193400.110155-3-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: David Hildenbrand <david@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Nadav Amit <nadav.amit@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
| * mm/hugetlb: fix race condition of uffd missing/minor handlingPeter Xu2022-10-121-7/+52
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Patch series "mm/hugetlb: Fix selftest failures with write check", v3. Currently akpm mm-unstable fails with uffd hugetlb private mapping test randomly on a write check. The initial bisection of that points to the recent pmd unshare series, but it turns out there's no direction relationship with the series but only some timing change caused the race to start trigger. The race should be fixed in patch 1. Patch 2 is a trivial cleanup on the similar race with hugetlb migrations, patch 3 comment on the write check so when anyone read it again it'll be clear why it's there. This patch (of 3): After the recent rework patchset of hugetlb locking on pmd sharing, kselftest for userfaultfd sometimes fails on hugetlb private tests with unexpected write fault checks. It turns out there's nothing wrong within the locking series regarding this matter, but it could have changed the timing of threads so it can trigger an old bug. The real bug is when we call hugetlb_no_page() we're not with the pgtable lock. It means we're reading the pte values lockless. It's perfectly fine in most cases because before we do normal page allocations we'll take the lock and check pte_same() again. However before that, there are actually two paths on userfaultfd missing/minor handling that may directly move on with the fault process without checking the pte values. It means for these two paths we may be generating an uffd message based on an unstable pte, while an unstable pte can legally be anything as long as the modifier holds the pgtable lock. One example, which is also what happened in the failing kselftest and caused the test failure, is that for private mappings wr-protection changes can happen on one page. While hugetlb_change_protection() generally requires pte being cleared before being changed, then there can be a race condition like: thread 1 thread 2 -------- -------- UFFDIO_WRITEPROTECT hugetlb_fault hugetlb_change_protection pgtable_lock() huge_ptep_modify_prot_start pte==NULL hugetlb_no_page generate uffd missing event even if page existed!! huge_ptep_modify_prot_commit pgtable_unlock() Fix this by rechecking the pte after pgtable lock for both userfaultfd missing & minor fault paths. This bug should have been around starting from uffd hugetlb introduced, so attaching a Fixes to the commit. Also attach another Fixes to the minor support commit for easier tracking. Note that userfaultfd is actually fine with false positives (e.g. caused by pte changed), but not wrong logical events (e.g. caused by reading a pte during changing). The latter can confuse the userspace, so the strictness is very much preferred. E.g., MISSING event should never happen on the page after UFFDIO_COPY has correctly installed the page and returned. Link: https://lkml.kernel.org/r/20221004193400.110155-1-peterx@redhat.com Link: https://lkml.kernel.org/r/20221004193400.110155-2-peterx@redhat.com Fixes: 1a1aad8a9b7b ("userfaultfd: hugetlbfs: add userfaultfd hugetlb hook") Fixes: 7677f7fd8be7 ("userfaultfd: add minor fault registration mode") Signed-off-by: Peter Xu <peterx@redhat.com> Co-developed-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: David Hildenbrand <david@redhat.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
| * mm/uffd: fix warning without PTE_MARKER_UFFD_WP compiled inPeter Xu2022-10-121-0/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When PTE_MARKER_UFFD_WP not configured, it's still possible to reach pte marker code and trigger an warning. Add a few CONFIG_PTE_MARKER_UFFD_WP ifdefs to make sure the code won't be reached when not compiled in. Link: https://lkml.kernel.org/r/YzeR+R6b4bwBlBHh@x1n Fixes: b1f9e876862d ("mm/uffd: enable write protection for shmem & hugetlbfs") Signed-off-by: Peter Xu <peterx@redhat.com> Reported-by: <syzbot+2b9b4f0895be09a6dec3@syzkaller.appspotmail.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Brian Geffon <bgeffon@google.com> Cc: Edward Liaw <edliaw@google.com> Cc: Liu Shixin <liushixin2@huawei.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
| * mm/hugetlb.c: make __hugetlb_vma_unlock_write_put() staticAndrew Morton2022-10-121-1/+1
| | | | | | | | | | | | Reported-by: kernel test robot <lkp@intel.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
* | Merge tag 'mm-hotfixes-stable-2022-10-11' of ↵Linus Torvalds2022-10-121-14/+13
|\ \ | |/ |/| | | | | | | | | | | | | | | | | | | | | | | | | git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull misc hotfixes from Andrew Morton: "Five hotfixes - three for nilfs2, two for MM. For are cc:stable, one is not" * tag 'mm-hotfixes-stable-2022-10-11' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: nilfs2: fix leak of nilfs_root in case of writer thread creation failure nilfs2: fix NULL pointer dereference at nilfs_bmap_lookup_at_level() nilfs2: fix use-after-free bug of struct nilfs_root mm/damon/core: initialize damon_target->list in damon_new_target() mm/hugetlb: fix races when looking up a CONT-PTE/PMD size hugetlb page
| * mm/hugetlb: fix races when looking up a CONT-PTE/PMD size hugetlb pageBaolin Wang2022-10-111-14/+13
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | On some architectures (like ARM64), it can support CONT-PTE/PMD size hugetlb, which means it can support not only PMD/PUD size hugetlb (2M and 1G), but also CONT-PTE/PMD size(64K and 32M) if a 4K page size specified. So when looking up a CONT-PTE size hugetlb page by follow_page(), it will use pte_offset_map_lock() to get the pte entry lock for the CONT-PTE size hugetlb in follow_page_pte(). However this pte entry lock is incorrect for the CONT-PTE size hugetlb, since we should use huge_pte_lock() to get the correct lock, which is mm->page_table_lock. That means the pte entry of the CONT-PTE size hugetlb under current pte lock is unstable in follow_page_pte(), we can continue to migrate or poison the pte entry of the CONT-PTE size hugetlb, which can cause some potential race issues, even though they are under the 'pte lock'. For example, suppose thread A is trying to look up a CONT-PTE size hugetlb page by move_pages() syscall under the lock, however antoher thread B can migrate the CONT-PTE hugetlb page at the same time, which will cause thread A to get an incorrect page, if thread A also wants to do page migration, then data inconsistency error occurs. Moreover we have the same issue for CONT-PMD size hugetlb in follow_huge_pmd(). To fix above issues, rename the follow_huge_pmd() as follow_huge_pmd_pte() to handle PMD and PTE level size hugetlb, which uses huge_pte_lock() to get the correct pte entry lock to make the pte entry stable. Mike said: Support for CONT_PMD/_PTE was added with bb9dd3df8ee9 ("arm64: hugetlb: refactor find_num_contig()"). Patch series "Support for contiguous pte hugepages", v4. However, I do not believe these code paths were executed until migration support was added with 5480280d3f2d ("arm64/mm: enable HugeTLB migration for contiguous bit HugeTLB pages") I would go with 5480280d3f2d for the Fixes: targe. Link: https://lkml.kernel.org/r/635f43bdd85ac2615a58405da82b4d33c6e5eb05.1662017562.git.baolin.wang@linux.alibaba.com Fixes: 5480280d3f2d ("arm64/mm: enable HugeTLB migration for contiguous bit HugeTLB pages") Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com> Suggested-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: David Hildenbrand <david@redhat.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
