| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 3db09e762dc79584a69c10d74a6b98f89a9979f8 upstream.
We are now able to detect extra put_net() at the moment
they happen, instead of much later in correct code paths.
u32_init_knode() / tcf_exts_init() populates the ->exts.net
pointer, but as mentioned in tcf_exts_init(),
the refcount on netns has not been elevated yet.
The refcount is taken only once tcf_exts_get_net()
is called.
So the two u32_destroy_key() calls from u32_change()
are attempting to release an invalid reference on the netns.
syzbot report:
refcount_t: decrement hit 0; leaking memory.
WARNING: CPU: 0 PID: 21708 at lib/refcount.c:31 refcount_warn_saturate+0xbf/0x1e0 lib/refcount.c:31
Modules linked in:
CPU: 0 PID: 21708 Comm: syz-executor.5 Not tainted 5.18.0-rc2-next-20220412-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
RIP: 0010:refcount_warn_saturate+0xbf/0x1e0 lib/refcount.c:31
Code: 1d 14 b6 b2 09 31 ff 89 de e8 6d e9 89 fd 84 db 75 e0 e8 84 e5 89 fd 48 c7 c7 40 aa 26 8a c6 05 f4 b5 b2 09 01 e8 e5 81 2e 05 <0f> 0b eb c4 e8 68 e5 89 fd 0f b6 1d e3 b5 b2 09 31 ff 89 de e8 38
RSP: 0018:ffffc900051af1b0 EFLAGS: 00010286
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000
RDX: 0000000000040000 RSI: ffffffff8160a0c8 RDI: fffff52000a35e28
RBP: 0000000000000004 R08: 0000000000000000 R09: 0000000000000000
R10: ffffffff81604a9e R11: 0000000000000000 R12: 1ffff92000a35e3b
R13: 00000000ffffffef R14: ffff8880211a0194 R15: ffff8880577d0a00
FS: 00007f25d183e700(0000) GS:ffff8880b9c00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f19c859c028 CR3: 0000000051009000 CR4: 00000000003506f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
__refcount_dec include/linux/refcount.h:344 [inline]
refcount_dec include/linux/refcount.h:359 [inline]
ref_tracker_free+0x535/0x6b0 lib/ref_tracker.c:118
netns_tracker_free include/net/net_namespace.h:327 [inline]
put_net_track include/net/net_namespace.h:341 [inline]
tcf_exts_put_net include/net/pkt_cls.h:255 [inline]
u32_destroy_key.isra.0+0xa7/0x2b0 net/sched/cls_u32.c:394
u32_change+0xe01/0x3140 net/sched/cls_u32.c:909
tc_new_tfilter+0x98d/0x2200 net/sched/cls_api.c:2148
rtnetlink_rcv_msg+0x80d/0xb80 net/core/rtnetlink.c:6016
netlink_rcv_skb+0x153/0x420 net/netlink/af_netlink.c:2495
netlink_unicast_kernel net/netlink/af_netlink.c:1319 [inline]
netlink_unicast+0x543/0x7f0 net/netlink/af_netlink.c:1345
netlink_sendmsg+0x904/0xe00 net/netlink/af_netlink.c:1921
sock_sendmsg_nosec net/socket.c:705 [inline]
sock_sendmsg+0xcf/0x120 net/socket.c:725
____sys_sendmsg+0x6e2/0x800 net/socket.c:2413
___sys_sendmsg+0xf3/0x170 net/socket.c:2467
__sys_sendmsg+0xe5/0x1b0 net/socket.c:2496
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0xae
RIP: 0033:0x7f25d0689049
Code: ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b8 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007f25d183e168 EFLAGS: 00000246 ORIG_RAX: 000000000000002e
RAX: ffffffffffffffda RBX: 00007f25d079c030 RCX: 00007f25d0689049
RDX: 0000000000000000 RSI: 0000000020000340 RDI: 0000000000000005
RBP: 00007f25d06e308d R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
R13: 00007ffd0b752e3f R14: 00007f25d183e300 R15: 0000000000022000
</TASK>
Fixes: 35c55fc156d8 ("cls_u32: use tcf_exts_get_net() before call_rcu()")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: syzbot <syzkaller@googlegroups.com>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: Jiri Pirko <jiri@resnulli.us>
Acked-by: Jamal Hadi Salim <jhs@mojatatu.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
[rkolchmeyer: Backported to 4.19: adjusted u32_destroy_key() signature]
Signed-off-by: Robert Kolchmeyer <rkolchmeyer@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 82e31755e55fbcea6a9dfaae5fe4860ade17cbc0 upstream.
There are race conditions that may lead to UAF bugs in
ax25_heartbeat_expiry(), ax25_t1timer_expiry(), ax25_t2timer_expiry(),
ax25_t3timer_expiry() and ax25_idletimer_expiry(), when we call
ax25_release() to deallocate ax25_dev.
One of the UAF bugs caused by ax25_release() is shown below:
(Thread 1) | (Thread 2)
ax25_dev_device_up() //(1) |
... | ax25_kill_by_device()
ax25_bind() //(2) |
ax25_connect() | ...
ax25_std_establish_data_link() |
ax25_start_t1timer() | ax25_dev_device_down() //(3)
mod_timer(&ax25->t1timer,..) |
| ax25_release()
(wait a time) | ...
| ax25_dev_put(ax25_dev) //(4)FREE
ax25_t1timer_expiry() |
ax25->ax25_dev->values[..] //USE| ...
... |
We increase the refcount of ax25_dev in position (1) and (2), and
decrease the refcount of ax25_dev in position (3) and (4).
The ax25_dev will be freed in position (4) and be used in
ax25_t1timer_expiry().
