| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 40413955ee265a5e42f710940ec78f5450d49149 upstream.
in for(),if((optlen > 0) && (optptr[1] == 0)), enter infinite loop.
Test: receive a packet which the ip length > 20 and the first byte of ip option is 0, produce this issue
Signed-off-by: yujuan.qi <yujuan.qi@mediatek.com>
Acked-by: Paul Moore <paul@paul-moore.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit e56b8ce363a36fb7b74b80aaa5cc9084f2c908b4 ]
Attempt to make cryptic TCP seq number error messages clearer by
(1) identifying the source of the message as "TCP", (2) identifying the
errors as "seq # bug", and (3) grouping the field identifiers and values
by separating them with commas.
E.g., the following message is changed from:
recvmsg bug 2: copied 73BCB6CD seq 70F17CBE rcvnxt 73BCB9AA fl 0
WARNING: CPU: 2 PID: 1501 at /linux/net/ipv4/tcp.c:1881 tcp_recvmsg+0x649/0xb90
to:
TCP recvmsg seq # bug 2: copied 73BCB6CD, seq 70F17CBE, rcvnxt 73BCB9AA, fl 0
WARNING: CPU: 2 PID: 1501 at /linux/net/ipv4/tcp.c:2011 tcp_recvmsg+0x694/0xba0
Suggested-by: 積丹尼 Dan Jacobson <jidanni@jidanni.org>
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit a69258f7aa2623e0930212f09c586fd06674ad79 ]
After fixing the way DCTCP tracking delayed ACKs, the delayed-ACK
related callbacks are no longer needed
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Acked-by: Lawrence Brakmo <brakmo@fb.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit d376bef9c29b3c65aeee4e785fffcd97ef0a9a81 ]
nft_compat relies on xt_request_find_match to increment
refcount of the module that provides the match/target.
The (builtin) icmp matches did't set the module owner so it
was possible to rmmod ip(6)tables while icmp extensions were still in use.
Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
| |
The 4.4.y stable backport dc6ae4dffd65 for the upstream commit
3d4bf93ac120 ("tcp: detect malicious patterns in
tcp_collapse_ofo_queue()") missed a line that enlarges the
range_truesize value, which broke the whole check.
Fixes: dc6ae4dffd65 ("tcp: detect malicious patterns in tcp_collapse_ofo_queue()")
Signed-off-by: Takashi Iwai <tiwai@suse.de>
Cc: Michal Kubecek <mkubecek@suse.cz>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 32b6170ca59ccf07d0e394561e54b2cd9726038c upstream.
The ESP algorithms using CBC mode require echainiv. Hence INET*_ESP have
to select CRYPTO_ECHAINIV in order to work properly. This solves the
issues caused by a misconfiguration as described in [1].
The original approach, patching crypto/Kconfig was turned down by
Herbert Xu [2].
[1] https://lists.strongswan.org/pipermail/users/2015-December/009074.html
[2] http://marc.info/?l=linux-crypto-vger&m=145224655809562&w=2
Signed-off-by: Thomas Egerer <hakke_007@gmx.de>
Acked-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: David S. Miller <davem@davemloft.net>
Cc: Yongqin Liu <yongqin.liu@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit 56e2c94f055d328f5f6b0a5c1721cca2f2d4e0a1 ]
We currently check current frags memory usage only when
a new frag queue is created. This allows attackers to first
consume the memory budget (default : 4 MB) creating thousands
of frag queues, then sending tiny skbs to exceed high_thresh
limit by 2 to 3 order of magnitude.
Note that before commit 648700f76b03 ("inet: frags: use rhashtables
for reassembly units"), work queue could be starved under DOS,
getting no cpu cycles.
After commit 648700f76b03, only the per frag queue timer can eventually
remove an incomplete frag queue and its skbs.
Fixes: b13d3cbfb8e8 ("inet: frag: move eviction of queues to work queue")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: Jann Horn <jannh@google.com>
Cc: Florian Westphal <fw@strlen.de>
Cc: Peter Oskolkov <posk@google.com>
Cc: Paolo Abeni <pabeni@redhat.com>
Acked-by: Florian Westphal <fw@strlen.de>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit 15ecbe94a45ef88491ca459b26efdd02f91edb6d ]
Larry Brakmo proposal ( https://patchwork.ozlabs.org/patch/935233/
tcp: force cwnd at least 2 in tcp_cwnd_reduction) made us rethink
about our recent patch removing ~16 quick acks after ECN events.
tcp_enter_quickack_mode(sk, 1) makes sure one immediate ack is sent,
but in the case the sender cwnd was lowered to 1, we do not want
to have a delayed ack for the next packet we will receive.
Fixes: 522040ea5fdd ("tcp: do not aggressively quick ack after ECN events")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: Neal Cardwell <ncardwell@google.com>
Cc: Lawrence Brakmo <brakmo@fb.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit f4c9f85f3b2cb7669830cd04d0be61192a4d2436 ]
Refactor tcp_ecn_check_ce and __tcp_ecn_check_ce to accept struct sock*
instead of tcp_sock* to clean up type casts. This is a pure refactor
patch.
Signed-off-by: Yousuk Seung <ysseung@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit 522040ea5fdd1c33bbf75e1d7c7c0422b96a94ef ]
ECN signals currently forces TCP to enter quickack mode for
up to 16 (TCP_MAX_QUICKACKS) following incoming packets.
We believe this is not needed, and only sending one immediate ack
for the current packet should be enough.
This should reduce the extra load noticed in DCTCP environments,
after congestion events.
This is part 2 of our effort to reduce pure ACK packets.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Acked-by: Yuchung Cheng <ycheng@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit 9a9c9b51e54618861420093ae6e9b50a961914c5 ]
We want to add finer control of the number of ACK packets sent after
ECN events.
This patch is not changing current behavior, it only enables following
change.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit a3893637e1eb0ef5eb1bbc52b3a8d2dfa317a35d ]
As explained in commit 9f9843a751d0 ("tcp: properly handle stretch
acks in slow start"), TCP stacks have to consider how many packets
are acknowledged in one single ACK, because of GRO, but also
because of ACK compression or losses.
We plan to add SACK compression in the following patch, we
must therefore not call tcp_enter_quickack_mode()
Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit 9fc12023d6f51551d6ca9ed7e02ecc19d79caf17 ]
Remove BUG_ON() from fib_compute_spec_dst routine and check
in_dev pointer during flowi4 data structure initialization.
fib_compute_spec_dst routine can be run concurrently with device removal
where ip_ptr net_device pointer is set to NULL. This can happen
if userspace enables pkt info on UDP rx socket and the device
is removed while traffic is flowing
Fixes: 35ebf65e851c ("ipv4: Create and use fib_compute_spec_dst() helper")
Signed-off-by: Lorenzo Bianconi <lorenzo.bianconi@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit 300eec7c0a2495f771709c7642aa15f7cc148b83 ]
ic_nameservers, which stores the list of name servers discovered by
ipconfig, is initialised (i.e. has all of its elements set to NONE, or
0xffffffff) by ic_nameservers_predef() in the following scenarios:
- before the "ip=" and "nfsaddrs=" kernel command line parameters are
parsed (in ip_auto_config_setup());
- before autoconfiguring via DHCP or BOOTP (in ic_bootp_init()), in
order to clear any values that may have been set after parsing "ip="
or "nfsaddrs=" and are no longer needed.
This means that ic_nameservers_predef() is not called when neither "ip="
nor "nfsaddrs=" is specified on the kernel command line. In this
scenario, every element in ic_nameservers remains set to 0x00000000,
which is indistinguishable from ANY and causes pnp_seq_show() to write
the following (bogus) information to /proc/net/pnp:
#MANUAL
nameserver 0.0.0.0
nameserver 0.0.0.0
nameserver 0.0.0.0
This is potentially problematic for systems that blindly link
/etc/resolv.conf to /proc/net/pnp.
Ensure that ic_nameservers is also initialised when neither "ip=" nor
"nfsaddrs=" are specified by calling ic_nameservers_predef() in
ip_auto_config(), but only when ip_auto_config_setup() was not called
earlier. This causes the following to be written to /proc/net/pnp, and
is consistent with what gets written when ipconfig is configured
manually but no name servers are specified on the kernel command line:
#MANUAL
Signed-off-by: Chris Novakovic <chris@chrisn.me.uk>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit 2efd4fca703a6707cad16ab486eaab8fc7f0fd49 ]
Syzbot reported a read beyond the end of the skb head when returning
IPV6_ORIGDSTADDR:
BUG: KMSAN: kernel-infoleak in put_cmsg+0x5ef/0x860 net/core/scm.c:242
CPU: 0 PID: 4501 Comm: syz-executor128 Not tainted 4.17.0+ #9
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS
Google 01/01/2011
Call Trace:
__dump_stack lib/dump_stack.c:77 [inline]
dump_stack+0x185/0x1d0 lib/dump_stack.c:113
kmsan_report+0x188/0x2a0 mm/kmsan/kmsan.c:1125
kmsan_internal_check_memory+0x138/0x1f0 mm/kmsan/kmsan.c:1219
kmsan_copy_to_user+0x7a/0x160 mm/kmsan/kmsan.c:1261
copy_to_user include/linux/uaccess.h:184 [inline]
put_cmsg+0x5ef/0x860 net/core/scm.c:242
ip6_datagram_recv_specific_ctl+0x1cf3/0x1eb0 net/ipv6/datagram.c:719
ip6_datagram_recv_ctl+0x41c/0x450 net/ipv6/datagram.c:733
rawv6_recvmsg+0x10fb/0x1460 net/ipv6/raw.c:521
[..]