* | hugetlb: allocate vma lock for all sharable vmasMike Kravetz2022-10-071-35/+15
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The hugetlb vma lock was originally designed to synchronize pmd sharing. As such, it was only necessary to allocate the lock for vmas that were capable of pmd sharing. Later in the development cycle, it was discovered that it could also be used to simplify fault/truncation races as described in [1]. However, a subsequent change to allocate the lock for all vmas that use the page cache was never made. A fault/truncation race could leave pages in a file past i_size until the file is removed. Remove the previous restriction and allocate lock for all VM_MAYSHARE vmas. Warn in the unlikely event of allocation failure. [1] https://lore.kernel.org/lkml/Yxiv0SkMkZ0JWGGp@monkey/#t Link: https://lkml.kernel.org/r/20221005011707.514612-4-mike.kravetz@oracle.com Fixes: "hugetlb: clean up code checking for fault/truncation races" Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Prakash Sangappa <prakash.sangappa@oracle.com> Cc: Sven Schnelle <svens@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
* | hugetlb: take hugetlb vma_lock when clearing vma_lock->vma pointerMike Kravetz2022-10-071-10/+32
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | hugetlb file truncation/hole punch code may need to back out and take locks in order in the routine hugetlb_unmap_file_folio(). This code could race with vma freeing as pointed out in [1] and result in accessing a stale vma pointer. To address this, take the vma_lock when clearing the vma_lock->vma pointer. [1] https://lore.kernel.org/linux-mm/01f10195-7088-4462-6def-909549c75ef4@huawei.com/ [mike.kravetz@oracle.com: address build issues] Link: https://lkml.kernel.org/r/Yz5L1uxQYR1VqFtJ@monkey Link: https://lkml.kernel.org/r/20221005011707.514612-3-mike.kravetz@oracle.com Fixes: "hugetlb: use new vma_lock for pmd sharing synchronization" Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Prakash Sangappa <prakash.sangappa@oracle.com> Cc: Sven Schnelle <svens@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
* | hugetlb: fix vma lock handling during split vma and range unmappingMike Kravetz2022-10-071-16/+27
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Patch series "hugetlb: fixes for new vma lock series". In review of the series "hugetlb: Use new vma lock for huge pmd sharing synchronization", Miaohe Lin pointed out two key issues: 1) There is a race in the routine hugetlb_unmap_file_folio when locks are dropped and reacquired in the correct order [1]. 2) With the switch to using vma lock for fault/truncate synchronization, we need to make sure lock exists for all VM_MAYSHARE vmas, not just vmas capable of pmd sharing. These two issues are addressed here. In addition, having a vma lock present in all VM_MAYSHARE vmas, uncovered some issues around vma splitting. Those are also addressed. [1] https://lore.kernel.org/linux-mm/01f10195-7088-4462-6def-909549c75ef4@huawei.com/ This patch (of 3): The hugetlb vma lock hangs off the vm_private_data field and is specific to the vma. When vm_area_dup() is called as part of vma splitting, the vma lock pointer is copied to the new vma. This will result in issues such as double freeing of the structure. Update the hugetlb open vm_ops to allocate a new vma lock for the new vma. The routine __unmap_hugepage_range_final unconditionally unset VM_MAYSHARE to prevent subsequent pmd sharing. hugetlb_vma_lock_free attempted to anticipate this by checking both VM_MAYSHARE and VM_SHARED. However, if only VM_MAYSHARE was set we would miss the free. With the introduction of the vma lock, a vma can not participate in pmd sharing if vm_private_data is NULL. Instead of clearing VM_MAYSHARE in __unmap_hugepage_range_final, free the vma lock to prevent sharing. Also, update the sharing code to make sure vma lock is indeed a condition for pmd sharing. hugetlb_vma_lock_free can then key off VM_MAYSHARE and not miss any vmas. Link: https://lkml.kernel.org/r/20221005011707.514612-1-mike.kravetz@oracle.com Link: https://lkml.kernel.org/r/20221005011707.514612-2-mike.kravetz@oracle.com Fixes: "hugetlb: add vma based lock for pmd sharing" Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Prakash Sangappa <prakash.sangappa@oracle.com> Cc: Sven Schnelle <svens@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
* | mm/hugetlb: add available_huge_pages() funcXin Hao2022-10-031-5/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | In hugetlb.c there are several places which compare the values of 'h->free_huge_pages' and 'h->resv_huge_pages', it looks a bit messy, so add a new available_huge_pages() function to do these. Link: https://lkml.kernel.org/r/20220922021929.98961-1-xhao@linux.alibaba.com Signed-off-by: Xin Hao <xhao@linux.alibaba.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: David Hildenbrand <david@redhat.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
* | mm: hugetlb: fix UAF in hugetlb_handle_userfaultLiu Shixin2022-10-031-20/+17
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The vma_lock and hugetlb_fault_mutex are dropped before handling userfault and reacquire them again after handle_userfault(), but reacquire the vma_lock could lead to UAF[1,2] due to the following race, hugetlb_fault hugetlb_no_page /*unlock vma_lock */ hugetlb_handle_userfault handle_userfault /* unlock mm->mmap_lock*/ vm_mmap_pgoff do_mmap mmap_region munmap_vma_range /* clean old vma */ /* lock vma_lock again <--- UAF */ /* unlock vma_lock */ Since the vma_lock will unlock immediately after hugetlb_handle_userfault(), let's drop the unneeded lock and unlock in hugetlb_handle_userfault() to fix the issue. [1] https://lore.kernel.org/linux-mm/000000000000d5e00a05e834962e@google.com/ [2] https://lore.kernel.org/linux-mm/20220921014457.1668-1-liuzixian4@huawei.com/ Link: https://lkml.kernel.org/r/20220923042113.137273-1-liushixin2@huawei.com Fixes: 1a1aad8a9b7b ("userfaultfd: hugetlbfs: add userfaultfd hugetlb hook") Signed-off-by: Liu Shixin <liushixin2@huawei.com> Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com> Reported-by: syzbot+193f9cee8638750b23cf@syzkaller.appspotmail.com Reported-by: Liu Zixian <liuzixian4@huawei.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: David Hildenbrand <david@redhat.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Sidhartha Kumar <sidhartha.kumar@oracle.com> Cc: <stable@vger.kernel.org> [4.14+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
* | hugetlb: freeze allocated pages before creating hugetlb pagesMike Kravetz2022-10-031-64/+38
