summaryrefslogtreecommitdiffstats
path: root/net/ipv6/udp_offload.c
Commit message (Collapse)AuthorAgeFilesLines
* ipv6: hash net ptr into fragmentation bucket selectionHannes Frederic Sowa2019-08-131-2/+2
| | | | | | | | | | | | | | commit 5a352dd0a3aac03b443c94828dfd7144261c8636 upstream. As namespaces are sometimes used with overlapping ip address ranges, we should also use the namespace as input to the hash to select the ip fragmentation counter bucket. Cc: Eric Dumazet <edumazet@google.com> Cc: Flavio Leitner <fbl@redhat.com> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
* ipv6: call ipv6_proxy_select_ident instead of ipv6_select_ident in ↵Sabrina Dubroca2019-08-131-5/+3
| | | | | | | | | | | | | | | | | | | | | | | udp6_ufo_fragment commit 8e199dfd82ee097b522b00344af6448715d8ee0c upstream. Matt Grant reported frequent crashes in ipv6_select_ident when udp6_ufo_fragment is called from openvswitch on a skb that doesn't have a dst_entry set. ipv6_proxy_select_ident generates the frag_id without using the dst associated with the skb. This approach was suggested by Vladislav Yasevich. Fixes: 0508c07f5e0c ("ipv6: Select fragment id during UFO segmentation if not set.") Cc: Vladislav Yasevich <vyasevic@redhat.com> Reported-by: Matt Grant <matt@mattgrant.net.nz> Tested-by: Matt Grant <matt@mattgrant.net.nz> Signed-off-by: Sabrina Dubroca <sd@queasysnail.net> Acked-by: Vladislav Yasevich <vyasevic@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
* ipv6: Select fragment id during UFO segmentation if not set.Vlad Yasevich2019-08-131-1/+9
| | | | | | | | | | | | | | | | | | | | | | | commit 0508c07f5e0c94f38afd5434e8b2a55b84553077 upstream. If the IPv6 fragment id has not been set and we perform fragmentation due to UFO, select a new fragment id. We now consider a fragment id of 0 as unset and if id selection process returns 0 (after all the pertrubations), we set it to 0x80000000, thus giving us ample space not to create collisions with the next packet we may have to fragment. When doing UFO integrity checking, we also select the fragment id if it has not be set yet. This is stored into the skb_shinfo() thus allowing UFO to function correclty. This patch also removes duplicate fragment id generation code and moves ipv6_select_ident() into the header as it may be used during GSO. Signed-off-by: Vladislav Yasevich <vyasevic@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
* net: avoid skb_warn_bad_offload false positives on UFOWillem de Bruijn2017-11-111-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 8d63bee643f1fb53e472f0e135cae4eb99d62d19 upstream. skb_warn_bad_offload triggers a warning when an skb enters the GSO stack at __skb_gso_segment that does not have CHECKSUM_PARTIAL checksum offload set. Commit b2504a5dbef3 ("net: reduce skb_warn_bad_offload() noise") observed that SKB_GSO_DODGY producers can trigger the check and that passing those packets through the GSO handlers will fix it up. But, the software UFO handler will set ip_summed to CHECKSUM_NONE. When __skb_gso_segment is called from the receive path, this triggers the warning again. Make UFO set CHECKSUM_UNNECESSARY instead of CHECKSUM_NONE. On Tx these two are equivalent. On Rx, this better matches the skb state (checksum computed), as CHECKSUM_NONE here means no checksum computed. See also this thread for context: http://patchwork.ozlabs.org/patch/799015/ Fixes: b2504a5dbef3 ("net: reduce skb_warn_bad_offload() noise") Signed-off-by: Willem de Bruijn <willemb@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> [bwh: Backported to 3.16: adjust context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
* ipv6: Check ip6_find_1stfragopt() return value properly.David S. Miller2017-06-051-3/+5