This logic and its ipv4 counterpart read the destination port from
the packet at skb_transport_offset(skb) + 4.
With MSG_MORE and a local SOCK_RAW sender, syzbot was able to cook a
packet that stores headers exactly up to skb_transport_offset(skb) in
the head and the remainder in a frag.
Call pskb_may_pull before accessing the pointer to ensure that it lies
in skb head.
Link: http://lkml.kernel.org/r/CAF=yD-LEJwZj5a1-bAAj2Oy_hKmGygV6rsJ_WOrAYnv-fnayiQ@mail.gmail.com
Reported-by: syzbot+9adb4b567003cac781f0@syzkaller.appspotmail.com
Signed-off-by: Willem de Bruijn <willemb@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit 3d4bf93ac12003f9b8e1e2de37fe27983deebdcf ]
In case an attacker feeds tiny packets completely out of order,
tcp_collapse_ofo_queue() might scan the whole rb-tree, performing
expensive copies, but not changing socket memory usage at all.
1) Do not attempt to collapse tiny skbs.
2) Add logic to exit early when too many tiny skbs are detected.
We prefer not doing aggressive collapsing (which copies packets)
for pathological flows, and revert to tcp_prune_ofo_queue() which
will be less expensive.
In the future, we might add the possibility of terminating flows
that are proven to be malicious.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit f4a3313d8e2ca9fd8d8f45e40a2903ba782607e7 ]
Right after a TCP flow is created, receiving tiny out of order
packets allways hit the condition :
if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
tcp_clamp_window(sk);
tcp_clamp_window() increases sk_rcvbuf to match sk_rmem_alloc
(guarded by tcp_rmem[2])
Calling tcp_collapse_ofo_queue() in this case is not useful,
and offers a O(N^2) surface attack to malicious peers.
Better not attempt anything before full queue capacity is reached,
forcing attacker to spend lots of resource and allow us to more
easily detect the abuse.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Acked-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit a0496ef2c23b3b180902dd185d0d63ccbc624cf8 ]
Per DCTCP RFC8257 (Section 3.2) the ACK reflecting the CE status change
has to be sent immediately so the sender can respond quickly:
""" When receiving packets, the CE codepoint MUST be processed as follows:
1. If the CE codepoint is set and DCTCP.CE is false, set DCTCP.CE to
true and send an immediate ACK.
2. If the CE codepoint is not set and DCTCP.CE is true, set DCTCP.CE
to false and send an immediate ACK.
"""
Previously DCTCP implementation may continue to delay the ACK. This
patch fixes that to implement the RFC by forcing an immediate ACK.
Tested with this packetdrill script provided by Larry Brakmo
0.000 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3
0.000 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0
0.000 setsockopt(3, SOL_TCP, TCP_CONGESTION, "dctcp", 5) = 0
0.000 bind(3, ..., ...) = 0
0.000 listen(3, 1) = 0
0.100 < [ect0] SEW 0:0(0) win 32792 <mss 1000,sackOK,nop,nop,nop,wscale 7>
0.100 > SE. 0:0(0) ack 1 <mss 1460,nop,nop,sackOK,nop,wscale 8>
0.110 < [ect0] . 1:1(0) ack 1 win 257
0.200 accept(3, ..., ...) = 4
+0 setsockopt(4, SOL_SOCKET, SO_DEBUG, [1], 4) = 0
0.200 < [ect0] . 1:1001(1000) ack 1 win 257
0.200 > [ect01] . 1:1(0) ack 1001
0.200 write(4, ..., 1) = 1
0.200 > [ect01] P. 1:2(1) ack 1001
0.200 < [ect0] . 1001:2001(1000) ack 2 win 257
+0.005 < [ce] . 2001:3001(1000) ack 2 win 257
+0.000 > [ect01] . 2:2(0) ack 2001
// Previously the ACK below would be delayed by 40ms
+0.000 > [ect01] E. 2:2(0) ack 3001
+0.500 < F. 9501:9501(0) ack 4 win 257
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit 27cde44a259c380a3c09066fc4b42de7dde9b1ad ]
Currently when a DCTCP receiver delays an ACK and receive a
data packet with a different CE mark from the previous one's, it
sends two immediate ACKs acking previous and latest sequences
respectly (for ECN accounting).
Previously sending the first ACK may mark off the delayed ACK timer
(tcp_event_ack_sent). This may subsequently prevent sending the
second ACK to acknowledge the latest sequence (tcp_ack_snd_check).
The culprit is that tcp_send_ack() assumes it always acknowleges
the latest sequence, which is not true for the first special ACK.
The fix is to not make the assumption in tcp_send_ack and check the
actual ack sequence before cancelling the delayed ACK. Further it's
safer to pass the ack sequence number as a local variable into
tcp_send_ack routine, instead of intercepting tp->rcv_nxt to avoid
future bugs like this.
Reported-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit 2987babb6982306509380fc11b450227a844493b ]
Refactor and create helpers to send the special ACK in DCTCP.
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit b0c05d0e99d98d7f0cd41efc1eeec94efdc3325d ]
Previously, when a data segment was sent an ACK was piggybacked
on the data segment without generating a CA_EVENT_NON_DELAYED_ACK
event to notify congestion control modules. So the DCTCP
ca->delayed_ack_reserved flag could incorrectly stay set when
in fact there were no delayed ACKs being reserved. This could result
in sending a special ECN notification ACK that carries an older
ACK sequence, when in fact there was no need for such an ACK.
DCTCP keeps track of the delayed ACK status with its own separate
state ca->delayed_ack_reserved. Previously it may accidentally cancel
the delayed ACK without updating this field upon sending a special
ACK that carries a older ACK sequence. This inconsistency would
lead to DCTCP receiver never acknowledging the latest data until the
sender times out and retry in some cases.
Packetdrill script (provided by Larry Brakmo)
0.000 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3
0.000 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0
0.000 setsockopt(3, SOL_TCP, TCP_CONGESTION, "dctcp", 5) = 0
0.000 bind(3, ..., ...) = 0
0.000 listen(3, 1) = 0
0.100 < [ect0] SEW 0:0(0) win 32792 <mss 1000,sackOK,nop,nop,nop,wscale 7>
0.100 > SE. 0:0(0) ack 1 <mss 1460,nop,nop,sackOK,nop,wscale 8>
0.110 < [ect0] . 1:1(0) ack 1 win 257
0.200 accept(3, ..., ...) = 4
0.200 < [ect0] . 1:1001(1000) ack 1 win 257
0.200 > [ect01] . 1:1(0) ack 1001
0.200 write(4, ..., 1) = 1
0.200 > [ect01] P. 1:2(1) ack 1001
0.200 < [ect0] . 1001:2001(1000) ack 2 win 257
0.200 write(4, ..., 1) = 1
0.200 > [ect01] P. 2:3(1) ack 2001
0.200 < [ect0] . 2001:3001(1000) ack 3 win 257
0.200 < [ect0] . 3001:4001(1000) ack 3 win 257
0.200 > [ect01] . 3:3(0) ack 4001
0.210 < [ce] P. 4001:4501(500) ack 3 win 257
+0.001 read(4, ..., 4500) = 4500
+0 write(4, ..., 1) = 1
+0 > [ect01] PE. 3:4(1) ack 4501
+0.010 < [ect0] W. 4501:5501(1000) ack 4 win 257
// Previously the ACK sequence below would be 4501, causing a long RTO
+0.040~+0.045 > [ect01] . 4:4(0) ack 5501 // delayed ack
+0.311 < [ect0] . 5501:6501(1000) ack 4 win 257 // More data
+0 > [ect01] . 4:4(0) ack 6501 // now acks everything
+0.500 < F. 9501:9501(0) ack 4 win 257
Reported-by: Larry Brakmo <brakmo@fb.com>
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Acked-by: Lawrence Brakmo <brakmo@fb.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit 3dd1c9a1270736029ffca670e9bd0265f4120600 ]
The skb hash for locally generated ip[v6] fragments belonging
to the same datagram can vary in several circumstances:
* for connected UDP[v6] sockets, the first fragment get its hash
via set_owner_w()/skb_set_hash_from_sk()
* for unconnected IPv6 UDPv6 sockets, the first fragment can get
its hash via ip6_make_flowlabel()/skb_get_hash_flowi6(), if
auto_flowlabel is enabled
For the following frags the hash is usually computed via
skb_get_hash().