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When creating hugetlb pages, the hugetlb code must first allocate contiguous pages from a low level allocator such as buddy, cma or memblock. The pages returned from these low level allocators are ref counted. This creates potential issues with other code taking speculative references on these pages before they can be transformed to a hugetlb page. This issue has been addressed with methods and code such as that provided in [1]. Recent discussions about vmemmap freeing [2] have indicated that it would be beneficial to freeze all sub pages, including the head page of pages returned from low level allocators before converting to a hugetlb page. This helps avoid races if we want to replace the page containing vmemmap for the head page. There have been proposals to change at least the buddy allocator to return frozen pages as described at [3]. If such a change is made, it can be employed by the hugetlb code. However, as mentioned above hugetlb uses several low level allocators so each would need to be modified to return frozen pages. For now, we can manually freeze the returned pages. This is done in two places: 1) alloc_buddy_huge_page, only the returned head page is ref counted. We freeze the head page, retrying once in the VERY rare case where there may be an inflated ref count. 2) prep_compound_gigantic_page, for gigantic pages the current code freezes all pages except the head page. New code will simply freeze the head page as well. In a few other places, code checks for inflated ref counts on newly allocated hugetlb pages. With the modifications to freeze after allocating, this code can be removed. After hugetlb pages are freshly allocated, they are often added to the hugetlb free lists. Since these pages were previously ref counted, this was done via put_page() which would end up calling the hugetlb destructor: free_huge_page. With changes to freeze pages, we simply call free_huge_page directly to add the pages to the free list. In a few other places, freshly allocated hugetlb pages were immediately put into use, and the expectation was they were already ref counted. In these cases, we must manually ref count the page. [1] https://lore.kernel.org/linux-mm/20210622021423.154662-3-mike.kravetz@oracle.com/ [2] https://lore.kernel.org/linux-mm/20220802180309.19340-1-joao.m.martins@oracle.com/ [3] https://lore.kernel.org/linux-mm/20220809171854.3725722-1-willy@infradead.org/ [mike.kravetz@oracle.com: fix NULL pointer dereference] Link: https://lkml.kernel.org/r/20220921202702.106069-1-mike.kravetz@oracle.com Link: https://lkml.kernel.org/r/20220916214638.155744-1-mike.kravetz@oracle.com Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Miaohe Lin <linmiaohe@huawei.com> Cc: Joao Martins <joao.m.martins@oracle.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Peter Xu <peterx@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
* | hugetlb: clean up code checking for fault/truncation racesMike Kravetz2022-10-031-21/+3
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | With the new hugetlb vma lock in place, it can also be used to handle page fault races with file truncation. The lock is taken at the beginning of the code fault path in read mode. During truncation, it is taken in write mode for each vma which has the file mapped. The file's size (i_size) is modified before taking the vma lock to unmap. How are races handled? The page fault code checks i_size early in processing after taking the vma lock. If the fault is beyond i_size, the fault is aborted. If the fault is not beyond i_size the fault will continue and a new page will be added to the file. It could be that truncation code modifies i_size after the check in fault code. That is OK, as truncation code will soon remove the page. The truncation code will wait until the fault is finished, as it must obtain the vma lock in write mode. This patch cleans up/removes late checks in the fault paths that try to back out pages racing with truncation. As noted above, we just let the truncation code remove the pages. [mike.kravetz@oracle.com: fix reserve_alloc set but not used compiler warning] Link: https://lkml.kernel.org/r/Yyj7HsJWfHDoU24U@monkey Link: https://lkml.kernel.org/r/20220914221810.95771-10-mike.kravetz@oracle.com Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Prakash Sangappa <prakash.sangappa@oracle.com> Cc: Sven Schnelle <svens@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
* | hugetlb: use new vma_lock for pmd sharing synchronizationMike Kravetz2022-10-031-9/+93
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The new hugetlb vma lock is used to address this race: Faulting thread Unsharing thread ... ... ptep = huge_pte_offset() or ptep = huge_pte_alloc() ... i_mmap_lock_write lock page table ptep invalid <------------------------ huge_pmd_unshare() Could be in a previously unlock_page_table sharing process or worse i_mmap_unlock_write ... The vma_lock is used as follows: - During fault processing. The lock is acquired in read mode before doing a page table lock and allocation (huge_pte_alloc). The lock is held until code is finished with the page table entry (ptep). - The lock must be held in write mode whenever huge_pmd_unshare is called. Lock ordering issues come into play when unmapping a page from all vmas mapping the page. The i_mmap_rwsem must be held to search for the vmas, and the vma lock must be held before calling unmap which will call huge_pmd_unshare. This is done today in: - try_to_migrate_one and try_to_unmap_ for page migration and memory error handling. In these routines we 'try' to obtain the vma lock and fail to unmap if unsuccessful. Calling routines already deal with the failure of unmapping. - hugetlb_vmdelete_list for truncation and hole punch. This routine also tries to acquire the vma lock. If it fails, it skips the unmapping. However, we can not have file truncation or hole punch fail because of contention. After hugetlb_vmdelete_list, truncation and hole punch call remove_inode_hugepages. remove_inode_hugepages checks for mapped pages and call hugetlb_unmap_file_page to unmap them. hugetlb_unmap_file_page is designed to drop locks and reacquire in the correct order to guarantee unmap success. Link: https://lkml.kernel.org/r/20220914221810.95771-9-mike.kravetz@oracle.com Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Prakash Sangappa <prakash.sangappa@oracle.com> Cc: Sven Schnelle <svens@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
* | hugetlb: add vma based lock for pmd sharingMike Kravetz2022-10-031-17/+190
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Allocate a new hugetlb_vma_lock structure and hang off vm_private_data for synchronization use by vmas that could be involved in pmd sharing. This data structure contains a rw semaphore that is the primary tool used for synchronization. This new structure is ref counted, so that it can exist when NOT attached to a vma. This is only helpful in resolving lock ordering issues where code may need to obtain the vma_lock while there are no guarantees the vma may go away. By obtaining a ref on the structure, it can be guaranteed that at least the rw semaphore will not go away. Only add infrastructure for the new lock here. Actual use will be added in subsequent patches. [mike.kravetz@oracle.com: fix build issue for missing hugetlb_vma_lock_release] Link: https://lkml.kernel.org/r/YyNUtA1vRASOE4+M@monkey Link: https://lkml.kernel.org/r/20220914221810.95771-7-mike.kravetz@oracle.com Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Miaohe Lin <linmiaohe@huawei.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Prakash Sangappa <prakash.sangappa@oracle.com> Cc: Sven Schnelle <svens@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