The fail log is shown below:
==============================================================
[ 106.116942] BUG: KASAN: use-after-free in ax25_t1timer_expiry+0x1c/0x60
[ 106.116942] Read of size 8 at addr ffff88800bda9028 by task swapper/0/0
[ 106.116942] CPU: 0 PID: 0 Comm: swapper/0 Not tainted 5.17.0-06123-g0905eec574
[ 106.116942] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-14
[ 106.116942] Call Trace:
...
[ 106.116942] ax25_t1timer_expiry+0x1c/0x60
[ 106.116942] call_timer_fn+0x122/0x3d0
[ 106.116942] __run_timers.part.0+0x3f6/0x520
[ 106.116942] run_timer_softirq+0x4f/0xb0
[ 106.116942] __do_softirq+0x1c2/0x651
...
This patch adds del_timer_sync() in ax25_release(), which could ensure
that all timers stop before we deallocate ax25_dev.
Signed-off-by: Duoming Zhou <duoming@zju.edu.cn>
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
[OP: backport to 4.19: adjust context]
Signed-off-by: Ovidiu Panait <ovidiu.panait@windriver.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit fc6d01ff9ef03b66d4a3a23b46fc3c3d8cf92009 upstream.
The previous commit 7ec02f5ac8a5 ("ax25: fix NPD bug in ax25_disconnect")
move ax25_disconnect into lock_sock() in order to prevent NPD bugs. But
there are race conditions that may lead to null pointer dereferences in
ax25_heartbeat_expiry(), ax25_t1timer_expiry(), ax25_t2timer_expiry(),
ax25_t3timer_expiry() and ax25_idletimer_expiry(), when we use
ax25_kill_by_device() to detach the ax25 device.
One of the race conditions that cause null pointer dereferences can be
shown as below:
(Thread 1) | (Thread 2)
ax25_connect() |
ax25_std_establish_data_link() |
ax25_start_t1timer() |
mod_timer(&ax25->t1timer,..) |
| ax25_kill_by_device()
(wait a time) | ...
| s->ax25_dev = NULL; //(1)
ax25_t1timer_expiry() |
ax25->ax25_dev->values[..] //(2)| ...
... |
We set null to ax25_cb->ax25_dev in position (1) and dereference
the null pointer in position (2).
The corresponding fail log is shown below:
===============================================================
BUG: kernel NULL pointer dereference, address: 0000000000000050
CPU: 1 PID: 0 Comm: swapper/1 Not tainted 5.17.0-rc6-00794-g45690b7d0
RIP: 0010:ax25_t1timer_expiry+0x12/0x40
...
Call Trace:
call_timer_fn+0x21/0x120
__run_timers.part.0+0x1ca/0x250
run_timer_softirq+0x2c/0x60
__do_softirq+0xef/0x2f3
irq_exit_rcu+0xb6/0x100
sysvec_apic_timer_interrupt+0xa2/0xd0
...
This patch moves ax25_disconnect() before s->ax25_dev = NULL
and uses del_timer_sync() to delete timers in ax25_disconnect().
If ax25_disconnect() is called by ax25_kill_by_device() or
ax25->ax25_dev is NULL, the reason in ax25_disconnect() will be
equal to ENETUNREACH, it will wait all timers to stop before we
set null to s->ax25_dev in ax25_kill_by_device().
Fixes: 7ec02f5ac8a5 ("ax25: fix NPD bug in ax25_disconnect")
Signed-off-by: Duoming Zhou <duoming@zju.edu.cn>
Signed-off-by: David S. Miller <davem@davemloft.net>
[OP: backport to 4.19: adjust context]
Signed-off-by: Ovidiu Panait <ovidiu.panait@windriver.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 7ec02f5ac8a5be5a3f20611731243dc5e1d9ba10 upstream.
The ax25_disconnect() in ax25_kill_by_device() is not
protected by any locks, thus there is a race condition
between ax25_disconnect() and ax25_destroy_socket().
when ax25->sk is assigned as NULL by ax25_destroy_socket(),
a NULL pointer dereference bug will occur if site (1) or (2)
dereferences ax25->sk.
ax25_kill_by_device() | ax25_release()
ax25_disconnect() | ax25_destroy_socket()
... |
if(ax25->sk != NULL) | ...
... | ax25->sk = NULL;
bh_lock_sock(ax25->sk); //(1) | ...
... |
bh_unlock_sock(ax25->sk); //(2)|
This patch moves ax25_disconnect() into lock_sock(), which can
synchronize with ax25_destroy_socket() in ax25_release().
Fail log:
===============================================================
BUG: kernel NULL pointer dereference, address: 0000000000000088
...
RIP: 0010:_raw_spin_lock+0x7e/0xd0
...
Call Trace:
ax25_disconnect+0xf6/0x220
ax25_device_event+0x187/0x250
raw_notifier_call_chain+0x5e/0x70
dev_close_many+0x17d/0x230
rollback_registered_many+0x1f1/0x950
unregister_netdevice_queue+0x133/0x200
unregister_netdev+0x13/0x20
...
Signed-off-by: Duoming Zhou <duoming@zju.edu.cn>
Signed-off-by: David S. Miller <davem@davemloft.net>
[OP: backport to 4.19: adjust context]
Signed-off-by: Ovidiu Panait <ovidiu.panait@windriver.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 5352a761308397a0e6250fdc629bb3f615b94747 upstream.