| | | | | | | | | | | | | commit 7dd7eb9513bd02184d45f000ab69d78cb1fa1531 upstream. Do not use unsigned variables to see if it returns a negative error or not. Fixes: 2423496af35d ("ipv6: Prevent overrun when parsing v6 header options") Reported-by: Julia Lawall <julia.lawall@lip6.fr> Signed-off-by: David S. Miller <davem@davemloft.net> [bwh: Backported to 3.16: adjust context] Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
* ipv6: Prevent overrun when parsing v6 header optionsCraig Gallek2017-06-051-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | commit 2423496af35d94a87156b063ea5cedffc10a70a1 upstream. The KASAN warning repoted below was discovered with a syzkaller program. The reproducer is basically: int s = socket(AF_INET6, SOCK_RAW, NEXTHDR_HOP); send(s, &one_byte_of_data, 1, MSG_MORE); send(s, &more_than_mtu_bytes_data, 2000, 0); The socket() call sets the nexthdr field of the v6 header to NEXTHDR_HOP, the first send call primes the payload with a non zero byte of data, and the second send call triggers the fragmentation path. The fragmentation code tries to parse the header options in order to figure out where to insert the fragment option. Since nexthdr points to an invalid option, the calculation of the size of the network header can made to be much larger than the linear section of the skb and data is read outside of it. This fix makes ip6_find_1stfrag return an error if it detects running out-of-bounds. [ 42.361487] ================================================================== [ 42.364412] BUG: KASAN: slab-out-of-bounds in ip6_fragment+0x11c8/0x3730 [ 42.365471] Read of size 840 at addr ffff88000969e798 by task ip6_fragment-oo/3789 [ 42.366469] [ 42.366696] CPU: 1 PID: 3789 Comm: ip6_fragment-oo Not tainted 4.11.0+ #41 [ 42.367628] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.10.1-1ubuntu1 04/01/2014 [ 42.368824] Call Trace: [ 42.369183] dump_stack+0xb3/0x10b [ 42.369664] print_address_description+0x73/0x290 [ 42.370325] kasan_report+0x252/0x370 [ 42.370839] ? ip6_fragment+0x11c8/0x3730 [ 42.371396] check_memory_region+0x13c/0x1a0 [ 42.371978] memcpy+0x23/0x50 [ 42.372395] ip6_fragment+0x11c8/0x3730 [ 42.372920] ? nf_ct_expect_unregister_notifier+0x110/0x110 [ 42.373681] ? ip6_copy_metadata+0x7f0/0x7f0 [ 42.374263] ? ip6_forward+0x2e30/0x2e30 [ 42.374803] ip6_finish_output+0x584/0x990 [ 42.375350] ip6_output+0x1b7/0x690 [ 42.375836] ? ip6_finish_output+0x990/0x990 [ 42.376411] ? ip6_fragment+0x3730/0x3730 [ 42.376968] ip6_local_out+0x95/0x160 [ 42.377471] ip6_send_skb+0xa1/0x330 [ 42.377969] ip6_push_pending_frames+0xb3/0xe0 [ 42.378589] rawv6_sendmsg+0x2051/0x2db0 [ 42.379129] ? rawv6_bind+0x8b0/0x8b0 [ 42.379633] ? _copy_from_user+0x84/0xe0 [ 42.380193] ? debug_check_no_locks_freed+0x290/0x290 [ 42.380878] ? ___sys_sendmsg+0x162/0x930 [ 42.381427] ? rcu_read_lock_sched_held+0xa3/0x120 [ 42.382074] ? sock_has_perm+0x1f6/0x290 [ 42.382614] ? ___sys_sendmsg+0x167/0x930 [ 42.383173] ? lock_downgrade+0x660/0x660 [ 42.383727] inet_sendmsg+0x123/0x500 [ 42.384226] ? inet_sendmsg+0x123/0x500 [ 42.384748] ? inet_recvmsg+0x540/0x540 [ 42.385263] sock_sendmsg+0xca/0x110 [ 42.385758] SYSC_sendto+0x217/0x380 [ 42.386249] ? SYSC_connect+0x310/0x310 [ 42.386783] ? __might_fault+0x110/0x1d0 [ 42.387324] ? lock_downgrade+0x660/0x660 [ 42.387880] ? __fget_light+0xa1/0x1f0 [ 42.388403] ? __fdget+0x18/0x20 [ 42.388851] ? sock_common_setsockopt+0x95/0xd0 [ 42.389472] ? SyS_setsockopt+0x17f/0x260 [ 42.390021] ? entry_SYSCALL_64_fastpath+0x5/0xbe [ 42.390650] SyS_sendto+0x40/0x50 [ 42.391103] entry_SYSCALL_64_fastpath+0x1f/0xbe [ 42.391731] RIP: 0033:0x7fbbb711e383 [ 42.392217] RSP: 002b:00007ffff4d34f28 EFLAGS: 00000246 ORIG_RAX: 000000000000002c [ 42.393235] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007fbbb711e383 [ 42.394195] RDX: 0000000000001000 RSI: 00007ffff4d34f60 