* | hugetlb: rename vma_shareable() and refactor codeMike Kravetz2022-10-031-6/+13
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Rename the routine vma_shareable to vma_addr_pmd_shareable as it is checking a specific address within the vma. Refactor code to check if an aligned range is shareable as this will be needed in a subsequent patch. Link: https://lkml.kernel.org/r/20220914221810.95771-6-mike.kravetz@oracle.com Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Miaohe Lin <linmiaohe@huawei.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Prakash Sangappa <prakash.sangappa@oracle.com> Cc: Sven Schnelle <svens@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
* | hugetlb: rename remove_huge_page to hugetlb_delete_from_page_cacheMike Kravetz2022-10-031-4/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | remove_huge_page removes a hugetlb page from the page cache. Change to hugetlb_delete_from_page_cache as it is a more descriptive name. huge_add_to_page_cache is global in scope, but only deals with hugetlb pages. For consistency and clarity, rename to hugetlb_add_to_page_cache. Link: https://lkml.kernel.org/r/20220914221810.95771-4-mike.kravetz@oracle.com Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Miaohe Lin <linmiaohe@huawei.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Prakash Sangappa <prakash.sangappa@oracle.com> Cc: Sven Schnelle <svens@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
* | hugetlbfs: revert use i_mmap_rwsem for more pmd sharing synchronizationMike Kravetz2022-10-031-65/+12
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Commit c0d0381ade79 ("hugetlbfs: use i_mmap_rwsem for more pmd sharing synchronization") added code to take i_mmap_rwsem in read mode for the duration of fault processing. However, this has been shown to cause performance/scaling issues. Revert the code and go back to only taking the semaphore in huge_pmd_share during the fault path. Keep the code that takes i_mmap_rwsem in write mode before calling try_to_unmap as this is required if huge_pmd_unshare is called. NOTE: Reverting this code does expose the following race condition. Faulting thread Unsharing thread ... ... ptep = huge_pte_offset() or ptep = huge_pte_alloc() ... i_mmap_lock_write lock page table ptep invalid <------------------------ huge_pmd_unshare() Could be in a previously unlock_page_table sharing process or worse i_mmap_unlock_write ... ptl = huge_pte_lock(ptep) get/update pte set_pte_at(pte, ptep) It is unknown if the above race was ever experienced by a user. It was discovered via code inspection when initially addressed. In subsequent patches, a new synchronization mechanism will be added to coordinate pmd sharing and eliminate this race. Link: https://lkml.kernel.org/r/20220914221810.95771-3-mike.kravetz@oracle.com Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Miaohe Lin <linmiaohe@huawei.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Prakash Sangappa <prakash.sangappa@oracle.com> Cc: Sven Schnelle <svens@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
* | hugetlbfs: revert use i_mmap_rwsem to address page fault/truncate raceMike Kravetz2022-10-031-11/+11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Patch series "hugetlb: Use new vma lock for huge pmd sharing synchronization", v2. hugetlb fault scalability regressions have recently been reported [1]. This is not the first such report, as regressions were also noted when commit c0d0381ade79 ("hugetlbfs: use i_mmap_rwsem for more pmd sharing synchronization") was added [2] in v5.7. At that time, a proposal to address the regression was suggested [3] but went nowhere. The regression and benefit of this patch series is not evident when using the vm_scalability benchmark reported in [2] on a recent kernel. Results from running, "./usemem -n 48 --prealloc --prefault -O -U 3448054972" 48 sample Avg next-20220913 next-20220913 next-20220913 unmodified revert i_mmap_sema locking vma sema locking, this series ----------------------------------------------------------------------------- 498150 KB/s 501934 KB/s 504793 KB/s The recent regression report [1] notes page fault and fork latency of shared hugetlb mappings. To measure this, I created two simple programs: 1) map a shared hugetlb area, write fault all pages, unmap area Do this in a continuous loop to measure faults per second 2) map a shared hugetlb area, write fault a few pages, fork and exit Do this in a continuous loop to measure forks per second These programs were run on a 48 CPU VM with 320GB memory. The shared mapping size was 250GB. For comparison, a single instance of the program was run. Then, multiple instances were run in parallel to introduce lock contention. Changing the locking scheme results in a significant performance benefit. test instances unmodified revert vma -------------------------------------------------------------------------- faults per sec 1 393043 395680 389932 faults per sec 24 71405 81191 79048 forks per sec 1 2802 2747 2725 forks per sec 24 439 536 500 Combined faults 24 1621 68070 53662 Combined forks 24 358 67 142 Combined test is when running both faulting program and forking program simultaneously. Patches 1 and 2 of this series revert c0d0381ade79 and 87bf91d39bb5 which depends on c0d0381ade79. Acquisition of i_mmap_rwsem is still required in the fault path to establish pmd sharing, so this is moved back to huge_pmd_share. With c0d0381ade79 reverted, this race is exposed: Faulting thread Unsharing thread ... ... ptep = huge_pte_offset() or ptep = huge_pte_alloc() ... i_mmap_lock_write lock page table ptep invalid <------------------------ huge_pmd_unshare() Could be in a previously unlock_page_table sharing process or worse i_mmap_unlock_write ... ptl = huge_pte_lock(ptep) get/update pte set_pte_at(pte, ptep) Reverting 87bf91d39bb5 exposes races in page fault/file truncation. When the new vma lock is put to use in patch 8, this will handle the fault/file truncation races. This is explained in patch 9 where code associated with these races is cleaned up. Patches 3 - 5 restructure existing code in preparation for using the new vma lock (rw semaphore) for pmd sharing synchronization. The idea is that this semaphore will be held in read mode for the duration of fault processing, and held in write mode for unmap operations which may call huge_pmd_unshare. Acquiring i_mmap_rwsem is also still required to synchronize huge pmd sharing. However it is only required in the fault path when setting up sharing, and will be acquired in huge_pmd_share(). Patch 6 adds the new vma lock and all supporting routines, but does not actually change code to use the new lock. Patch 7 refactors code in preparation for using the new lock. And, patch 8 finally adds code to make use of this new vma lock. Unfortunately, the fault code and truncate/hole punch code would naturally take locks in the opposite order which could lead to deadlock. Since the performance