The above can cause OoO for unconnected IPv6 UDPv6 socket: in that
scenario the egress tx queue can be selected on a per packet basis
via the skb hash.
It may also fool flow-oriented schedulers to place fragments belonging
to the same datagram in different flows.
Fix the issue by copying the skb hash from the head frag into
the others at fragmentation time.
Before this commit:
perf probe -a "dev_queue_xmit skb skb->hash skb->l4_hash:b1@0/8 skb->sw_hash:b1@1/8"
netperf -H $IPV4 -t UDP_STREAM -l 5 -- -m 2000 -n &
perf record -e probe:dev_queue_xmit -e probe:skb_set_owner_w -a sleep 0.1
perf script
probe:dev_queue_xmit: (ffffffff8c6b1b20) hash=3713014309 l4_hash=1 sw_hash=0
probe:dev_queue_xmit: (ffffffff8c6b1b20) hash=0 l4_hash=0 sw_hash=0
After this commit:
probe:dev_queue_xmit: (ffffffff8c6b1b20) hash=2171763177 l4_hash=1 sw_hash=0
probe:dev_queue_xmit: (ffffffff8c6b1b20) hash=2171763177 l4_hash=1 sw_hash=0
Fixes: b73c3d0e4f0e ("net: Save TX flow hash in sock and set in skbuf on xmit")
Fixes: 67800f9b1f4e ("ipv6: Call skb_get_hash_flowi6 to get skb->hash in ip6_make_flowlabel")
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit e7372197e15856ec4ee66b668020a662994db103 ]
Xin reported that icmp replies may not use the address on the device the
echo request is received if the destination address is broadcast. Instead
a route lookup is done without considering VRF context. Fix by setting
oif in flow struct to the master device if it is enslaved. That directs
the lookup to the VRF table. If the device is not enslaved, oif is still
0 so no affect.
Fixes: cd2fbe1b6b51 ("net: Use VRF device index for lookups on RX")
Reported-by: Xin Long <lucien.xin@gmail.com>
Signed-off-by: David Ahern <dsahern@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit 70ba5b6db96ff7324b8cfc87e0d0383cf59c9677 ]
The low and high values of the net.ipv4.ping_group_range sysctl were
being silently forced to the default disabled state when a write to the
sysctl contained GIDs that didn't map to the associated user namespace.
Confusingly, the sysctl's write operation would return success and then
a subsequent read of the sysctl would indicate that the low and high
values are the overflowgid.
This patch changes the behavior by clearly returning an error when the
sysctl write operation receives a GID range that doesn't map to the
associated user namespace. In such a situation, the previous value of
the sysctl is preserved and that range will be returned in a subsequent
read of the sysctl.
Signed-off-by: Tyler Hicks <tyhicks@canonical.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit 1236f22fbae15df3736ab4a984c64c0c6ee6254c ]
If SACK is not enabled and the first cumulative ACK after the RTO
retransmission covers more than the retransmitted skb, a spurious
FRTO undo will trigger (assuming FRTO is enabled for that RTO).
The reason is that any non-retransmitted segment acknowledged will
set FLAG_ORIG_SACK_ACKED in tcp_clean_rtx_queue even if there is
no indication that it would have been delivered for real (the
scoreboard is not kept with TCPCB_SACKED_ACKED bits in the non-SACK
case so the check for that bit won't help like it does with SACK).
Having FLAG_ORIG_SACK_ACKED set results in the spurious FRTO undo
in tcp_process_loss.
We need to use more strict condition for non-SACK case and check
that none of the cumulatively ACKed segments were retransmitted
to prove that progress is due to original transmissions. Only then
keep FLAG_ORIG_SACK_ACKED set, allowing FRTO undo to proceed in
non-SACK case.
(FLAG_ORIG_SACK_ACKED is planned to be renamed to FLAG_ORIG_PROGRESS
to better indicate its purpose but to keep this change minimal, it
will be done in another patch).
Besides burstiness and congestion control violations, this problem
can result in RTO loop: When the loss recovery is prematurely
undoed, only new data will be transmitted (if available) and
the next retransmission can occur only after a new RTO which in case
of multiple losses (that are not for consecutive packets) requires
one RTO per loss to recover.
Signed-off-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi>
Tested-by: Neal Cardwell <ncardwell@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit c860e997e9170a6d68f9d1e6e2cf61f572191aaf ]
Fast Open key could be stored in different endian based on the CPU.
Previously hosts in different endianness in a server farm using
the same key config (sysctl value) would produce different cookies.
This patch fixes it by always storing it as little endian to keep
same API for LE hosts.
Reported-by: Daniele Iamartino <danielei@google.com>
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit c568503ef02030f169c9e19204def610a3510918 upstream.
syzbot reports following splat:
BUG: KMSAN: uninit-value in ebt_stp_mt_check+0x24b/0x450
net/bridge/netfilter/ebt_stp.c:162
ebt_stp_mt_check+0x24b/0x450 net/bridge/netfilter/ebt_stp.c:162
xt_check_match+0x1438/0x1650 net/netfilter/x_tables.c:506
ebt_check_match net/bridge/netfilter/ebtables.c:372 [inline]
ebt_check_entry net/bridge/netfilter/ebtables.c:702 [inline]
The uninitialised access is
xt_mtchk_param->nft_compat
... which should be set to 0.
Fix it by zeroing the struct beforehand, same for tgchk.
ip(6)tables targetinfo uses c99-style initialiser, so no change
needed there.
Reported-by: syzbot+da4494182233c23a5fcf@syzkaller.appspotmail.com
Fixes: 55917a21d0cc0 ("netfilter: x_tables: add context to know if extension runs from nft_compat")
Signed-off-by: Florian Westphal <fw@strlen.de>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
| |
The validation code modified by commit 5b5e7a0de2bb ("net: metrics:
add proper netlink validation") is organised differently in older
kernel versions. The fib_convert_metrics() function that is modified
in the backports to 4.4 and 4.9 needs to returns an error code, not a
success flag.
Signed-off-by: Ben Hutchings <ben.hutchings@codethink.co.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit 4fd44a98ffe0d048246efef67ed640fdf2098a62 ]
commit 079096f103fa ("tcp/dccp: install syn_recv requests into ehash
table") introduced an optimization for the handling of child sockets
created for a new TCP connection.
But this optimization passes any data associated with the last ACK of the
connection handshake up the stack without verifying its checksum, because it
calls tcp_child_process(), which in turn calls tcp_rcv_state_process()
directly. These lower-level processing functions do not do any checksum
verification.
Insert a tcp_checksum_complete call in the TCP_NEW_SYN_RECEIVE path to
fix this.
Fixes: 079096f103fa ("tcp/dccp: install syn_recv requests into ehash table")
Signed-off-by: Frank van der Linden <fllinden@amazon.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Tested-by: Balbir Singh <bsingharora@gmail.com>
Reviewed-by: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 02db55718d53f9d426cee504c27fb768e9ed4ffe upstream.
While rcvbuf is properly clamped by tcp_rmem[2], rcvwin
is left to a potentially too big value.
It has no serious effect, since :
1) tcp_grow_window() has very strict checks.
2) window_clamp can be mangled by user space to any value anyway.
tcp_init_buffer_space() and companions use tcp_full_space(),
we use tcp_win_from_space() to avoid reloading sk->sk_rcvbuf
Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Acked-by: Wei Wang <weiwan@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Cc: Benjamin Gilbert <benjamin.gilbert@coreos.com>
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit 5b5e7a0de2bbf2a1afcd9f49e940010e9fb80d53 ]
Before using nla_get_u32(), better make sure the attribute
is of the proper size.
Code recently was changed, but bug has been there from beginning
of git.