There are UAF bugs in ax25_send_control(), when we call ax25_release()
to deallocate ax25_dev. The possible race condition is shown below:
(Thread 1) | (Thread 2)
ax25_dev_device_up() //(1) |
| ax25_kill_by_device()
ax25_bind() //(2) |
ax25_connect() | ...
ax25->state = AX25_STATE_1 |
... | ax25_dev_device_down() //(3)
(Thread 3)
ax25_release() |
ax25_dev_put() //(4) FREE |
case AX25_STATE_1: |
ax25_send_control() |
alloc_skb() //USE |
The refcount of ax25_dev increases in position (1) and (2), and
decreases in position (3) and (4). The ax25_dev will be freed
before dereference sites in ax25_send_control().
The following is part of the report:
[ 102.297448] BUG: KASAN: use-after-free in ax25_send_control+0x33/0x210
[ 102.297448] Read of size 8 at addr ffff888009e6e408 by task ax25_close/602
[ 102.297448] Call Trace:
[ 102.303751] ax25_send_control+0x33/0x210
[ 102.303751] ax25_release+0x356/0x450
[ 102.305431] __sock_release+0x6d/0x120
[ 102.305431] sock_close+0xf/0x20
[ 102.305431] __fput+0x11f/0x420
[ 102.305431] task_work_run+0x86/0xd0
[ 102.307130] get_signal+0x1075/0x1220
[ 102.308253] arch_do_signal_or_restart+0x1df/0xc00
[ 102.308253] exit_to_user_mode_prepare+0x150/0x1e0
[ 102.308253] syscall_exit_to_user_mode+0x19/0x50
[ 102.308253] do_syscall_64+0x48/0x90
[ 102.308253] entry_SYSCALL_64_after_hwframe+0x44/0xae
[ 102.308253] RIP: 0033:0x405ae7
This patch defers the free operation of ax25_dev and net_device after
all corresponding dereference sites in ax25_release() to avoid UAF.
Fixes: 9fd75b66b8f6 ("ax25: Fix refcount leaks caused by ax25_cb_del()")
Signed-off-by: Duoming Zhou <duoming@zju.edu.cn>
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
[OP: backport to 4.19: adjust dev_put_track()->dev_put()]
Signed-off-by: Ovidiu Panait <ovidiu.panait@windriver.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 9fd75b66b8f68498454d685dc4ba13192ae069b0 upstream.
The previous commit d01ffb9eee4a ("ax25: add refcount in ax25_dev to
avoid UAF bugs") and commit feef318c855a ("ax25: fix UAF bugs of
net_device caused by rebinding operation") increase the refcounts of
ax25_dev and net_device in ax25_bind() and decrease the matching refcounts
in ax25_kill_by_device() in order to prevent UAF bugs, but there are
reference count leaks.
The root cause of refcount leaks is shown below:
(Thread 1) | (Thread 2)
ax25_bind() |
... |
ax25_addr_ax25dev() |
ax25_dev_hold() //(1) |
... |
dev_hold_track() //(2) |
... | ax25_destroy_socket()
| ax25_cb_del()
| ...
| hlist_del_init() //(3)
|
|
(Thread 3) |
ax25_kill_by_device() |
... |
ax25_for_each(s, &ax25_list) { |
if (s->ax25_dev == ax25_dev) //(4) |
... |
Firstly, we use ax25_bind() to increase the refcount of ax25_dev in
position (1) and increase the refcount of net_device in position (2).
Then, we use ax25_cb_del() invoked by ax25_destroy_socket() to delete
ax25_cb in hlist in position (3) before calling ax25_kill_by_device().
Finally, the decrements of refcounts in ax25_kill_by_device() will not
be executed, because no s->ax25_dev equals to ax25_dev in position (4).
This patch adds decrements of refcounts in ax25_release() and use
lock_sock() to do synchronization. If refcounts decrease in ax25_release(),
the decrements of refcounts in ax25_kill_by_device() will not be
executed and vice versa.
Fixes: d01ffb9eee4a ("ax25: add refcount in ax25_dev to avoid UAF bugs")
Fixes: 87563a043cef ("ax25: fix reference count leaks of ax25_dev")
Fixes: feef318c855a ("ax25: fix UAF bugs of net_device caused by rebinding operation")
Reported-by: Thomas Osterried <thomas@osterried.de>
Signed-off-by: Duoming Zhou <duoming@zju.edu.cn>
Signed-off-by: David S. Miller <davem@davemloft.net>
[OP: backport to 4.19: adjust dev_put_track()->dev_put()]
Signed-off-by: Ovidiu Panait <ovidiu.panait@windriver.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit feef318c855a361a1eccd880f33e88c460eb63b4 upstream.
The ax25_kill_by_device() will set s->ax25_dev = NULL and
call ax25_disconnect() to change states of ax25_cb and
sock, if we call ax25_bind() before ax25_kill_by_device().
However, if we call ax25_bind() again between the window of
ax25_kill_by_device() and ax25_dev_device_down(), the values
and states changed by ax25_kill_by_device() will be reassigned.
Finally, ax25_dev_device_down() will deallocate net_device.
If we dereference net_device in syscall functions such as
ax25_release(), ax25_sendmsg(), ax25_getsockopt(), ax25_getname()
and ax25_info_show(), a UAF bug will occur.
One of the possible race conditions is shown below:
(USE) | (FREE)
ax25_bind() |
| ax25_kill_by_device()
ax25_bind() |
ax25_connect() | ...
| ax25_dev_device_down()
| ...
| dev_put_track(dev, ...) //FREE
ax25_release() | ...
ax25_send_control() |
alloc_skb() //USE |
the corresponding fail log is shown below:
===============================================================
BUG: KASAN: use-after-free in ax25_send_control+0x43/0x210
...
Call Trace:
...
ax25_send_control+0x43/0x210
ax25_release+0x2db/0x3b0
__sock_release+0x6d/0x120
sock_close+0xf/0x20
__fput+0x11f/0x420
...