RDI: 0000000000000003 [ 42.395145] RBP: 0000000000000046 R08: 00007ffff4d34f40 R09: 0000000000000018 [ 42.396056] R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000400aad [ 42.396598] R13: 0000000000000066 R14: 00007ffff4d34ee0 R15: 00007fbbb717af00 [ 42.397257] [ 42.397411] Allocated by task 3789: [ 42.397702] save_stack_trace+0x16/0x20 [ 42.398005] save_stack+0x46/0xd0 [ 42.398267] kasan_kmalloc+0xad/0xe0 [ 42.398548] kasan_slab_alloc+0x12/0x20 [ 42.398848] __kmalloc_node_track_caller+0xcb/0x380 [ 42.399224] __kmalloc_reserve.isra.32+0x41/0xe0 [ 42.399654] __alloc_skb+0xf8/0x580 [ 42.400003] sock_wmalloc+0xab/0xf0 [ 42.400346] __ip6_append_data.isra.41+0x2472/0x33d0 [ 42.400813] ip6_append_data+0x1a8/0x2f0 [ 42.401122] rawv6_sendmsg+0x11ee/0x2db0 [ 42.401505] inet_sendmsg+0x123/0x500 [ 42.401860] sock_sendmsg+0xca/0x110 [ 42.402209] ___sys_sendmsg+0x7cb/0x930 [ 42.402582] __sys_sendmsg+0xd9/0x190 [ 42.402941] SyS_sendmsg+0x2d/0x50 [ 42.403273] entry_SYSCALL_64_fastpath+0x1f/0xbe [ 42.403718] [ 42.403871] Freed by task 1794: [ 42.404146] save_stack_trace+0x16/0x20 [ 42.404515] save_stack+0x46/0xd0 [ 42.404827] kasan_slab_free+0x72/0xc0 [ 42.405167] kfree+0xe8/0x2b0 [ 42.405462] skb_free_head+0x74/0xb0 [ 42.405806] skb_release_data+0x30e/0x3a0 [ 42.406198] skb_release_all+0x4a/0x60 [ 42.406563] consume_skb+0x113/0x2e0 [ 42.406910] skb_free_datagram+0x1a/0xe0 [ 42.407288] netlink_recvmsg+0x60d/0xe40 [ 42.407667] sock_recvmsg+0xd7/0x110 [ 42.408022] ___sys_recvmsg+0x25c/0x580 [ 42.408395] __sys_recvmsg+0xd6/0x190 [ 42.408753] SyS_recvmsg+0x2d/0x50 [ 42.409086] entry_SYSCALL_64_fastpath+0x1f/0xbe [ 42.409513] [ 42.409665] The buggy address belongs to the object at ffff88000969e780 [ 42.409665] which belongs to the cache kmalloc-512 of size 512 [ 42.410846] The buggy address is located 24 bytes inside of [ 42.410846] 512-byte region [ffff88000969e780, ffff88000969e980) [ 42.411941] The buggy address belongs to the page: [ 42.412405] page:ffffea000025a780 count:1 mapcount:0 mapping: (null) index:0x0 compound_mapcount: 0 [ 42.413298] flags: 0x100000000008100(slab|head) [ 42.413729] raw: 0100000000008100 0000000000000000 0000000000000000 00000001800c000c [ 42.414387] raw: ffffea00002a9500 0000000900000007 ffff88000c401280 0000000000000000 [ 42.415074] page dumped because: kasan: bad access detected [ 42.415604] [ 42.415757] Memory state around the buggy address: [ 42.416222] ffff88000969e880: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 42.416904] ffff88000969e900: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 42.417591] >ffff88000969e980: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc [ 42.418273] ^ [ 42.418588] ffff88000969ea00: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb [ 42.419273] ffff88000969ea80: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb [ 42.419882] ================================================================== Reported-by: Andrey Konovalov <andreyknvl@google.com> Signed-off-by: Craig Gallek <kraig@google.com> Signed-off-by: David S. Miller <davem@davemloft.net> Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
* gre: Call gso_make_checksumTom Herbert2014-06-041-0/+1
| | | | | | | | | | | Call gso_make_checksum. This should have the benefit of using a checksum that may have been previously computed for the packet. This also adds NETIF_F_GSO_GRE_CSUM to differentiate devices that offload GRE GSO with and without the GRE checksum offloaed. Signed-off-by: Tom Herbert <therbert@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* net: Add GSO support for UDP tunnels with checksumTom Herbert2014-06-041-1/+3