BUG: KMSAN: uninit-value in rtnetlink_put_metrics+0x553/0x960 net/core/rtnetlink.c:746
CPU: 1 PID: 14139 Comm: syz-executor6 Not tainted 4.17.0-rc5+ #103
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
Call Trace:
__dump_stack lib/dump_stack.c:77 [inline]
dump_stack+0x185/0x1d0 lib/dump_stack.c:113
kmsan_report+0x149/0x260 mm/kmsan/kmsan.c:1084
__msan_warning_32+0x6e/0xc0 mm/kmsan/kmsan_instr.c:686
rtnetlink_put_metrics+0x553/0x960 net/core/rtnetlink.c:746
fib_dump_info+0xc42/0x2190 net/ipv4/fib_semantics.c:1361
rtmsg_fib+0x65f/0x8c0 net/ipv4/fib_semantics.c:419
fib_table_insert+0x2314/0x2b50 net/ipv4/fib_trie.c:1287
inet_rtm_newroute+0x210/0x340 net/ipv4/fib_frontend.c:779
rtnetlink_rcv_msg+0xa32/0x1560 net/core/rtnetlink.c:4646
netlink_rcv_skb+0x378/0x600 net/netlink/af_netlink.c:2448
rtnetlink_rcv+0x50/0x60 net/core/rtnetlink.c:4664
netlink_unicast_kernel net/netlink/af_netlink.c:1310 [inline]
netlink_unicast+0x1678/0x1750 net/netlink/af_netlink.c:1336
netlink_sendmsg+0x104f/0x1350 net/netlink/af_netlink.c:1901
sock_sendmsg_nosec net/socket.c:629 [inline]
sock_sendmsg net/socket.c:639 [inline]
___sys_sendmsg+0xec0/0x1310 net/socket.c:2117
__sys_sendmsg net/socket.c:2155 [inline]
__do_sys_sendmsg net/socket.c:2164 [inline]
__se_sys_sendmsg net/socket.c:2162 [inline]
__x64_sys_sendmsg+0x331/0x460 net/socket.c:2162
do_syscall_64+0x152/0x230 arch/x86/entry/common.c:287
entry_SYSCALL_64_after_hwframe+0x44/0xa9
RIP: 0033:0x455a09
RSP: 002b:00007faae5fd8c68 EFLAGS: 00000246 ORIG_RAX: 000000000000002e
RAX: ffffffffffffffda RBX: 00007faae5fd96d4 RCX: 0000000000455a09
RDX: 0000000000000000 RSI: 0000000020000000 RDI: 0000000000000013
RBP: 000000000072bea0 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 00000000ffffffff
R13: 00000000000005d0 R14: 00000000006fdc20 R15: 0000000000000000
Uninit was stored to memory at:
kmsan_save_stack_with_flags mm/kmsan/kmsan.c:279 [inline]
kmsan_save_stack mm/kmsan/kmsan.c:294 [inline]
kmsan_internal_chain_origin+0x12b/0x210 mm/kmsan/kmsan.c:685
__msan_chain_origin+0x69/0xc0 mm/kmsan/kmsan_instr.c:529
fib_convert_metrics net/ipv4/fib_semantics.c:1056 [inline]
fib_create_info+0x2d46/0x9dc0 net/ipv4/fib_semantics.c:1150
fib_table_insert+0x3e4/0x2b50 net/ipv4/fib_trie.c:1146
inet_rtm_newroute+0x210/0x340 net/ipv4/fib_frontend.c:779
rtnetlink_rcv_msg+0xa32/0x1560 net/core/rtnetlink.c:4646
netlink_rcv_skb+0x378/0x600 net/netlink/af_netlink.c:2448
rtnetlink_rcv+0x50/0x60 net/core/rtnetlink.c:4664
netlink_unicast_kernel net/netlink/af_netlink.c:1310 [inline]
netlink_unicast+0x1678/0x1750 net/netlink/af_netlink.c:1336
netlink_sendmsg+0x104f/0x1350 net/netlink/af_netlink.c:1901
sock_sendmsg_nosec net/socket.c:629 [inline]
sock_sendmsg net/socket.c:639 [inline]
___sys_sendmsg+0xec0/0x1310 net/socket.c:2117
__sys_sendmsg net/socket.c:2155 [inline]
__do_sys_sendmsg net/socket.c:2164 [inline]
__se_sys_sendmsg net/socket.c:2162 [inline]
__x64_sys_sendmsg+0x331/0x460 net/socket.c:2162
do_syscall_64+0x152/0x230 arch/x86/entry/common.c:287
entry_SYSCALL_64_after_hwframe+0x44/0xa9
Uninit was created at:
kmsan_save_stack_with_flags mm/kmsan/kmsan.c:279 [inline]
kmsan_internal_poison_shadow+0xb8/0x1b0 mm/kmsan/kmsan.c:189
kmsan_kmalloc+0x94/0x100 mm/kmsan/kmsan.c:315
kmsan_slab_alloc+0x10/0x20 mm/kmsan/kmsan.c:322
slab_post_alloc_hook mm/slab.h:446 [inline]
slab_alloc_node mm/slub.c:2753 [inline]
__kmalloc_node_track_caller+0xb32/0x11b0 mm/slub.c:4395
__kmalloc_reserve net/core/skbuff.c:138 [inline]
__alloc_skb+0x2cb/0x9e0 net/core/skbuff.c:206
alloc_skb include/linux/skbuff.h:988 [inline]
netlink_alloc_large_skb net/netlink/af_netlink.c:1182 [inline]
netlink_sendmsg+0x76e/0x1350 net/netlink/af_netlink.c:1876
sock_sendmsg_nosec net/socket.c:629 [inline]
sock_sendmsg net/socket.c:639 [inline]
___sys_sendmsg+0xec0/0x1310 net/socket.c:2117
__sys_sendmsg net/socket.c:2155 [inline]
__do_sys_sendmsg net/socket.c:2164 [inline]
__se_sys_sendmsg net/socket.c:2162 [inline]
__x64_sys_sendmsg+0x331/0x460 net/socket.c:2162
do_syscall_64+0x152/0x230 arch/x86/entry/common.c:287
entry_SYSCALL_64_after_hwframe+0x44/0xa9
Fixes: a919525ad832 ("net: Move fib_convert_metrics to metrics file")
Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: syzbot <syzkaller@googlegroups.com>
Cc: David Ahern <dsahern@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit 730c54d59403658a62af6517338fa8d4922c1b28 ]
A precondition check in ip_recv_error triggered on an otherwise benign
race. Remove the warning.
The warning triggers when passing an ipv6 socket to this ipv4 error
handling function. RaceFuzzer was able to trigger it due to a race
in setsockopt IPV6_ADDRFORM.
---
CPU0
do_ipv6_setsockopt
sk->sk_socket->ops = &inet_dgram_ops;
---
CPU1
sk->sk_prot->recvmsg
udp_recvmsg
ip_recv_error
WARN_ON_ONCE(sk->sk_family == AF_INET6);
---
CPU0
do_ipv6_setsockopt
sk->sk_family = PF_INET;
This socket option converts a v6 socket that is connected to a v4 peer
to an v4 socket. It updates the socket on the fly, changing fields in
sk as well as other structs. This is inherently non-atomic. It races
with the lockless udp_recvmsg path.
No other code makes an assumption that these fields are updated
atomically. It is benign here, too, as ip_recv_error cares only about
the protocol of the skbs enqueued on the error queue, for which
sk_family is not a precise predictor (thanks to another isue with
IPV6_ADDRFORM).
Link: http://lkml.kernel.org/r/20180518120826.GA19515@dragonet.kaist.ac.kr
Fixes: 7ce875e5ecb8 ("ipv4: warn once on passing AF_INET6 socket to ip_recv_error")
Reported-by: DaeRyong Jeong <threeearcat@gmail.com>
Suggested-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Willem de Bruijn <willemb@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 607065bad9931e72207b0cac365d7d4abc06bd99 upstream.
When using large tcp_rmem[2] values (I did tests with 500 MB),
I noticed overflows while computing rcvwin.
Lets fix this before the following patch.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Acked-by: Wei Wang <weiwan@google.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
[Backport: sysctl_tcp_rmem is not Namespace-ify'd in older kernels]
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This reverts commit 33cebc976c3b77bdf8f3fb4478cf776131ebfe4f which is
03080e5ec727 ("vti4: Don't override MTU passed on link creation via
IFLA_MTU") upstream as it causes test failures.
This commit should not have been backported to anything older than 4.16,
despite what the changelog said as the mtu must be set in older kernels,
unlike is needed in 4.16 and newer.
Thanks to Alistair Strachan for the debugging help figuring this out,
and for 'git bisect' for making my life a whole lot easier.
Cc: Alistair Strachan <astrachan@google.com>
Cc: Stefano Brivio <sbrivio@redhat.com>
Cc: Sabrina Dubroca <sd@queasysnail.net>
Cc: Steffen Klassert <steffen.klassert@secunet.com>
Cc: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit 03080e5ec72740c1a62e6730f2a5f3f114f11b19 ]
Don't hardcode a MTU value on vti tunnel initialization,
ip_tunnel_newlink() is able to deal with this already. See also
commit ffc2b6ee4174 ("ip_gre: fix IFLA_MTU ignored on NEWLINK").
Fixes: 1181412c1a67 ("net/ipv4: VTI support new module for ip_vti.")