Allocated by task 1283:
...
__kasan_kmalloc+0x81/0xa0
alloc_netdev_mqs+0x5a/0x680
mkiss_open+0x6c/0x380
tty_ldisc_open+0x55/0x90
...
Freed by task 1969:
...
kfree+0xa3/0x2c0
device_release+0x54/0xe0
kobject_put+0xa5/0x120
tty_ldisc_kill+0x3e/0x80
...
In order to fix these UAF bugs caused by rebinding operation,
this patch adds dev_hold_track() into ax25_bind() and
corresponding dev_put_track() into ax25_kill_by_device().
Signed-off-by: Duoming Zhou <duoming@zju.edu.cn>
Signed-off-by: David S. Miller <davem@davemloft.net>
[OP: backport to 4.19: adjust dev_put_track()->dev_put() and
dev_hold_track()->dev_hold()]
Signed-off-by: Ovidiu Panait <ovidiu.panait@windriver.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 87563a043cef044fed5db7967a75741cc16ad2b1 upstream.
The previous commit d01ffb9eee4a ("ax25: add refcount in ax25_dev
to avoid UAF bugs") introduces refcount into ax25_dev, but there
are reference leak paths in ax25_ctl_ioctl(), ax25_fwd_ioctl(),
ax25_rt_add(), ax25_rt_del() and ax25_rt_opt().
This patch uses ax25_dev_put() and adjusts the position of
ax25_addr_ax25dev() to fix reference cout leaks of ax25_dev.
Fixes: d01ffb9eee4a ("ax25: add refcount in ax25_dev to avoid UAF bugs")
Signed-off-by: Duoming Zhou <duoming@zju.edu.cn>
Reviewed-by: Dan Carpenter <dan.carpenter@oracle.com>
Link: https://lore.kernel.org/r/20220203150811.42256-1-duoming@zju.edu.cn
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
[OP: backport to 4.19: adjust context]
Signed-off-by: Ovidiu Panait <ovidiu.panait@windriver.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit d01ffb9eee4af165d83b08dd73ebdf9fe94a519b upstream.
If we dereference ax25_dev after we call kfree(ax25_dev) in
ax25_dev_device_down(), it will lead to concurrency UAF bugs.
There are eight syscall functions suffer from UAF bugs, include
ax25_bind(), ax25_release(), ax25_connect(), ax25_ioctl(),
ax25_getname(), ax25_sendmsg(), ax25_getsockopt() and
ax25_info_show().
One of the concurrency UAF can be shown as below:
(USE) | (FREE)
| ax25_device_event
| ax25_dev_device_down
ax25_bind | ...
... | kfree(ax25_dev)
ax25_fillin_cb() | ...
ax25_fillin_cb_from_dev() |
... |
The root cause of UAF bugs is that kfree(ax25_dev) in
ax25_dev_device_down() is not protected by any locks.
When ax25_dev, which there are still pointers point to,
is released, the concurrency UAF bug will happen.
This patch introduces refcount into ax25_dev in order to
guarantee that there are no pointers point to it when ax25_dev
is released.
Signed-off-by: Duoming Zhou <duoming@zju.edu.cn>
Signed-off-by: David S. Miller <davem@davemloft.net>
[OP: backport to 4.19: adjusted context]
Signed-off-by: Ovidiu Panait <ovidiu.panait@windriver.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit cefa91b2332d7009bc0be5d951d6cbbf349f90f8 upstream.
Given a sufficiently large number of actions, while copying and
reserving memory for a new action of a new flow, if next_offset is
greater than MAX_ACTIONS_BUFSIZE, the function reserve_sfa_size() does
not return -EMSGSIZE as expected, but it allocates MAX_ACTIONS_BUFSIZE
bytes increasing actions_len by req_size. This can then lead to an OOB
write access, especially when further actions need to be copied.
Fix it by rearranging the flow action size check.
KASAN splat below:
==================================================================
BUG: KASAN: slab-out-of-bounds in reserve_sfa_size+0x1ba/0x380 [openvswitch]
Write of size 65360 at addr ffff888147e4001c by task handler15/836
CPU: 1 PID: 836 Comm: handler15 Not tainted 5.18.0-rc1+ #27
...
Call Trace:
<TASK>
dump_stack_lvl+0x45/0x5a
print_report.cold+0x5e/0x5db
? __lock_text_start+0x8/0x8
? reserve_sfa_size+0x1ba/0x380 [openvswitch]
kasan_report+0xb5/0x130
? reserve_sfa_size+0x1ba/0x380 [openvswitch]
kasan_check_range+0xf5/0x1d0
memcpy+0x39/0x60
reserve_sfa_size+0x1ba/0x380 [openvswitch]
__add_action+0x24/0x120 [openvswitch]
ovs_nla_add_action+0xe/0x20 [openvswitch]
ovs_ct_copy_action+0x29d/0x1130 [openvswitch]
? __kernel_text_address+0xe/0x30
? unwind_get_return_address+0x56/0xa0
? create_prof_cpu_mask+0x20/0x20
? ovs_ct_verify+0xf0/0xf0 [openvswitch]
? prep_compound_page+0x198/0x2a0
? __kasan_check_byte+0x10/0x40
? kasan_unpoison+0x40/0x70
? ksize+0x44/0x60
? reserve_sfa_size+0x75/0x380 [openvswitch]
__ovs_nla_copy_actions+0xc26/0x2070 [openvswitch]
? __zone_watermark_ok+0x420/0x420
? validate_set.constprop.0+0xc90/0xc90 [openvswitch]
? __alloc_pages+0x1a9/0x3e0
? __alloc_pages_slowpath.constprop.0+0x1da0/0x1da0
? unwind_next_frame+0x991/0x1e40
? __mod_node_page_state+0x99/0x120
? __mod_lruvec_page_state+0x2e3/0x470
? __kasan_kmalloc_large+0x90/0xe0
ovs_nla_copy_actions+0x1b4/0x2c0 [openvswitch]
ovs_flow_cmd_new+0x3cd/0xb10 [openvswitch]
...