| | | | | | | | | Added a new netif feature for GSO_UDP_TUNNEL_CSUM. This indicates that a device is capable of computing the UDP checksum in the encapsulating header of a UDP tunnel. Signed-off-by: Tom Herbert <therbert@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* ipv6: reuse ip6_frag_id from ip6_ufo_append_dataHannes Frederic Sowa2014-02-221-1/+1
| | | | | | | | | | | | | | | | Currently we generate a new fragmentation id on UFO segmentation. It is pretty hairy to identify the correct net namespace and dst there. Especially tunnels use IFF_XMIT_DST_RELEASE and thus have no skb_dst available at all. This causes unreliable or very predictable ipv6 fragmentation id generation while segmentation. Luckily we already have pregenerated the ip6_frag_id in ip6_ufo_append_data and can use it here. Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
* ipv6: fix headroom calculation in udp6_ufo_fragmentHannes Frederic Sowa2013-11-051-1/+1
| | | | | | | | | | | | | | | | | | Commit 1e2bd517c108816220f262d7954b697af03b5f9c ("udp6: Fix udp fragmentation for tunnel traffic.") changed the calculation if there is enough space to include a fragment header in the skb from a skb->mac_header dervived one to skb_headroom. Because we already peeled off the skb to transport_header this is wrong. Change this back to check if we have enough room before the mac_header. This fixes a panic Saran Neti reported. He used the tbf scheduler which skb_gso_segments the skb. The offsets get negative and we panic in memcpy because the skb was erroneously not expanded at the head. Reported-by: Saran Neti <Saran.Neti@telus.com> Cc: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: Hannes Frederic Sowa <hannes@stressinduktion.org> Signed-off-by: David S. Miller <davem@davemloft.net>
* ipv6: sit: add GSO/TSO supportEric Dumazet2013-10-211-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Now ipv6_gso_segment() is stackable, its relatively easy to implement GSO/TSO support for SIT tunnels Performance results, when segmentation is done after tunnel device (as no NIC is yet enabled for TSO SIT support) : Before patch : lpq84:~# ./netperf -H 2002:af6:1153:: -Cc MIGRATED TCP STREAM TEST from ::0 (::) port 0 AF_INET6 to 2002:af6:1153:: () port 0 AF_INET6 Recv Send Send Utilization Service Demand Socket Socket Message Elapsed Send Recv Send Recv Size Size Size Time Throughput local remote local remote bytes bytes bytes secs. 10^6bits/s % S % S us/KB us/KB 87380 16384 16384 10.00 3168.31 4.81 4.64 2.988 2.877 After patch : lpq84:~# ./netperf -H 2002:af6:1153:: -Cc MIGRATED TCP STREAM TEST from ::0 (::) port 0 AF_INET6 to 2002:af6:1153:: () port 0 AF_INET6 Recv Send Send Utilization Service Demand Socket Socket Message Elapsed Send Recv Send Recv Size Size Size Time Throughput local remote local remote bytes bytes bytes secs. 10^6bits/s % S % S us/KB us/KB 87380 16384 16384 10.00 5525.00 7.76 5.17 2.763 1.840 Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* ipip: add GSO/TSO supportEric Dumazet2013-10-191-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Now inet_gso_segment() is stackable, its relatively easy to implement GSO/TSO support for IPIP Performance results, when segmentation is done after tunnel device (as no NIC is yet enabled for TSO IPIP support) : Before patch : lpq83:~# ./netperf -H 7.7.9.84 -Cc MIGRATED TCP STREAM TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to 7.7.9.84 () port 0 AF_INET Recv Send Send Utilization Service Demand Socket Socket Message Elapsed Send Recv Send Recv Size Size Size Time Throughput local remote local remote bytes bytes bytes secs. 10^6bits/s % S % S us/KB us/KB 87380 16384 16384 10.00 3357.88 5.09 3.70 2.983 2.167 After patch : lpq83:~# ./netperf -H 7.7.9.84 -Cc MIGRATED TCP STREAM TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to 7.7.9.84 () port 0 AF_INET Recv Send Send Utilization Service Demand Socket Socket Message Elapsed Send Recv Send Recv Size Size Size Time Throughput local remote local remote bytes bytes bytes secs. 10^6bits/s % S % S us/KB us/KB 87380 16384 16384 10.00 7710.19 4.52 6.62 1.152 1.687 Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* net: unify skb_udp_tunnel_segment() and skb_udp6_tunnel_segment()Cong Wang2013-08-311-55/+1