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
Acked-by: Sabrina Dubroca <sd@queasysnail.net>
Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit dd1df24737727e119c263acf1be2a92763938297 ]
This re-introduces the effect of commit a32452366b72 ("vti4:
Don't count header length twice.") which was accidentally
reverted by merge commit f895f0cfbb77 ("Merge branch 'master' of
git://git.kernel.org/pub/scm/linux/kernel/git/klassert/ipsec").
The commit message from Steffen Klassert said:
We currently count the size of LL_MAX_HEADER and struct iphdr
twice for vti4 devices, this leads to a wrong device mtu.
The size of LL_MAX_HEADER and struct iphdr is already counted in
ip_tunnel_bind_dev(), so don't do it again in vti_tunnel_init().
And this is still the case now: ip_tunnel_bind_dev() already
accounts for the header length of the link layer (not
necessarily LL_MAX_HEADER, if the output device is found), plus
one IP header.
For example, with a vti device on top of veth, with MTU of 1500,
the existing implementation would set the initial vti MTU to
1332, accounting once for LL_MAX_HEADER (128, included in
hard_header_len by vti) and twice for the same IP header (once
from hard_header_len, once from ip_tunnel_bind_dev()).
It should instead be 1480, because ip_tunnel_bind_dev() is able
to figure out that the output device is veth, so no additional
link layer header is attached, and will properly count one
single IP header.
The existing issue had the side effect of avoiding PMTUD for
most xfrm policies, by arbitrarily lowering the initial MTU.
However, the only way to get a consistent PMTU value is to let
the xfrm PMTU discovery do its course, and commit d6af1a31cc72
("vti: Add pmtu handling to vti_xmit.") now takes care of local
delivery cases where the application ignores local socket
notifications.
Fixes: b9959fd3b0fa ("vti: switch to new ip tunnel code")
Fixes: f895f0cfbb77 ("Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/klassert/ipsec")
Signed-off-by: Stefano Brivio <sbrivio@redhat.com>
Acked-by: Sabrina Dubroca <sd@queasysnail.net>
Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit d52e5a7e7ca49457dd31fc8b42fb7c0d58a31221 ]
Prior to the rework of PMTU information storage in commit
2c8cec5c10bc ("ipv4: Cache learned PMTU information in inetpeer."),
when a PMTU event advertising a PMTU smaller than
net.ipv4.route.min_pmtu was received, we would disable setting the DF
flag on packets by locking the MTU metric, and set the PMTU to
net.ipv4.route.min_pmtu.
Since then, we don't disable DF, and set PMTU to
net.ipv4.route.min_pmtu, so the intermediate router that has this link
with a small MTU will have to drop the packets.
This patch reestablishes pre-2.6.39 behavior by splitting
rtable->rt_pmtu into a bitfield with rt_mtu_locked and rt_pmtu.
rt_mtu_locked indicates that we shouldn't set the DF bit on that path,
and is checked in ip_dont_fragment().
One possible workaround is to set net.ipv4.route.min_pmtu to a value low
enough to accommodate the lowest MTU encountered.
Fixes: 2c8cec5c10bc ("ipv4: Cache learned PMTU information in inetpeer.")
Signed-off-by: Sabrina Dubroca <sd@queasysnail.net>
Reviewed-by: Stefano Brivio <sbrivio@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit ecc832758a654e375924ebf06a4ac971acb5ce60 ]
The link to the pdf containing the algorithm description is now a
dead link; it seems http://www.ifp.illinois.edu/~srikant/ has been
moved to https://sites.google.com/a/illinois.edu/srikant/ and none of
the original papers can be found there...
I have replaced it with the only working copy I was able to find.
n.b. there is also a copy available at:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.296.6350&rep=rep1&type=pdf
However, this seems to only be a *cached* version, so I am unsure
exactly how reliable that link can be expected to remain over time
and have decided against using that one.
Signed-off-by: Joey Pabalinas <joeypabalinas@gmail.com>
net/ipv4/tcp_illinois.c | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit 7f582b248d0a86bae5788c548d7bb5bca6f7691a ]
syzkaller found a reliable way to crash the host, hitting a BUG()
in __tcp_retransmit_skb()
Malicous MSG_FASTOPEN is the root cause. We need to purge write queue
in tcp_connect_init() at the point we init snd_una/write_seq.
This patch also replaces the BUG() by a less intrusive WARN_ON_ONCE()
kernel BUG at net/ipv4/tcp_output.c:2837!
invalid opcode: 0000 [#1] SMP KASAN
Dumping ftrace buffer:
(ftrace buffer empty)
Modules linked in:
CPU: 0 PID: 5276 Comm: syz-executor0 Not tainted 4.17.0-rc3+ #51
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
RIP: 0010:__tcp_retransmit_skb+0x2992/0x2eb0 net/ipv4/tcp_output.c:2837
RSP: 0000:ffff8801dae06ff8 EFLAGS: 00010206
RAX: ffff8801b9fe61c0 RBX: 00000000ffc18a16 RCX: ffffffff864e1a49
RDX: 0000000000000100 RSI: ffffffff864e2e12 RDI: 0000000000000005
RBP: ffff8801dae073a0 R08: ffff8801b9fe61c0 R09: ffffed0039c40dd2
R10: ffffed0039c40dd2 R11: ffff8801ce206e93 R12: 00000000421eeaad
R13: ffff8801ce206d4e R14: ffff8801ce206cc0 R15: ffff8801cd4f4a80
FS: 0000000000000000(0000) GS:ffff8801dae00000(0063) knlGS:00000000096bc900
CS: 0010 DS: 002b ES: 002b CR0: 0000000080050033
CR2: 0000000020000000 CR3: 00000001c47b6000 CR4: 00000000001406f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<IRQ>
tcp_retransmit_skb+0x2e/0x250 net/ipv4/tcp_output.c:2923
tcp_retransmit_timer+0xc50/0x3060 net/ipv4/tcp_timer.c:488
tcp_write_timer_handler+0x339/0x960 net/ipv4/tcp_timer.c:573
tcp_write_timer+0x111/0x1d0 net/ipv4/tcp_timer.c:593
call_timer_fn+0x230/0x940 kernel/time/timer.c:1326
expire_timers kernel/time/timer.c:1363 [inline]
__run_timers+0x79e/0xc50 kernel/time/timer.c:1666
run_timer_softirq+0x4c/0x70 kernel/time/timer.c:1692
__do_softirq+0x2e0/0xaf5 kernel/softirq.c:285
invoke_softirq kernel/softirq.c:365 [inline]
irq_exit+0x1d1/0x200 kernel/softirq.c:405
exiting_irq arch/x86/include/asm/apic.h:525 [inline]
smp_apic_timer_interrupt+0x17e/0x710 arch/x86/kernel/apic/apic.c:1052
apic_timer_interrupt+0xf/0x20 arch/x86/entry/entry_64.S:863
Fixes: cf60af03ca4e ("net-tcp: Fast Open client - sendmsg(MSG_FASTOPEN)")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Neal Cardwell <ncardwell@google.com>
Reported-by: syzbot <syzkaller@googlegroups.com>
Acked-by: Neal Cardwell <ncardwell@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit 113f99c3358564a0647d444c2ae34e8b1abfd5b9 ]
Device features may change during transmission. In particular with
corking, a device may toggle scatter-gather in between allocating
and writing to an skb.
Do not unconditionally assume that !NETIF_F_SG at write time implies
that the same held at alloc time and thus the skb has sufficient
tailroom.
This issue predates git history.
Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2")
Reported-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: Willem de Bruijn <willemb@google.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit 16ae6aa1705299789f71fdea59bfb119c1fbd9c0 ]
The TCP repair sequence of operation is to first set the socket in
repair mode, then inject the TCP stats into the socket with repair
socket options, then call connect() to re-activate the socket. The
connect syscall simply returns and set state to ESTABLISHED
mode. As a result Fast Open is meaningless for TCP repair.
However allowing sendto() system call with MSG_FASTOPEN flag half-way
during the repair operation could unexpectedly cause data to be
sent, before the operation finishes changing the internal TCP stats
(e.g. MSS). This in turn triggers TCP warnings on inconsistent
packet accounting.
The fix is to simply disallow Fast Open operation once the socket
is in the repair mode.
Reported-by: syzbot <syzkaller@googlegroups.com>
Signed-off-by: Yuchung Cheng <ycheng@google.com>
Reviewed-by: Neal Cardwell <ncardwell@google.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit 1b97013bfb11d66f041de691de6f0fec748ce016 ]
Fix more memory leaks in ip_cmsg_send() callers. Part of them were fixed
earlier in 919483096bfe.
* udp_sendmsg one was there since the beginning when linux sources were
first added to git;
* ping_v4_sendmsg one was copy/pasted in c319b4d76b9e.
Whenever return happens in udp_sendmsg() or ping_v4_sendmsg() IP options
have to be freed if they were allocated previously.
Add label so that future callers (if any) can use it instead of kfree()
before return that is easy to forget.