Cc: stable@vger.kernel.org
Fixes: f28cd2af22a0 ("openvswitch: fix flow actions reallocation")
Signed-off-by: Paolo Valerio <pvalerio@redhat.com>
Acked-by: Eelco Chaudron <echaudro@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit 99c07327ae11e24886d552dddbe4537bfca2765d ]
netlink_dump() is allocating an skb, reserves space in it
but forgets to reset network header.
This allows a BPF program, invoked later from sk_filter()
to access uninitialized kernel memory from the reserved
space.
Theorically mac header reset could be omitted, because
it is set to a special initial value.
bpf_internal_load_pointer_neg_helper calls skb_mac_header()
without checking skb_mac_header_was_set().
Relying on skb->len not being too big seems fragile.
We also could add a sanity check in bpf_internal_load_pointer_neg_helper()
to avoid surprises in the future.
syzbot report was:
BUG: KMSAN: uninit-value in ___bpf_prog_run+0xa22b/0xb420 kernel/bpf/core.c:1637
___bpf_prog_run+0xa22b/0xb420 kernel/bpf/core.c:1637
__bpf_prog_run32+0x121/0x180 kernel/bpf/core.c:1796
bpf_dispatcher_nop_func include/linux/bpf.h:784 [inline]
__bpf_prog_run include/linux/filter.h:626 [inline]
bpf_prog_run include/linux/filter.h:633 [inline]
__bpf_prog_run_save_cb+0x168/0x580 include/linux/filter.h:756
bpf_prog_run_save_cb include/linux/filter.h:770 [inline]
sk_filter_trim_cap+0x3bc/0x8c0 net/core/filter.c:150
sk_filter include/linux/filter.h:905 [inline]
netlink_dump+0xe0c/0x16c0 net/netlink/af_netlink.c:2276
netlink_recvmsg+0x1129/0x1c80 net/netlink/af_netlink.c:2002
sock_recvmsg_nosec net/socket.c:948 [inline]
sock_recvmsg net/socket.c:966 [inline]
sock_read_iter+0x5a9/0x630 net/socket.c:1039
do_iter_readv_writev+0xa7f/0xc70
do_iter_read+0x52c/0x14c0 fs/read_write.c:786
vfs_readv fs/read_write.c:906 [inline]
do_readv+0x432/0x800 fs/read_write.c:943
__do_sys_readv fs/read_write.c:1034 [inline]
__se_sys_readv fs/read_write.c:1031 [inline]
__x64_sys_readv+0xe5/0x120 fs/read_write.c:1031
do_syscall_x64 arch/x86/entry/common.c:51 [inline]
do_syscall_64+0x54/0xd0 arch/x86/entry/common.c:81
entry_SYSCALL_64_after_hwframe+0x44/0xae
Uninit was stored to memory at:
___bpf_prog_run+0x96c/0xb420 kernel/bpf/core.c:1558
__bpf_prog_run32+0x121/0x180 kernel/bpf/core.c:1796
bpf_dispatcher_nop_func include/linux/bpf.h:784 [inline]
__bpf_prog_run include/linux/filter.h:626 [inline]
bpf_prog_run include/linux/filter.h:633 [inline]
__bpf_prog_run_save_cb+0x168/0x580 include/linux/filter.h:756
bpf_prog_run_save_cb include/linux/filter.h:770 [inline]
sk_filter_trim_cap+0x3bc/0x8c0 net/core/filter.c:150
sk_filter include/linux/filter.h:905 [inline]
netlink_dump+0xe0c/0x16c0 net/netlink/af_netlink.c:2276
netlink_recvmsg+0x1129/0x1c80 net/netlink/af_netlink.c:2002
sock_recvmsg_nosec net/socket.c:948 [inline]
sock_recvmsg net/socket.c:966 [inline]
sock_read_iter+0x5a9/0x630 net/socket.c:1039
do_iter_readv_writev+0xa7f/0xc70
do_iter_read+0x52c/0x14c0 fs/read_write.c:786
vfs_readv fs/read_write.c:906 [inline]
do_readv+0x432/0x800 fs/read_write.c:943
__do_sys_readv fs/read_write.c:1034 [inline]
__se_sys_readv fs/read_write.c:1031 [inline]
__x64_sys_readv+0xe5/0x120 fs/read_write.c:1031
do_syscall_x64 arch/x86/entry/common.c:51 [inline]
do_syscall_64+0x54/0xd0 arch/x86/entry/common.c:81
entry_SYSCALL_64_after_hwframe+0x44/0xae
Uninit was created at:
slab_post_alloc_hook mm/slab.h:737 [inline]
slab_alloc_node mm/slub.c:3244 [inline]
__kmalloc_node_track_caller+0xde3/0x14f0 mm/slub.c:4972
kmalloc_reserve net/core/skbuff.c:354 [inline]
__alloc_skb+0x545/0xf90 net/core/skbuff.c:426
alloc_skb include/linux/skbuff.h:1158 [inline]
netlink_dump+0x30f/0x16c0 net/netlink/af_netlink.c:2242
netlink_recvmsg+0x1129/0x1c80 net/netlink/af_netlink.c:2002
sock_recvmsg_nosec net/socket.c:948 [inline]
sock_recvmsg net/socket.c:966 [inline]
sock_read_iter+0x5a9/0x630 net/socket.c:1039
do_iter_readv_writev+0xa7f/0xc70
do_iter_read+0x52c/0x14c0 fs/read_write.c:786
vfs_readv fs/read_write.c:906 [inline]
do_readv+0x432/0x800 fs/read_write.c:943
__do_sys_readv fs/read_write.c:1034 [inline]
__se_sys_readv fs/read_write.c:1031 [inline]
__x64_sys_readv+0xe5/0x120 fs/read_write.c:1031
do_syscall_x64 arch/x86/entry/common.c:51 [inline]
do_syscall_64+0x54/0xd0 arch/x86/entry/common.c:81
entry_SYSCALL_64_after_hwframe+0x44/0xae
CPU: 0 PID: 3470 Comm: syz-executor751 Not tainted 5.17.0-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
Fixes: db65a3aaf29e ("netlink: Trim skb to alloc size to avoid MSG_TRUNC")
Fixes: 9063e21fb026 ("netlink: autosize skb lengthes")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: syzbot <syzkaller@googlegroups.com>
Link: https://lore.kernel.org/r/20220415181442.551228-1-eric.dumazet@gmail.com
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit ec5b0f605b105457f257f2870acad4a5d463984b ]
While investigating a related syzbot report,
I found that whenever call to tcf_exts_init()
from u32_init_knode() is failing, we end up
with an elevated refcount on ht->refcnt
To avoid that, only increase the refcount after
all possible errors have been evaluated.