of page faults is more important, the truncation/hole punch code is modified to back out and take locks in the correct order if necessary. [1] https://lore.kernel.org/linux-mm/43faf292-245b-5db5-cce9-369d8fb6bd21@infradead.org/ [2] https://lore.kernel.org/lkml/20200622005551.GK5535@shao2-debian/ [3] https://lore.kernel.org/linux-mm/20200706202615.32111-1-mike.kravetz@oracle.com/ This patch (of 9): Commit c0d0381ade79 ("hugetlbfs: use i_mmap_rwsem for more pmd sharing synchronization") added code to take i_mmap_rwsem in read mode for the duration of fault processing. The use of i_mmap_rwsem to prevent fault/truncate races depends on this. However, this has been shown to cause performance/scaling issues. As a result, that code will be reverted. Since the use i_mmap_rwsem to address page fault/truncate races depends on this, it must also be reverted. In a subsequent patch, code will be added to detect the fault/truncate race and back out operations as required. Link: https://lkml.kernel.org/r/20220914221810.95771-1-mike.kravetz@oracle.com Link: https://lkml.kernel.org/r/20220914221810.95771-2-mike.kravetz@oracle.com Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Miaohe Lin <linmiaohe@huawei.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: James Houghton <jthoughton@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev> Cc: Pasha Tatashin <pasha.tatashin@soleen.com> Cc: Peter Xu <peterx@redhat.com> Cc: Prakash Sangappa <prakash.sangappa@oracle.com> Cc: Sven Schnelle <svens@linux.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
* | mm/hugetlb: remove unnecessary 'NULL' values from pointerXU pengfei2022-10-031-2/+2
| | | | | | | | | | | | | | | | | | | | | | Pointer variables allocate memory first, and then judge. There is no need to initialize the assignment. Link: https://lkml.kernel.org/r/20220914012113.6271-1-xupengfei@nfschina.com Signed-off-by: XU pengfei <xupengfei@nfschina.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
* | mm: hugetlb: eliminate memory-less nodes handlingMuchun Song2022-10-031-41/+29
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The memory-notify-based approach aims to handle meory-less nodes, however, it just adds the complexity of code as pointed by David in thread [1]. The handling of memory-less nodes is introduced by commit 4faf8d950ec4 ("hugetlb: handle memory hot-plug events"). >From its commit message, we cannot find any necessity of handling this case. So, we can simply register/unregister sysfs entries in register_node/unregister_node to simlify the code. BTW, hotplug callback added because in hugetlb_register_all_nodes() we register sysfs nodes only for N_MEMORY nodes, seeing commit 9b5e5d0fdc91, which said it was a preparation for handling memory-less nodes via memory hotplug. Since we want to remove memory hotplug, so make sure we only register per-node sysfs for online (N_ONLINE) nodes in hugetlb_register_all_nodes(). https://lore.kernel.org/linux-mm/60933ffc-b850-976c-78a0-0ee6e0ea9ef0@redhat.com/ [1] Link: https://lkml.kernel.org/r/20220914072603.60293-3-songmuchun@bytedance.com Suggested-by: David Hildenbrand <david@redhat.com> Signed-off-by: Muchun Song <songmuchun@bytedance.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Rafael J. Wysocki <rafael@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
* | mm: hugetlb: simplify per-node sysfs creation and removalMuchun Song2022-10-031-12/+23
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Patch series "simplify handling of per-node sysfs creation and removal", v4. This patch (of 2): The following commit offload per-node sysfs creation and removal to a kworker and did not say why it is needed. And it also said "I don't know that this is absolutely required". It seems like the author was not sure as well. Since it only complicates the code, this patch will revert the changes to simplify the code. 39da08cb074c ("hugetlb: offload per node attribute registrations") We could use memory hotplug notifier to do per-node sysfs creation and removal instead of inserting those operations to node registration and unregistration. Then, it can reduce the code coupling between node.c and hugetlb.c. Also, it can simplify the code. Link: https://lkml.kernel.org/r/20220914072603.60293-1-songmuchun@bytedance.com Link: https://lkml.kernel.org/r/20220914072603.60293-2-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Acked-by: Mike Kravetz <mike.kravetz@oracle.com> Acked-by: David Hildenbrand <david@redhat.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Rafael J. Wysocki <rafael@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
* | mm: use nth_page instead of mem_map_offset mem_map_nextCheng Li2022-10-031-12/+17
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | To handle the discontiguous case, mem_map_next() has a parameter named `offset`. As a function caller, one would be confused why "get next entry" needs a parameter named "offset". The other drawback of mem_map_next() is that the callers must take care of the map between parameter "iter" and "offset", otherwise we may get an hole or duplication during iteration. So we use nth_page instead of mem_map_next. And replace mem_map_offset with nth_page() per Matthew's comments. Link: https://lkml.kernel.org/r/1662708669-9395-1-git-send-email-lic121@chinatelecom.cn Signed-off-by: Cheng Li <lic121@chinatelecom.cn> Fixes: 69d177c2fc70 ("hugetlbfs: handle pages higher order than MAX_ORDER") Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
* | mm/hugetlb.c: remove unnecessary initialization of local `err'Li zeming2022-10-031-1/+1
| | | | | | | | | | | | | | | | Link: https://lkml.kernel.org/r/20220905020918.3552-1-zeming@nfschina.com Signed-off-by: Li zeming <zeming@nfschina.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Muchun Song <songmuchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
* | Merge branch 'mm-hotfixes-stable' into mm-stableAndrew Morton2022-09-261-6/+8
|\|
| * mm/hugetlb: correct demote page offset logicDoug Berger2022-09-261-6/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | With gigantic pages it may not be true that struct page structures are contiguous across the entire gigantic page. The nth_page macro is used here in place of direct pointer arithmetic to correct for this. Mike said: : This error could cause addressing exceptions. However, this is only : possible in configurations where CONFIG_SPARSEMEM && : !CONFIG_SPARSEMEM_VMEMMAP. Such a configuration option is rare and : unknown to be the default anywhere. Link: https://lkml.kernel.org/r/20220914190917.3517663-1-opendmb@gmail.com Fixes: 8531fc6f52f5 ("hugetlb: add hugetlb demote page support") Signed-off-by: Doug Berger <opendmb@gmail.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
* | hugetlb: remove meaningless BUG_ON(huge_pte_none())Miaohe Lin2022-09-111-1/+0
| | | | | | | | | | | | | | | | | | | | | | When code reaches here, invalid page would have been accessed if huge pte is none. So this BUG_ON(huge_pte_none()) is meaningless. Remove it. Link: https://lkml.kernel.org/r/20220901120030.63318-10-linmiaohe@huawei.com Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
* | hugetlb: add comment for subtle SetHPageVmemmapOptimized()Miaohe Lin2022-09-111-0/+4