Fixes: c319b4d76b9e (net: ipv4: add IPPROTO_ICMP socket kind)
Signed-off-by: Andrey Ignatov <rdna@fb.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit bf2acc943a45d2b2e8a9f1a5ddff6b6e43cc69d9 upstream.
syzbot is able to produce a nasty WARN_ON() in tcp_verify_left_out()
with following C-repro :
socket(PF_INET, SOCK_STREAM, IPPROTO_IP) = 3
setsockopt(3, SOL_TCP, TCP_REPAIR, [1], 4) = 0
setsockopt(3, SOL_TCP, TCP_REPAIR_QUEUE, [-1], 4) = 0
bind(3, {sa_family=AF_INET, sin_port=htons(20002), sin_addr=inet_addr("0.0.0.0")}, 16) = 0
sendto(3, "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"...,
1242, MSG_FASTOPEN, {sa_family=AF_INET, sin_port=htons(20002), sin_addr=inet_addr("127.0.0.1")}, 16) = 1242
setsockopt(3, SOL_TCP, TCP_REPAIR_WINDOW, "\4\0\0@+\205\0\0\377\377\0\0\377\377\377\177\0\0\0\0", 20) = 0
writev(3, [{"\270", 1}], 1) = 1
setsockopt(3, SOL_TCP, TCP_REPAIR_OPTIONS, "\10\0\0\0\0\0\0\0\0\0\0\0|\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0"..., 386) = 0
writev(3, [{"\210v\r[\226\320t\231qwQ\204\264l\254\t\1\20\245\214p\350H\223\254;\\\37\345\307p$"..., 3144}], 1) = 3144
The 3rd system call looks odd :
setsockopt(3, SOL_TCP, TCP_REPAIR_QUEUE, [-1], 4) = 0
This patch makes sure bound checking is using an unsigned compare.
Fixes: ee9952831cfd ("tcp: Initial repair mode")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: syzbot <syzkaller@googlegroups.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 3099a52918937ab86ec47038ad80d377ba16c531 upstream.
syzbot reported an uninit-value in inet_csk_bind_conflict() [1]
It turns out we never propagated sk->sk_reuseport into timewait socket.
[1]
BUG: KMSAN: uninit-value in inet_csk_bind_conflict+0x5f9/0x990 net/ipv4/inet_connection_sock.c:151
CPU: 1 PID: 3589 Comm: syzkaller008242 Not tainted 4.16.0+ #82
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
Call Trace:
__dump_stack lib/dump_stack.c:17 [inline]
dump_stack+0x185/0x1d0 lib/dump_stack.c:53
kmsan_report+0x142/0x240 mm/kmsan/kmsan.c:1067
__msan_warning_32+0x6c/0xb0 mm/kmsan/kmsan_instr.c:676
inet_csk_bind_conflict+0x5f9/0x990 net/ipv4/inet_connection_sock.c:151
inet_csk_get_port+0x1d28/0x1e40 net/ipv4/inet_connection_sock.c:320
inet6_bind+0x121c/0x1820 net/ipv6/af_inet6.c:399
SYSC_bind+0x3f2/0x4b0 net/socket.c:1474
SyS_bind+0x54/0x80 net/socket.c:1460
do_syscall_64+0x309/0x430 arch/x86/entry/common.c:287
entry_SYSCALL_64_after_hwframe+0x3d/0xa2
RIP: 0033:0x4416e9
RSP: 002b:00007ffce6d15c88 EFLAGS: 00000217 ORIG_RAX: 0000000000000031
RAX: ffffffffffffffda RBX: 0100000000000000 RCX: 00000000004416e9
RDX: 000000000000001c RSI: 0000000020402000 RDI: 0000000000000004
RBP: 0000000000000000 R08: 00000000e6d15e08 R09: 00000000e6d15e08
R10: 0000000000000004 R11: 0000000000000217 R12: 0000000000009478
R13: 00000000006cd448 R14: 0000000000000000 R15: 0000000000000000
Uninit was stored to memory at:
kmsan_save_stack_with_flags mm/kmsan/kmsan.c:278 [inline]
kmsan_save_stack mm/kmsan/kmsan.c:293 [inline]
kmsan_internal_chain_origin+0x12b/0x210 mm/kmsan/kmsan.c:684
__msan_chain_origin+0x69/0xc0 mm/kmsan/kmsan_instr.c:521
tcp_time_wait+0xf17/0xf50 net/ipv4/tcp_minisocks.c:283
tcp_rcv_state_process+0xebe/0x6490 net/ipv4/tcp_input.c:6003
tcp_v6_do_rcv+0x11dd/0x1d90 net/ipv6/tcp_ipv6.c:1331
sk_backlog_rcv include/net/sock.h:908 [inline]
__release_sock+0x2d6/0x680 net/core/sock.c:2271
release_sock+0x97/0x2a0 net/core/sock.c:2786
tcp_close+0x277/0x18f0 net/ipv4/tcp.c:2269
inet_release+0x240/0x2a0 net/ipv4/af_inet.c:427
inet6_release+0xaf/0x100 net/ipv6/af_inet6.c:435
sock_release net/socket.c:595 [inline]
sock_close+0xe0/0x300 net/socket.c:1149
__fput+0x49e/0xa10 fs/file_table.c:209
____fput+0x37/0x40 fs/file_table.c:243
task_work_run+0x243/0x2c0 kernel/task_work.c:113
exit_task_work include/linux/task_work.h:22 [inline]
do_exit+0x10e1/0x38d0 kernel/exit.c:867
do_group_exit+0x1a0/0x360 kernel/exit.c:970
SYSC_exit_group+0x21/0x30 kernel/exit.c:981
SyS_exit_group+0x25/0x30 kernel/exit.c:979
do_syscall_64+0x309/0x430 arch/x86/entry/common.c:287
entry_SYSCALL_64_after_hwframe+0x3d/0xa2
Uninit was stored to memory at:
kmsan_save_stack_with_flags mm/kmsan/kmsan.c:278 [inline]
kmsan_save_stack mm/kmsan/kmsan.c:293 [inline]
kmsan_internal_chain_origin+0x12b/0x210 mm/kmsan/kmsan.c:684
__msan_chain_origin+0x69/0xc0 mm/kmsan/kmsan_instr.c:521
inet_twsk_alloc+0xaef/0xc00 net/ipv4/inet_timewait_sock.c:182
tcp_time_wait+0xd9/0xf50 net/ipv4/tcp_minisocks.c:258
tcp_rcv_state_process+0xebe/0x6490 net/ipv4/tcp_input.c:6003
tcp_v6_do_rcv+0x11dd/0x1d90 net/ipv6/tcp_ipv6.c:1331
sk_backlog_rcv include/net/sock.h:908 [inline]
__release_sock+0x2d6/0x680 net/core/sock.c:2271
release_sock+0x97/0x2a0 net/core/sock.c:2786
tcp_close+0x277/0x18f0 net/ipv4/tcp.c:2269
inet_release+0x240/0x2a0 net/ipv4/af_inet.c:427
inet6_release+0xaf/0x100 net/ipv6/af_inet6.c:435
sock_release net/socket.c:595 [inline]
sock_close+0xe0/0x300 net/socket.c:1149
__fput+0x49e/0xa10 fs/file_table.c:209
____fput+0x37/0x40 fs/file_table.c:243
task_work_run+0x243/0x2c0 kernel/task_work.c:113
exit_task_work include/linux/task_work.h:22 [inline]
do_exit+0x10e1/0x38d0 kernel/exit.c:867
do_group_exit+0x1a0/0x360 kernel/exit.c:970
SYSC_exit_group+0x21/0x30 kernel/exit.c:981
SyS_exit_group+0x25/0x30 kernel/exit.c:979
do_syscall_64+0x309/0x430 arch/x86/entry/common.c:287
entry_SYSCALL_64_after_hwframe+0x3d/0xa2
Uninit was created at:
kmsan_save_stack_with_flags mm/kmsan/kmsan.c:278 [inline]
kmsan_internal_poison_shadow+0xb8/0x1b0 mm/kmsan/kmsan.c:188
kmsan_kmalloc+0x94/0x100 mm/kmsan/kmsan.c:314
kmem_cache_alloc+0xaab/0xb90 mm/slub.c:2756
inet_twsk_alloc+0x13b/0xc00 net/ipv4/inet_timewait_sock.c:163
tcp_time_wait+0xd9/0xf50 net/ipv4/tcp_minisocks.c:258
tcp_rcv_state_process+0xebe/0x6490 net/ipv4/tcp_input.c:6003
tcp_v6_do_rcv+0x11dd/0x1d90 net/ipv6/tcp_ipv6.c:1331
sk_backlog_rcv include/net/sock.h:908 [inline]
__release_sock+0x2d6/0x680 net/core/sock.c:2271
release_sock+0x97/0x2a0 net/core/sock.c:2786
tcp_close+0x277/0x18f0 net/ipv4/tcp.c:2269
inet_release+0x240/0x2a0 net/ipv4/af_inet.c:427
inet6_release+0xaf/0x100 net/ipv6/af_inet6.c:435
sock_release net/socket.c:595 [inline]
sock_close+0xe0/0x300 net/socket.c:1149
__fput+0x49e/0xa10 fs/file_table.c:209
____fput+0x37/0x40 fs/file_table.c:243
task_work_run+0x243/0x2c0 kernel/task_work.c:113
exit_task_work include/linux/task_work.h:22 [inline]
do_exit+0x10e1/0x38d0 kernel/exit.c:867
do_group_exit+0x1a0/0x360 kernel/exit.c:970
SYSC_exit_group+0x21/0x30 kernel/exit.c:981
SyS_exit_group+0x25/0x30 kernel/exit.c:979
do_syscall_64+0x309/0x430 arch/x86/entry/common.c:287
entry_SYSCALL_64_after_hwframe+0x3d/0xa2
Fixes: da5e36308d9f ("soreuseport: TCP/IPv4 implementation")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: syzbot <syzkaller@googlegroups.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit 7212303268918b9a203aebeacfdbd83b5e87b20d ]
syzbot/KMSAN reported an uninit-value in tcp_parse_options() [1]
I believe this was caused by a TCP_MD5SIG being set on live
flow.