Fixes: b9a24bb76bf6 ("net_sched: properly handle failure case of tcf_exts_init()")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Cong Wang <xiyou.wangcong@gmail.com>
Cc: Jiri Pirko <jiri@resnulli.us>
Acked-by: Jamal Hadi Salim <jhs@mojatatu.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit 29e8e659f984be00d75ec5fef4e37c88def72712 ]
packet_sock xmit could be dev_queue_xmit, which also returns negative
errors. So only checking positive errors is not enough, or userspace
sendmsg may return success while packet is not send out.
Move the net_xmit_errno() assignment in the braces as checkpatch.pl said
do not use assignment in if condition.
Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2")
Reported-by: Flavio Leitner <fbl@redhat.com>
Signed-off-by: Hangbin Liu <liuhangbin@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit ee3b0826b4764f6c13ad6db67495c5a1c38e9025 ]
A recent patch[1] from Eric Dumazet flipped the order in which the
keepalive timer and the keepalive worker were cancelled in order to fix a
syzbot reported issue[2]. Unfortunately, this enables the mirror image bug
whereby the timer races with rxrpc_exit_net(), restarting the worker after
it has been cancelled:
CPU 1 CPU 2
=============== =====================
if (rxnet->live)
<INTERRUPT>
rxnet->live = false;
cancel_work_sync(&rxnet->peer_keepalive_work);
rxrpc_queue_work(&rxnet->peer_keepalive_work);
del_timer_sync(&rxnet->peer_keepalive_timer);
Fix this by restoring the removed del_timer_sync() so that we try to remove
the timer twice. If the timer runs again, it should see ->live == false
and not restart the worker.
Fixes: 1946014ca3b1 ("rxrpc: fix a race in rxrpc_exit_net()")
Signed-off-by: David Howells <dhowells@redhat.com>
cc: Eric Dumazet <edumazet@google.com>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
Link: https://lore.kernel.org/r/20220404183439.3537837-1-eric.dumazet@gmail.com/ [1]
Link: https://syzkaller.appspot.com/bug?extid=724378c4bb58f703b09a [2]
Reviewed-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit c89dffc70b340780e5b933832d8c3e045ef3791e upstream.
Receiving ACK with a valid SYN cookie, cookie_v4_check() allocates struct
request_sock and then can allocate inet_rsk(req)->ireq_opt. After that,
tcp_v4_syn_recv_sock() allocates struct sock and copies ireq_opt to
inet_sk(sk)->inet_opt. Normally, tcp_v4_syn_recv_sock() inserts the full
socket into ehash and sets NULL to ireq_opt. Otherwise,
tcp_v4_syn_recv_sock() has to reset inet_opt by NULL and free the full
socket.
The commit 01770a1661657 ("tcp: fix race condition when creating child
sockets from syncookies") added a new path, in which more than one cores
create full sockets for the same SYN cookie. Currently, the core which
loses the race frees the full socket without resetting inet_opt, resulting
in that both sock_put() and reqsk_put() call kfree() for the same memory:
sock_put
sk_free
__sk_free
sk_destruct
__sk_destruct
sk->sk_destruct/inet_sock_destruct
kfree(rcu_dereference_protected(inet->inet_opt, 1));
reqsk_put
reqsk_free
__reqsk_free
req->rsk_ops->destructor/tcp_v4_reqsk_destructor
kfree(rcu_dereference_protected(inet_rsk(req)->ireq_opt, 1));
Calling kmalloc() between the double kfree() can lead to use-after-free, so
this patch fixes it by setting NULL to inet_opt before sock_put().
As a side note, this kind of issue does not happen for IPv6. This is
because tcp_v6_syn_recv_sock() clones both ipv6_opt and pktopts which
correspond to ireq_opt in IPv4.
Fixes: 01770a166165 ("tcp: fix race condition when creating child sockets from syncookies")
CC: Ricardo Dias <rdias@singlestore.com>
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.co.jp>
Reviewed-by: Benjamin Herrenschmidt <benh@amazon.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Link: https://lore.kernel.org/r/20210118055920.82516-1-kuniyu@amazon.co.jp
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit 01770a166165738a6e05c3d911fb4609cc4eb416 ]
When the TCP stack is in SYN flood mode, the server child socket is
created from the SYN cookie received in a TCP packet with the ACK flag
set.