| | | | | | | | | As suggested by Pravin, we can unify the code in case of duplicated code. Cc: Pravin Shelar <pshelar@nicira.com> Signed-off-by: Cong Wang <amwang@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* ipv6: Add generic UDP Tunnel segmentationCong Wang2013-08-311-51/+108
| | | | | | | | | | | | | | | | | Similar to commit 731362674580cb0c696cd1b1a03d8461a10cf90a (tunneling: Add generic Tunnel segmentation) This patch adds generic tunneling offloading support for IPv6-UDP based tunnels. This can be used by tunneling protocols like VXLAN. Cc: Jesse Gross <jesse@nicira.com> Cc: Pravin B Shelar <pshelar@nicira.com> Cc: Stephen Hemminger <stephen@networkplumber.org> Cc: David S. Miller <davem@davemloft.net> Signed-off-by: Cong Wang <amwang@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/netDavid S. Miller2013-06-051-8/+12
|\ | | | | | | | | | | | | | | | | | | | | | | | | | | Merge 'net' bug fixes into 'net-next' as we have patches that will build on top of them. This merge commit includes a change from Emil Goode (emilgoode@gmail.com) that fixes a warning that would have been introduced by this merge. Specifically it fixes the pingv6_ops method ipv6_chk_addr() to add a "const" to the "struct net_device *dev" argument and likewise update the dummy_ipv6_chk_addr() declaration. Signed-off-by: David S. Miller <davem@davemloft.net>
| * udp6: Fix udp fragmentation for tunnel traffic.Pravin B Shelar2013-05-311-8/+12
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | udp6 over GRE tunnel does not work after to GRE tso changes. GRE tso handler passes inner packet but keeps track of outer header start in SKB_GSO_CB(skb)->mac_offset. udp6 fragment need to take care of outer header, which start at the mac_offset, while adding fragment header. This bug is introduced by commit 68c3316311 (GRE: Add TCP segmentation offload for GRE). Reported-by: Dmitry Kravkov <dkravkov@gmail.com> Signed-off-by: Pravin B Shelar <pshelar@nicira.com> Tested-by: Dmitry Kravkov <dmitry@broadcom.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* | MPLS: Add limited GSO supportSimon Horman2013-05-271-1/+2
|/ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In the case where a non-MPLS packet is received and an MPLS stack is added it may well be the case that the original skb is GSO but the NIC used for transmit does not support GSO of MPLS packets. The aim of this code is to provide GSO in software for MPLS packets whose skbs are GSO. SKB Usage: When an implementation adds an MPLS stack to a non-MPLS packet it should do the following to skb metadata: * Set skb->inner_protocol to the old non-MPLS ethertype of the packet. skb->inner_protocol is added by this patch. * Set skb->protocol to the new MPLS ethertype of the packet. * Set skb->network_header to correspond to the end of the L3 header, including the MPLS label stack. I have posted a patch, "[PATCH v3.29] datapath: Add basic MPLS support to kernel" which adds MPLS support to the kernel datapath of Open vSwtich. That patch sets the above requirements in datapath/actions.c:push_mpls() and was used to exercise this code. The datapath patch is against the Open vSwtich tree but it is intended that it be added to the Open vSwtich code present in the mainline Linux kernel at some point. Features: I believe that the approach that I have taken is at least partially consistent with the handling of other protocols. Jesse, I understand that you have some ideas here. I am more than happy to change my implementation. This