This is highly unexpected, since TCP option space is limited.
For instance, presence of TCP MD5 option automatically disables
TCP TimeStamp option at SYN/SYNACK time, which we can not do
once flow has been established.
Really, adding/deleting an MD5 key only makes sense on sockets
in CLOSE or LISTEN state.
[1]
BUG: KMSAN: uninit-value in tcp_parse_options+0xd74/0x1a30 net/ipv4/tcp_input.c:3720
CPU: 1 PID: 6177 Comm: syzkaller192004 Not tainted 4.16.0+ #83
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
Call Trace:
__dump_stack lib/dump_stack.c:17 [inline]
dump_stack+0x185/0x1d0 lib/dump_stack.c:53
kmsan_report+0x142/0x240 mm/kmsan/kmsan.c:1067
__msan_warning_32+0x6c/0xb0 mm/kmsan/kmsan_instr.c:676
tcp_parse_options+0xd74/0x1a30 net/ipv4/tcp_input.c:3720
tcp_fast_parse_options net/ipv4/tcp_input.c:3858 [inline]
tcp_validate_incoming+0x4f1/0x2790 net/ipv4/tcp_input.c:5184
tcp_rcv_established+0xf60/0x2bb0 net/ipv4/tcp_input.c:5453
tcp_v4_do_rcv+0x6cd/0xd90 net/ipv4/tcp_ipv4.c:1469
sk_backlog_rcv include/net/sock.h:908 [inline]
__release_sock+0x2d6/0x680 net/core/sock.c:2271
release_sock+0x97/0x2a0 net/core/sock.c:2786
tcp_sendmsg+0xd6/0x100 net/ipv4/tcp.c:1464
inet_sendmsg+0x48d/0x740 net/ipv4/af_inet.c:764
sock_sendmsg_nosec net/socket.c:630 [inline]
sock_sendmsg net/socket.c:640 [inline]
SYSC_sendto+0x6c3/0x7e0 net/socket.c:1747
SyS_sendto+0x8a/0xb0 net/socket.c:1715
do_syscall_64+0x309/0x430 arch/x86/entry/common.c:287
entry_SYSCALL_64_after_hwframe+0x3d/0xa2
RIP: 0033:0x448fe9
RSP: 002b:00007fd472c64d38 EFLAGS: 00000216 ORIG_RAX: 000000000000002c
RAX: ffffffffffffffda RBX: 00000000006e5a30 RCX: 0000000000448fe9
RDX: 000000000000029f RSI: 0000000020a88f88 RDI: 0000000000000004
RBP: 00000000006e5a34 R08: 0000000020e68000 R09: 0000000000000010
R10: 00000000200007fd R11: 0000000000000216 R12: 0000000000000000
R13: 00007fff074899ef R14: 00007fd472c659c0 R15: 0000000000000009
Uninit was created at:
kmsan_save_stack_with_flags mm/kmsan/kmsan.c:278 [inline]
kmsan_internal_poison_shadow+0xb8/0x1b0 mm/kmsan/kmsan.c:188
kmsan_kmalloc+0x94/0x100 mm/kmsan/kmsan.c:314
kmsan_slab_alloc+0x11/0x20 mm/kmsan/kmsan.c:321
slab_post_alloc_hook mm/slab.h:445 [inline]
slab_alloc_node mm/slub.c:2737 [inline]
__kmalloc_node_track_caller+0xaed/0x11c0 mm/slub.c:4369
__kmalloc_reserve net/core/skbuff.c:138 [inline]
__alloc_skb+0x2cf/0x9f0 net/core/skbuff.c:206
alloc_skb include/linux/skbuff.h:984 [inline]
tcp_send_ack+0x18c/0x910 net/ipv4/tcp_output.c:3624
__tcp_ack_snd_check net/ipv4/tcp_input.c:5040 [inline]
tcp_ack_snd_check net/ipv4/tcp_input.c:5053 [inline]
tcp_rcv_established+0x2103/0x2bb0 net/ipv4/tcp_input.c:5469
tcp_v4_do_rcv+0x6cd/0xd90 net/ipv4/tcp_ipv4.c:1469
sk_backlog_rcv include/net/sock.h:908 [inline]
__release_sock+0x2d6/0x680 net/core/sock.c:2271
release_sock+0x97/0x2a0 net/core/sock.c:2786
tcp_sendmsg+0xd6/0x100 net/ipv4/tcp.c:1464
inet_sendmsg+0x48d/0x740 net/ipv4/af_inet.c:764
sock_sendmsg_nosec net/socket.c:630 [inline]
sock_sendmsg net/socket.c:640 [inline]
SYSC_sendto+0x6c3/0x7e0 net/socket.c:1747
SyS_sendto+0x8a/0xb0 net/socket.c:1715
do_syscall_64+0x309/0x430 arch/x86/entry/common.c:287
entry_SYSCALL_64_after_hwframe+0x3d/0xa2
Fixes: cfb6eeb4c860 ("[TCP]: MD5 Signature Option (RFC2385) support.")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: syzbot <syzkaller@googlegroups.com>
Acked-by: Yuchung Cheng <ycheng@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit 7e5a206ab686f098367b61aca989f5cdfa8114a3 ]
The old code reads the "opsize" variable from out-of-bounds memory (first
byte behind the segment) if a broken TCP segment ends directly after an
opcode that is neither EOL nor NOP.
The result of the read isn't used for anything, so the worst thing that
could theoretically happen is a pagefault; and since the physmap is usually
mostly contiguous, even that seems pretty unlikely.
The following C reproducer triggers the uninitialized read - however, you
can't actually see anything happen unless you put something like a
pr_warn() in tcp_parse_md5sig_option() to print the opsize.