| | | | | | | | | | | | | | | | | | | | | | | | | | The SetHPageVmemmapOptimized() called here seems unnecessary as it's assumed to be set when calling this function. But it's indeed cleared by above set_page_private(page, 0). Add a comment to avoid possible future confusion. Link: https://lkml.kernel.org/r/20220901120030.63318-9-linmiaohe@huawei.com Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
* | hugetlb: kill hugetlbfs_pagecache_page()Miaohe Lin2022-09-111-14/+1
| | | | | | | | | | | | | | | | | | | | | | Fold hugetlbfs_pagecache_page() into its sole caller to remove some duplicated code. No functional change intended. Link: https://lkml.kernel.org/r/20220901120030.63318-8-linmiaohe@huawei.com Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
* | hugetlb: pass NULL to kobj_to_hstate() if nid is unusedMiaohe Lin2022-09-111-4/+2
| | | | | | | | | | | | | | | | | | | | | | We can pass NULL to kobj_to_hstate() directly when nid is unused to simplify the code. No functional change intended. Link: https://lkml.kernel.org/r/20220901120030.63318-7-linmiaohe@huawei.com Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
* | hugetlb: use helper {huge_pte|pmd}_lock()Miaohe Lin2022-09-111-2/+1
| | | | | | | | | | | | | | | | | | | | | | Use helper huge_pte_lock and pmd_lock to simplify the code. No functional change intended. Link: https://lkml.kernel.org/r/20220901120030.63318-6-linmiaohe@huawei.com Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
* | hugetlb: use sizeof() to get the array sizeMiaohe Lin2022-09-111-2/+2
| | | | | | | | | | | | | | | | | | | | | | It's better to use sizeof() to get the array size instead of manual calculation. Minor readability improvement. Link: https://lkml.kernel.org/r/20220901120030.63318-5-linmiaohe@huawei.com Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
* | hugetlb: use LIST_HEAD() to define a list headMiaohe Lin2022-09-111-5/+2
| | | | | | | | | | | | | | | | | | | | | | Use LIST_HEAD() directly to define a list head to simplify the code. No functional change intended. Link: https://lkml.kernel.org/r/20220901120030.63318-4-linmiaohe@huawei.com Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
* | hugetlb: Use helper macro SZ_1KMiaohe Lin2022-09-111-1/+1
| | | | | | | | | | | | | | | | | | | | | | Use helper macro SZ_1K to do the size conversion to make code more consistent in this file. Minor readability improvement. Link: https://lkml.kernel.org/r/20220901120030.63318-3-linmiaohe@huawei.com Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
* | hugetlb: make hugetlb_cma_check() staticMiaohe Lin2022-09-111-1/+9
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Patch series "A few cleanup patches for hugetlb", v2. This series contains a few cleanup patches to use helper functions to simplify the codes, remove unneeded nid parameter and so on. More details can be found in the respective changelogs. This patch (of 10): Make hugetlb_cma_check() static as it's only used inside mm/hugetlb.c. Link: https://lkml.kernel.org/r/20220901120030.63318-1-linmiaohe@huawei.com Link: https://lkml.kernel.org/r/20220901120030.63318-2-linmiaohe@huawei.com Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
* | mm/hugetlb: make detecting shared pte more reliableMiaohe Lin2022-09-111-13/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | If the pagetables are shared, we shouldn't copy or take references. Since src could have unshared and dst shares with another vma, huge_pte_none() is thus used to determine whether dst_pte is shared. But this check isn't reliable. A shared pte could have pte none in pagetable in fact. The page count of ptep page should be checked here in order to reliably determine whether pte is shared. [lukas.bulwahn@gmail.com: remove unused local variable dst_entry in copy_hugetlb_page_range()] Link: https://lkml.kernel.org/r/20220822082525.26071-1-lukas.bulwahn@gmail.com Link: https://lkml.kernel.org/r/20220816130553.31406-7-linmiaohe@huawei.com Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Signed-off-by: Lukas Bulwahn <lukas.bulwahn@gmail.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Muchun Song <songmuchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
* | mm/hugetlb: fix sysfs group leak in hugetlb_unregister_node()Miaohe Lin2022-09-111-7/+18
| | | | | | | | | | | | | | | | | | | | | | | | | | | | The sysfs group per_node_hstate_attr_group and hstate_demote_attr_group when h->demote_order != 0 are created in hugetlb_register_node(). But these sysfs groups are not removed when unregister the node, thus sysfs group is leaked. Using sysfs_remove_group() to fix this issue. Link: https://lkml.kernel.org/r/20220816130553.31406-6-linmiaohe@huawei.com Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: Fengwei Yin <fengwei.yin@intel.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Muchun Song <songmuchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
* | mm/hugetlb: fix missing call to restore_reserve_on_error()Miaohe Lin2022-09-111-3/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When huge_add_to_page_cache() fails, the page is freed directly without calling restore_reserve_on_error() to restore reserve for newly allocated pages not in page cache. Fix this by calling restore_reserve_on_error() when huge_add_to_page_cache fails. [linmiaohe@huawei.com: remove err == -EEXIST check and retry logic] Link: https://lkml.kernel.org/r/20220823030209.57434-4-linmiaohe@huawei.com Link: https://lkml.kernel.org/r/20220816130553.31406-4-linmiaohe@huawei.com Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Muchun Song <songmuchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
* | mm/hugetlb: fix WARN_ON(!kobj) in sysfs_create_group()Miaohe Lin2022-09-111-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | If sysfs_create_group() fails with hstate_attr_group, hstate_kobjs[hi] will be set to NULL. Then it will be passed to sysfs_create_group() if h->demote_order != 0 thus triggering WARN_ON(!kobj) check. Fix this by making sure hstate_kobjs[hi] != NULL when calling sysfs_create_group. Link: https://lkml.kernel.org/r/20220816130553.31406-3-linmiaohe@huawei.com Fixes: 79dfc695525f ("hugetlb: add demote hugetlb page sysfs interfaces") Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
* | mm/hugetlb: fix incorrect update of max_huge_pagesMiaohe Lin2022-09-111-1/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Patch series "A few fixup patches for hugetlb". This series contains a few fixup patches to fix incorrect update of max_huge_pages, fix WARN_ON(!kobj) in sysfs_create_group() and so on. More details can be found in the respective changelogs. This patch (of 6): There should be pages_per_huge_page(h) / pages_per_huge_page(target_hstate) pages incremented for target_hstate->max_huge_pages when page is demoted. Update max_huge_pages accordingly for consistency. Link: https://lkml.kernel.org/r/20220816130553.31406-1-linmiaohe@huawei.com Link: https://lkml.kernel.org/r/20220816130553.31406-2-linmiaohe@huawei.com Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
* | mm/hugetlb: add dedicated func to get 'allowed' nodemask for current processFeng Tang2022-09-111-4/+20