The child socket is created when the server receives the first TCP
packet with a valid SYN cookie from the client. Usually, this packet
corresponds to the final step of the TCP 3-way handshake, the ACK
packet. But is also possible to receive a valid SYN cookie from the
first TCP data packet sent by the client, and thus create a child socket
from that SYN cookie.
Since a client socket is ready to send data as soon as it receives the
SYN+ACK packet from the server, the client can send the ACK packet (sent
by the TCP stack code), and the first data packet (sent by the userspace
program) almost at the same time, and thus the server will equally
receive the two TCP packets with valid SYN cookies almost at the same
instant.
When such event happens, the TCP stack code has a race condition that
occurs between the momement a lookup is done to the established
connections hashtable to check for the existence of a connection for the
same client, and the moment that the child socket is added to the
established connections hashtable. As a consequence, this race condition
can lead to a situation where we add two child sockets to the
established connections hashtable and deliver two sockets to the
userspace program to the same client.
This patch fixes the race condition by checking if an existing child
socket exists for the same client when we are adding the second child
socket to the established connections socket. If an existing child
socket exists, we drop the packet and discard the second child socket
to the same client.
Signed-off-by: Ricardo Dias <rdias@singlestore.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Link: https://lore.kernel.org/r/20201120111133.GA67501@rdias-suse-pc.lan
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit e3fa461d8b0e185b7da8a101fe94dfe6dd500ac0 upstream.
kongweibin reported a kernel panic in ip6_forward() when input interface
has no in6 dev associated.
The following tc commands were used to reproduce this panic:
tc qdisc del dev vxlan100 root
tc qdisc add dev vxlan100 root netem corrupt 5%
CC: stable@vger.kernel.org
Fixes: ccd27f05ae7b ("ipv6: fix 'disable_policy' for fwd packets")
Reported-by: kongweibin <kongweibin2@huawei.com>
Signed-off-by: Nicolas Dichtel <nicolas.dichtel@6wind.com>
Reviewed-by: David Ahern <dsahern@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit ef27324e2cb7bb24542d6cb2571740eefe6b00dc ]
Our detector found a concurrent use-after-free bug when detaching an
NCI device. The main reason for this bug is the unexpected scheduling
between the used delayed mechanism (timer and workqueue).
The race can be demonstrated below:
Thread-1 Thread-2
| nci_dev_up()
| nci_open_device()
| __nci_request(nci_reset_req)
| nci_send_cmd
| queue_work(cmd_work)
nci_unregister_device() |
nci_close_device() | ...
del_timer_sync(cmd_timer)[1] |
... | Worker
nci_free_device() | nci_cmd_work()
kfree(ndev)[3] | mod_timer(cmd_timer)[2]
In short, the cleanup routine thought that the cmd_timer has already
been detached by [1] but the mod_timer can re-attach the timer [2], even
it is already released [3], resulting in UAF.
This UAF is easy to trigger, crash trace by POC is like below
[ 66.703713] ==================================================================
[ 66.703974] BUG: KASAN: use-after-free in enqueue_timer+0x448/0x490
[ 66.703974] Write of size 8 at addr ffff888009fb7058 by task kworker/u4:1/33
[ 66.703974]
[ 66.703974] CPU: 1 PID: 33 Comm: kworker/u4:1 Not tainted 5.18.0-rc2 #5
[ 66.703974] Workqueue: nfc2_nci_cmd_wq nci_cmd_work
[ 66.703974] Call Trace:
[ 66.703974] <TASK>
[ 66.703974] dump_stack_lvl+0x57/0x7d
[ 66.703974] print_report.cold+0x5e/0x5db
[ 66.703974] ? enqueue_timer+0x448/0x490
[ 66.703974] kasan_report+0xbe/0x1c0
[ 66.703974] ? enqueue_timer+0x448/0x490
[ 66.703974] enqueue_timer+0x448/0x490
[ 66.703974] __mod_timer+0x5e6/0xb80
[ 66.703974] ? mark_held_locks+0x9e/0xe0
[ 66.703974] ? try_to_del_timer_sync+0xf0/0xf0
[ 66.703974] ? lockdep_hardirqs_on_prepare+0x17b/0x410
[ 66.703974] ? queue_work_on+0x61/0x80
[ 66.703974] ? lockdep_hardirqs_on+0xbf/0x130
[ 66.703974] process_one_work+0x8bb/0x1510
[ 66.703974] ? lockdep_hardirqs_on_prepare+0x410/0x410
[ 66.703974] ? pwq_dec_nr_in_flight+0x230/0x230
[ 66.703974] ? rwlock_bug.part.0+0x90/0x90
[ 66.703974] ? _raw_spin_lock_irq+0x41/0x50
[ 66.703974] worker_thread+0x575/0x1190
[ 66.703974] ? process_one_work+0x1510/0x1510
[ 66.703974] kthread+0x2a0/0x340
[ 66.703974] ? kthread_complete_and_exit+0x20/0x20
[ 66.703974] ret_from_fork+0x22/0x30
[ 66.703974] </TASK>
[ 66.703974]
[ 66.703974] Allocated by task 267:
[ 66.703974] kasan_save_stack+0x1e/0x40
[ 66.703974] __kasan_kmalloc+0x81/0xa0
[ 66.703974] nci_allocate_device+0xd3/0x390