====================================
#define _GNU_SOURCE
#include <arpa/inet.h>
#include <stdlib.h>
#include <errno.h>
#include <stdarg.h>
#include <net/if.h>
#include <linux/if.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/in.h>
#include <linux/if_tun.h>
#include <err.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <string.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <assert.h>
void systemf(const char *command, ...) {
char *full_command;
va_list ap;
va_start(ap, command);
if (vasprintf(&full_command, command, ap) == -1)
err(1, "vasprintf");
va_end(ap);
printf("systemf: <<<%s>>>\n", full_command);
system(full_command);
}
char *devname;
int tun_alloc(char *name) {
int fd = open("/dev/net/tun", O_RDWR);
if (fd == -1)
err(1, "open tun dev");
static struct ifreq req = { .ifr_flags = IFF_TUN|IFF_NO_PI };
strcpy(req.ifr_name, name);
if (ioctl(fd, TUNSETIFF, &req))
err(1, "TUNSETIFF");
devname = req.ifr_name;
printf("device name: %s\n", devname);
return fd;
}
#define IPADDR(a,b,c,d) (((a)<<0)+((b)<<8)+((c)<<16)+((d)<<24))
void sum_accumulate(unsigned int *sum, void *data, int len) {
assert((len&2)==0);
for (int i=0; i<len/2; i++) {
*sum += ntohs(((unsigned short *)data)[i]);
}
}
unsigned short sum_final(unsigned int sum) {
sum = (sum >> 16) + (sum & 0xffff);
sum = (sum >> 16) + (sum & 0xffff);
return htons(~sum);
}
void fix_ip_sum(struct iphdr *ip) {
unsigned int sum = 0;
sum_accumulate(&sum, ip, sizeof(*ip));
ip->check = sum_final(sum);
}
void fix_tcp_sum(struct iphdr *ip, struct tcphdr *tcp) {
unsigned int sum = 0;
struct {
unsigned int saddr;
unsigned int daddr;
unsigned char pad;
unsigned char proto_num;
unsigned short tcp_len;
} fakehdr = {
.saddr = ip->saddr,
.daddr = ip->daddr,
.proto_num = ip->protocol,
.tcp_len = htons(ntohs(ip->tot_len) - ip->ihl*4)
};
sum_accumulate(&sum, &fakehdr, sizeof(fakehdr));
sum_accumulate(&sum, tcp, tcp->doff*4);
tcp->check = sum_final(sum);
}
int main(void) {
int tun_fd = tun_alloc("inject_dev%d");
systemf("ip link set %s up", devname);
systemf("ip addr add 192.168.42.1/24 dev %s", devname);
struct {
struct iphdr ip;
struct tcphdr tcp;
unsigned char tcp_opts[20];
} __attribute__((packed)) syn_packet = {
.ip = {
.ihl = sizeof(struct iphdr)/4,
.version = 4,
.tot_len = htons(sizeof(syn_packet)),
.ttl = 30,
.protocol = IPPROTO_TCP,
/* FIXUP check */
.saddr = IPADDR(192,168,42,2),
.daddr = IPADDR(192,168,42,1)
},
.tcp = {
.source = htons(1),
.dest = htons(1337),
.seq = 0x12345678,
.doff = (sizeof(syn_packet.tcp)+sizeof(syn_packet.tcp_opts))/4,
.syn = 1,
.window = htons(64),
.check = 0 /*FIXUP*/
},
.tcp_opts = {
/* INVALID: trailing MD5SIG opcode after NOPs */
1, 1, 1, 1, 1,
1, 1, 1, 1, 1,
1, 1, 1, 1, 1,
1, 1, 1, 1, 19
}
};
fix_ip_sum(&syn_packet.ip);
fix_tcp_sum(&syn_packet.ip, &syn_packet.tcp);
while (1) {
int write_res = write(tun_fd, &syn_packet, sizeof(syn_packet));
if (write_res != sizeof(syn_packet))
err(1, "packet write failed");
}
}
====================================
Fixes: cfb6eeb4c860 ("[TCP]: MD5 Signature Option (RFC2385) support.")
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit 9cb726a212a82c88c98aa9f0037fd04777cd8fe5 ]
Use dev_valid_name() to make sure user does not provide illegal
device name.
syzbot caught the following bug :
BUG: KASAN: stack-out-of-bounds in strlcpy include/linux/string.h:300 [inline]
BUG: KASAN: stack-out-of-bounds in __ip_tunnel_create+0xca/0x6b0 net/ipv4/ip_tunnel.c:257
Write of size 20 at addr ffff8801ac79f810 by task syzkaller268107/4482
CPU: 0 PID: 4482 Comm: syzkaller268107 Not tainted 4.16.0+ #1
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
Call Trace:
__dump_stack lib/dump_stack.c:17 [inline]
dump_stack+0x1b9/0x29f lib/dump_stack.c:53
print_address_description+0x6c/0x20b mm/kasan/report.c:256
kasan_report_error mm/kasan/report.c:354 [inline]
kasan_report.cold.7+0xac/0x2f5 mm/kasan/report.c:412
check_memory_region_inline mm/kasan/kasan.c:260 [inline]
check_memory_region+0x13e/0x1b0 mm/kasan/kasan.c:267
memcpy+0x37/0x50 mm/kasan/kasan.c:303
strlcpy include/linux/string.h:300 [inline]
__ip_tunnel_create+0xca/0x6b0 net/ipv4/ip_tunnel.c:257
ip_tunnel_create net/ipv4/ip_tunnel.c:352 [inline]
ip_tunnel_ioctl+0x818/0xd40 net/ipv4/ip_tunnel.c:861
ipip_tunnel_ioctl+0x1c5/0x420 net/ipv4/ipip.c:350
dev_ifsioc+0x43e/0xb90 net/core/dev_ioctl.c:334
dev_ioctl+0x69a/0xcc0 net/core/dev_ioctl.c:525
sock_ioctl+0x47e/0x680 net/socket.c:1015
vfs_ioctl fs/ioctl.c:46 [inline]
file_ioctl fs/ioctl.c:500 [inline]
do_vfs_ioctl+0x1cf/0x1650 fs/ioctl.c:684
ksys_ioctl+0xa9/0xd0 fs/ioctl.c:701
SYSC_ioctl fs/ioctl.c:708 [inline]
SyS_ioctl+0x24/0x30 fs/ioctl.c:706
do_syscall_64+0x29e/0x9d0 arch/x86/entry/common.c:287
entry_SYSCALL_64_after_hwframe+0x42/0xb7
Fixes: c54419321455 ("GRE: Refactor GRE tunneling code.")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: syzbot <syzkaller@googlegroups.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit 58b35f27689b5eb514fc293c332966c226b1b6e4 ]
arp_filter performs an ip_route_output search for arp source address and
checks if output device is the same where the arp request was received,
if it is not, the arp request is not answered.
This route lookup is always done on main route table so l3slave devices
never find the proper route and arp is not answered.
Passing l3mdev_master_ifindex_rcu(dev) return value as oif fixes the
lookup for l3slave devices while maintaining same behavior for non
l3slave devices as this function returns 0 in that case.
Fixes: 613d09b30f8b ("net: Use VRF device index for lookups on TX")
Signed-off-by: Miguel Fadon Perlines <mfadon@teldat.com>
Acked-by: David Ahern <dsa@cumulusnetworks.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 3f29770723fe498a5c5f57c3a31a996ebdde03e1 upstream.
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Cc: Steffen Klassert <steffen.klassert@secunet.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: "David S. Miller" <davem@davemloft.net>
Signed-off-by: David S. Miller <davem@davemloft.net>
[natechancellor: Adjusted context due to lack of fca11ebde3f0]
Signed-off-by: Nathan Chancellor <natechancellor@gmail.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit d0e1a1b5a833b625c93d3d49847609350ebd79db ]
Paul Fiterau Brostean reported :
<quote>
Linux TCP stack we analyze exhibits behavior that seems odd to me.
The scenario is as follows (all packets have empty payloads, no window
scaling, rcv/snd window size should not be a factor):
TEST HARNESS (CLIENT) LINUX SERVER
1. - LISTEN (server listen,
then accepts)
2. - --> <SEQ=100><CTL=SYN> --> SYN-RECEIVED
3. - <-- <SEQ=300><ACK=101><CTL=SYN,ACK> <-- SYN-RECEIVED
4. - --> <SEQ=101><ACK=301><CTL=ACK> --> ESTABLISHED
5. - <-- <SEQ=301><ACK=101><CTL=FIN,ACK> <-- FIN WAIT-1 (server
opts to close the data connection calling "close" on the connection
socket)
6. - --> <SEQ=101><ACK=99999><CTL=FIN,ACK> --> CLOSING (client sends
FIN,ACK with not yet sent acknowledgement number)
7. - <-- <SEQ=302><ACK=102><CTL=ACK> <-- CLOSING (ACK is 102
instead of 101, why?)
... (silence from CLIENT)
8. - <-- <SEQ=301><ACK=102><CTL=FIN,ACK> <-- CLOSING
(retransmission, again ACK is 102)
Now, note that packet 6 while having the expected sequence number,
acknowledges something that wasn't sent by the server. So I would
expect
the packet to maybe prompt an ACK response from the server, and then be
ignored. Yet it is not ignored and actually leads to an increase of the
acknowledgement number in the server's retransmission of the FIN,ACK
packet. The explanation I found is that the FIN in packet 6 was
processed, despite the acknowledgement number being unacceptable.
Further experiments indeed show that the server processes this FIN,
transitioning to CLOSING, then on receiving an ACK for the FIN it had
send in packet 5, the server (or better said connection) transitions
from CLOSING to TIME_WAIT (as signaled by netstat).
</quote>
Indeed, tcp_rcv_state_process() calls tcp_ack() but
does not exploit the @acceptable status but for TCP_SYN_RECV
state.
What we want here is to send a challenge ACK, if not in TCP_SYN_RECV
state. TCP_FIN_WAIT1 state is not the only state we should fix.
Add a FLAG_NO_CHALLENGE_ACK so that tcp_rcv_state_process()
can choose to send a challenge ACK and discard the packet instead
of wrongly change socket state.
With help from Neal Cardwell.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: Paul Fiterau Brostean <p.fiterau-brostean@science.ru.nl>
Cc: Neal Cardwell <ncardwell@google.com>
Cc: Yuchung Cheng <ycheng@google.com>
Cc: Soheil Hassas Yeganeh <soheil@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|