|/ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Muchun Song found that after MPOL_PREFERRED_MANY policy was introduced in commit b27abaccf8e8 ("mm/mempolicy: add MPOL_PREFERRED_MANY for multiple preferred nodes"), the policy_nodemask_current()'s semantics for this new policy has been changed, which returns 'preferred' nodes instead of 'allowed' nodes. With the changed semantic of policy_nodemask_current, a task with MPOL_PREFERRED_MANY policy could fail to get its reservation even though it can fall back to other nodes (either defined by cpusets or all online nodes) for that reservation failing mmap calles unnecessarily early. The fix is to not consider MPOL_PREFERRED_MANY for reservations at all because they, unlike MPOL_MBIND, do not pose any actual hard constrain. Michal suggested the policy_nodemask_current() is only used by hugetlb, and could be moved to hugetlb code with more explicit name to enforce the 'allowed' semantics for which only MPOL_BIND policy matters. apply_policy_zone() is made extern to be called in hugetlb code and its return value is changed to bool. [1]. https://lore.kernel.org/lkml/20220801084207.39086-1-songmuchun@bytedance.com/t/ Link: https://lkml.kernel.org/r/20220805005903.95563-1-feng.tang@intel.com Fixes: b27abaccf8e8 ("mm/mempolicy: add MPOL_PREFERRED_MANY for multiple preferred nodes") Signed-off-by: Feng Tang <feng.tang@intel.com> Reported-by: Muchun Song <songmuchun@bytedance.com> Suggested-by: Michal Hocko <mhocko@suse.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Muchun Song <songmuchun@bytedance.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Ben Widawsky <bwidawsk@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
* mm/hugetlb: avoid corrupting page->mapping in hugetlb_mcopy_atomic_pteMiaohe Lin2022-08-281-1/+1
| | | | | | | | | | | | | | | | In MCOPY_ATOMIC_CONTINUE case with a non-shared VMA, pages in the page cache are installed in the ptes. But hugepage_add_new_anon_rmap is called for them mistakenly because they're not vm_shared. This will corrupt the page->mapping used by page cache code. Link: https://lkml.kernel.org/r/20220712130542.18836-1-linmiaohe@huawei.com Fixes: f619147104c8 ("userfaultfd: add UFFDIO_CONTINUE ioctl") Signed-off-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: Peter Xu <peterx@redhat.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
* mm/hugetlb: support write-faults in shared mappingsDavid Hildenbrand2022-08-201-7/+19
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | If we ever get a write-fault on a write-protected page in a shared mapping, we'd be in trouble (again). Instead, we can simply map the page writable. And in fact, there is even a way right now to trigger that code via uffd-wp ever since we stared to support it for shmem in 5.19: -------------------------------------------------------------------------- #include <stdio.h> #include <stdlib.h> #include <string.h> #include <fcntl.h> #include <unistd.h> #include <errno.h> #include <sys/mman.h> #include <sys/syscall.h> #include <sys/ioctl.h> #include <linux/userfaultfd.h> #define HUGETLB_SIZE (2 * 1024 * 1024u) static char *map; int uffd; static int temp_setup_uffd(void) { struct uffdio_api uffdio_api; struct uffdio_register uffdio_register; struct uffdio_writeprotect uffd_writeprotect; struct uffdio_range uffd_range; uffd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK | UFFD_USER_MODE_ONLY); if (uffd < 0) { fprintf(stderr, "syscall() failed: %d\n", errno); return -errno; } uffdio_api.api = UFFD_API; uffdio_api.features = UFFD_FEATURE_PAGEFAULT_FLAG_WP; if (ioctl(uffd, UFFDIO_API, &uffdio_api) < 0) { fprintf(stderr, "UFFDIO_API failed: %d\n", errno); return -errno; } if (!(uffdio_api.features & UFFD_FEATURE_PAGEFAULT_FLAG_WP)) { fprintf(stderr, "UFFD_FEATURE_WRITEPROTECT missing\n"); return -ENOSYS; } /* Register UFFD-WP */ uffdio_register.range.start = (unsigned long) map; uffdio_register.range.len = HUGETLB_SIZE; uffdio_register.mode = UFFDIO_REGISTER_MODE_WP; if (ioctl(uffd, UFFDIO_REGISTER, &uffdio_register) < 0) { fprintf(stderr, "UFFDIO_REGISTER failed: %d\n", errno); return -errno; } /* Writeprotect a single page. */ uffd_writeprotect.range.start = (unsigned long) map; uffd_writeprotect.range.len = HUGETLB_SIZE; uffd_writeprotect.mode = UFFDIO_WRITEPROTECT_MODE_WP; if (ioctl(uffd, UFFDIO_WRITEPROTECT, &uffd_writeprotect)) { fprintf(stderr, "UFFDIO_WRITEPROTECT failed: %d\n", errno); return -errno; } /* Unregister UFFD-WP without prior writeunprotection. */ uffd_range.start = (unsigned long) map; uffd_range.len = HUGETLB_SIZE; if (ioctl(uffd, UFFDIO_UNREGISTER, &uffd_range)) { fprintf(stderr, "UFFDIO_UNREGISTER failed: %d\n", errno); return -errno; } return 0; } int main(int argc, char **argv) { int fd; fd = open("/dev/hugepages/tmp", O_RDWR | O_CREAT); if (!fd) { fprintf(stderr, "open() failed\n"); return -errno; } if (ftruncate(fd, HUGETLB_SIZE)) { fprintf(stderr, "ftruncate() failed\n"); return -errno; } map = mmap(NULL, HUGETLB_SIZE, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0); if (map == MAP_FAILED) { fprintf(stderr, "mmap() failed\n"); return -errno; } *map = 0; if (temp_setup_uffd()) return 1; *map = 0; return 0; } -------------------------------------------------------------------------- Above test fails with SIGBUS when there is only a single free hugetlb page. # echo 1 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages # ./test Bus error (core dumped) And worse, with sufficient free hugetlb pages it will map an anonymous page into a shared mapping, for example, messing up accounting during unmap and breaking MAP_SHARED semantics: # echo 2 > /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages # ./test # cat /proc/meminfo | grep HugePages_ HugePages_Total: 2 HugePages_Free: 1 HugePages_Rsvd: 18446744073709551615 HugePages_Surp: 0 Reason is that uffd-wp doesn't clear the uffd-wp PTE bit when unregistering and consequently keeps the PTE writeprotected. Reason for this is to avoid the additional overhead when unregistering. Note that this is the case also for !hugetlb and that we will end up with writable PTEs that still have the uffd-wp PTE bit set once we return from hugetlb_wp(). I'm not touching the uffd-wp PTE bit for now, because it seems to be a generic thing -- wp_page_reuse() also doesn't clear it. VM_MAYSHARE handling in hugetlb_fault() for FAULT_FLAG_WRITE indicates that MAP_SHARED handling was at least envisioned, but could never have worked as expected. While at it, make sure that we never end up in hugetlb_wp() on write faults without VM_WRITE, because we don't support maybe_mkwrite() semantics as commonly used in the !hugetlb case -- for example, in wp_page_reuse(). Note that there is no need to do any kind of reservation in hugetlb_fault() in this case ... because we already have a hugetlb page mapped R/O that we will simply map writable and we are not dealing with COW/unsharing. Link: https://lkml.kernel.org/r/20220811103435.188481-3-david@redhat.com Fixes: b1f9e876862d ("mm/uffd: enable write protection for shmem & hugetlbfs") Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Cyrill Gorcunov <gorcunov@openvz.org> Cc: Hugh Dickins <hughd@google.com> Cc: Jamie Liu <jamieliu@google.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Pavel Emelyanov <xemul@parallels.com> Cc: Peter Feiner <pfeiner@google.com> Cc: Peter Xu <peterx@redhat.com> Cc: <stable@vger.kernel.org> [5.19] Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