patch adds dev->mpls_features which may be used by devices to advertise features supported for MPLS packets. A new NETIF_F_MPLS_GSO feature is added for devices which support hardware MPLS GSO offload. Currently no devices support this and MPLS GSO always falls back to software. Alternate Implementation: One possible alternate implementation is to teach netif_skb_features() and skb_network_protocol() about MPLS, in a similar way to their understanding of VLANs. I believe this would avoid the need for net/mpls/mpls_gso.c and in particular the calls to __skb_push() and __skb_push() in mpls_gso_segment(). I have decided on the implementation in this patch as it should not introduce any overhead in the case where mpls_gso is not compiled into the kernel or inserted as a module. MPLS GSO suggested by Jesse Gross. Based in part on "v4 GRE: Add TCP segmentation offload for GRE" by Pravin B Shelar. Cc: Jesse Gross <jesse@nicira.com> Cc: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: Simon Horman <horms@verge.net.au> Signed-off-by: David S. Miller <davem@davemloft.net>
* tunneling: Add generic Tunnel segmentation.Pravin B Shelar2013-03-091-1/+7
| | | | | | | | | | | | | | | | Adds generic tunneling offloading support for IPv4-UDP based tunnels. GSO type is added to request this offload for a skb. netdev feature NETIF_F_UDP_TUNNEL is added for hardware offloaded udp-tunnel support. Currently no device supports this feature, software offload is used. This can be used by tunneling protocols like VXLAN. CC: Jesse Gross <jesse@nicira.com> Signed-off-by: Pravin B Shelar <pshelar@nicira.com> Acked-by: Stephen Hemminger <stephen@networkplumber.org> Signed-off-by: David S. Miller <davem@davemloft.net>
* v4 GRE: Add TCP segmentation offload for GREPravin B Shelar2013-02-151-1/+2
| | | | | | | | | | | | | | | | Following patch adds GRE protocol offload handler so that skb_gso_segment() can segment GRE packets. SKB GSO CB is added to keep track of total header length so that skb_segment can push entire header. e.g. in case of GRE, skb_segment need to push inner and outer headers to every segment. New NETIF_F_GRE_GSO feature is added for devices which support HW GRE TSO offload. Currently none of devices support it therefore GRE GSO always fall backs to software GSO. [ Compute pkt_len before ip_local_out() invocation. -DaveM ] Signed-off-by: Pravin B Shelar <pshelar@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* ipv6: Fix build error with udp_offloadVlad Yasevich2012-11-151-0/+1
| | | | | | | | | | | | | Add ip6_checksum.h include. This should resolve the following issue that shows up on power: net/ipv6/udp_offload.c: In function 'udp6_ufo_send_check': net/ipv6/udp_offload.c:29:2: error: implicit declaration of function 'csum_ipv6_magic' [-Werror=implicit-function-declaration] cc1: some warnings being treated as errors Signed-off-by: Vlad Yasevich <vyasevic@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* net: Remove code duplication between offload structuresVlad Yasevich2012-11-151-2/+4
| | | | | | | Move the offload callbacks into its own structure. Signed-off-by: Vlad Yasevich <vyasevic@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* ipv6: Pull IPv6 GSO registration out of the moduleVlad Yasevich2012-11-151-5/+0
| | | | | | | | | Sing GSO support is now separate, pull it out of the module and make it its own init call. Remove the cleanup functions as they are no longer called. Signed-off-by: Vlad Yasevich <vyasevic@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
* ipv6: Separate out UDP offload functionalityVlad Yasevich2012-11-151-0/+122
Pull UDP GSO code into a separate file in preparation for moving the code out of the module. Signed-off-by: Vlad Yasevich <vyasevic@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>