* mm, hwpoison, hugetlb: support saving mechanism of raw error pagesNaoya Horiguchi2022-08-081-9/+14
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When handling memory error on a hugetlb page, the error handler tries to dissolve and turn it into 4kB pages. If it's successfully dissolved, PageHWPoison flag is moved to the raw error page, so that's all right. However, dissolve sometimes fails, then the error page is left as hwpoisoned hugepage. It's useful if we can retry to dissolve it to save healthy pages, but that's not possible now because the information about where the raw error pages is lost. Use the private field of a few tail pages to keep that information. The code path of shrinking hugepage pool uses this info to try delayed dissolve. In order to remember multiple errors in a hugepage, a singly-linked list originated from SUBPAGE_INDEX_HWPOISON-th tail page is constructed. Only simple operations (adding an entry or clearing all) are required and the list is assumed not to be very long, so this simple data structure should be enough. If we failed to save raw error info, the hwpoison hugepage has errors on unknown subpage, then this new saving mechanism does not work any more, so disable saving new raw error info and freeing hwpoison hugepages. Link: https://lkml.kernel.org/r/20220714042420.1847125-4-naoya.horiguchi@linux.dev Signed-off-by: Naoya Horiguchi <naoya.horiguchi@nec.com> Reported-by: kernel test robot <lkp@intel.com> Reviewed-by: Miaohe Lin <linmiaohe@huawei.com> Cc: David Hildenbrand <david@redhat.com> Cc: Liu Shixin <liushixin2@huawei.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
* mm/hugetlb: make pud_huge() and follow_huge_pud() aware of non-present pud entryNaoya Horiguchi2022-08-081-2/+30
| | | | | | | | | | | | | | | | | | | | | | | | | | follow_pud_mask() does not support non-present pud entry now. As long as I tested on x86_64 server, follow_pud_mask() still simply returns no_page_table() for non-present_pud_entry() due to pud_bad(), so no severe user-visible effect should happen. But generally we should call follow_huge_pud() for non-present pud entry for 1GB hugetlb page. Update pud_huge() and follow_huge_pud() to handle non-present pud entries. The changes are similar to previous works for pud entries commit e66f17ff7177 ("mm/hugetlb: take page table lock in follow_huge_pmd()") and commit cbef8478bee5 ("mm/hugetlb: pmd_huge() returns true for non-present hugepage"). Link: https://lkml.kernel.org/r/20220714042420.1847125-3-naoya.horiguchi@linux.dev Signed-off-by: Naoya Horiguchi <naoya.horiguchi@nec.com> Reviewed-by: Miaohe Lin <linmiaohe@huawei.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: David Hildenbrand <david@redhat.com> Cc: kernel test robot <lkp@intel.com> Cc: Liu Shixin <liushixin2@huawei.com> Cc: Muchun Song <songmuchun@bytedance.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Yang Shi <shy828301@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
* mm/hugetlb: check gigantic_page_runtime_supported() in ↵Naoya Horiguchi2022-08-081-2/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | return_unused_surplus_pages() Patch series "mm, hwpoison: enable 1GB hugepage support", v7. This patch (of 8): I found a weird state of 1GB hugepage pool, caused by the following procedure: - run a process reserving all free 1GB hugepages, - shrink free 1GB hugepage pool to zero (i.e. writing 0 to /sys/kernel/mm/hugepages/hugepages-1048576kB/nr_hugepages), then - kill the reserving process. , then all the hugepages are free *and* surplus at the same time. $ cat /sys/kernel/mm/hugepages/hugepages-1048576kB/nr_hugepages 3 $ cat /sys/kernel/mm/hugepages/hugepages-1048576kB/free_hugepages 3 $ cat /sys/kernel/mm/hugepages/hugepages-1048576kB/resv_hugepages 0 $ cat /sys/kernel/mm/hugepages/hugepages-1048576kB/surplus_hugepages 3 This state is resolved by reserving and allocating the pages then freeing them again, so this seems not to result in serious problem. But it's a little surprising (shrinking pool suddenly fails). This behavior is caused by hstate_is_gigantic() check in return_unused_surplus_pages(). This was introduced so long ago in 2008 by commit aa888a74977a ("hugetlb: support larger than MAX_ORDER"), and at that time the gigantic pages were not supposed to be allocated/freed at run-time. Now kernel can support runtime allocation/free, so let's check gigantic_page_runtime_supported() together. Link: https://lkml.kernel.org/r/20220714042420.1847125-1-naoya.horiguchi@linux.dev Link: https://lkml.kernel.org/r/20220714042420.1847125-2-naoya.horiguchi@linux.dev Signed-off-by: Naoya Horiguchi <naoya.horiguchi@nec.com> Reviewed-by: Miaohe Lin <linmiaohe@huawei.com> Cc: David Hildenbrand <david@redhat.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Liu Shixin <liushixin2@huawei.com> Cc: Yang Shi <shy828301@gmail.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Muchun Song <songmuchun@bytedance.com> Cc: kernel test robot <lkp@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
* mm: hugetlb_vmemmap: improve hugetlb_vmemmap code readabilityMuchun Song2022-08-081-7/+8
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | There is a discussion about the name of hugetlb_vmemmap_alloc/free in thread [1]. The suggestion suggested by David is rename "alloc/free" to "optimize/restore" to make functionalities clearer to users, "optimize" means the function will optimize vmemmap pages, while "restore" means restoring its vmemmap pages discared before. This commit does this. Another discussion is the confusion RESERVE_VMEMMAP_NR isn't used explicitly for vmemmap_addr but implicitly for vmemmap_end in hugetlb_vmemmap_alloc/free. David suggested we can compute what hugetlb_vmemmap_init() does now at runtime. We do not need to worry for the overhead of computing at runtime since the calculation is simple enough and those functions are not in a hot path. This commit has the following improvements: 1) The function suffixed name ("optimize/restore") is more expressive. 2) The logic becomes less weird in hugetlb_vmemmap_optimize/restore(). 3) The hugetlb_vmemmap_init() does not need to be exported anymore. 4) A ->optimize_vmemmap_pages field in struct hstate is killed. 5) There is only one place where checks is_power_of_2(sizeof(struct page)) instead of two places. 6) Add more comments for hugetlb_vmemmap_optimize/restore(). 7) For external users, hugetlb_optimize_vmemmap_pages() is used for detecting if the HugeTLB's vmemmap pages is optimizable originally. In this commit, it is killed and we introduce a new helper hugetlb_vmemmap_optimizable() to replace it. The name is more expressive. Link: https://lore.kernel.org/all/20220404074652.68024-2-songmuchun@bytedance.com/ [1] Link: https://lkml.kernel.org/r/20220628092235.91270-7-songmuchun@bytedance.com Signed-off-by: Muchun Song <songmuchun@bytedance.com> Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com> Cc: Anshuman Khandual <anshuman.khandual@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: David Hildenbrand <david@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Oscar Salvador <osalvador@suse.de> Cc: Will Deacon <will@kernel.org> Cc: Xiongchun Duan <duanxiongchun@bytedance.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>