[ 66.703974] nfcmrvl_nci_register_dev+0x183/0x2c0
[ 66.703974] nfcmrvl_nci_uart_open+0xf2/0x1dd
[ 66.703974] nci_uart_tty_ioctl+0x2c3/0x4a0
[ 66.703974] tty_ioctl+0x764/0x1310
[ 66.703974] __x64_sys_ioctl+0x122/0x190
[ 66.703974] do_syscall_64+0x3b/0x90
[ 66.703974] entry_SYSCALL_64_after_hwframe+0x44/0xae
[ 66.703974]
[ 66.703974] Freed by task 406:
[ 66.703974] kasan_save_stack+0x1e/0x40
[ 66.703974] kasan_set_track+0x21/0x30
[ 66.703974] kasan_set_free_info+0x20/0x30
[ 66.703974] __kasan_slab_free+0x108/0x170
[ 66.703974] kfree+0xb0/0x330
[ 66.703974] nfcmrvl_nci_unregister_dev+0x90/0xd0
[ 66.703974] nci_uart_tty_close+0xdf/0x180
[ 66.703974] tty_ldisc_kill+0x73/0x110
[ 66.703974] tty_ldisc_hangup+0x281/0x5b0
[ 66.703974] __tty_hangup.part.0+0x431/0x890
[ 66.703974] tty_release+0x3a8/0xc80
[ 66.703974] __fput+0x1f0/0x8c0
[ 66.703974] task_work_run+0xc9/0x170
[ 66.703974] exit_to_user_mode_prepare+0x194/0x1a0
[ 66.703974] syscall_exit_to_user_mode+0x19/0x50
[ 66.703974] do_syscall_64+0x48/0x90
[ 66.703974] entry_SYSCALL_64_after_hwframe+0x44/0xae
To fix the UAF, this patch adds flush_workqueue() to ensure the
nci_cmd_work is finished before the following del_timer_sync.
This combination will promise the timer is actually detached.
Fixes: 6a2968aaf50c ("NFC: basic NCI protocol implementation")
Signed-off-by: Lin Ma <linma@zju.edu.cn>
Reviewed-by: Krzysztof Kozlowski <krzysztof.kozlowski@linaro.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit 8467dda0c26583547731e7f3ea73fc3856bae3bf ]
Function sctp_do_peeloff() wrongly initializes daddr of the original
socket instead of the peeled off socket, which makes getpeername()
return zeroes instead of the primary address. Initialize the new socket
instead.
Fixes: d570ee490fb1 ("[SCTP]: Correctly set daddr for IPv6 sockets during peeloff")
Signed-off-by: Petr Malat <oss@malat.biz>
Acked-by: Marcelo Ricardo Leitner <marcelo.leitner@gmail.com>
Link: https://lore.kernel.org/r/20220409063611.673193-1-oss@malat.biz
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit 2105f700b53c24aa48b65c15652acc386044d26a ]
A tc flower filter matching TCA_FLOWER_KEY_VLAN_ETH_TYPE is expected to
match the L2 ethertype following the first VLAN header, as confirmed by
linked discussion with the maintainer. However, such rule also matches
packets that have additional second VLAN header, even though filter has
both eth_type and vlan_ethtype set to "ipv4". Looking at the code this
seems to be mostly an artifact of the way flower uses flow dissector.
First, even though looking at the uAPI eth_type and vlan_ethtype appear
like a distinct fields, in flower they are all mapped to the same
key->basic.n_proto. Second, flow dissector skips following VLAN header as
no keys for FLOW_DISSECTOR_KEY_CVLAN are set and eventually assigns the
value of n_proto to last parsed header. With these, such filters ignore any
headers present between first VLAN header and first "non magic"
header (ipv4 in this case) that doesn't result
FLOW_DISSECT_RET_PROTO_AGAIN.
Fix the issue by extending flow dissector VLAN key structure with new
'vlan_eth_type' field that matches first ethertype following previously
parsed VLAN header. Modify flower classifier to set the new
flow_dissector_key_vlan->vlan_eth_type with value obtained from
TCA_FLOWER_KEY_VLAN_ETH_TYPE/TCA_FLOWER_KEY_CVLAN_ETH_TYPE uAPIs.
Link: https://lore.kernel.org/all/Yjhgi48BpTGh6dig@nanopsycho/
Fixes: 9399ae9a6cb2 ("net_sched: flower: Add vlan support")
Fixes: d64efd0926ba ("net/sched: flower: Add supprt for matching on QinQ vlan headers")
Signed-off-by: Vlad Buslov <vladbu@nvidia.com>
Reviewed-by: Jiri Pirko <jiri@nvidia.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 4f47e8ab6ab796b5380f74866fa5287aca4dcc58 upstream.
In commit ed17b8d377ea ("xfrm: fix a warning in xfrm_policy_insert_list"),
it would take 'priority' to make a policy unique, and allow duplicated
policies with different 'priority' to be added, which is not expected
by userland, as Tobias reported in strongswan.
To fix this duplicated policies issue, and also fix the issue in
commit ed17b8d377ea ("xfrm: fix a warning in xfrm_policy_insert_list"),
when doing add/del/get/update on user interfaces, this patch is to change
to look up a policy with both mark and mask by doing:
mark.v == pol->mark.v && mark.m == pol->mark.m
and leave the check:
(mark & pol->mark.m) == pol->mark.v
for tx/rx path only.
As the userland expects an exact mark and mask match to manage policies.
v1->v2:
- make xfrm_policy_mark_match inline and fix the changelog as
Tobias suggested.
Fixes: 295fae568885 ("xfrm: Allow user space manipulation of SPD mark")
Fixes: ed17b8d377ea ("xfrm: fix a warning in xfrm_policy_insert_list")
Reported-by: Tobias Brunner <tobias@strongswan.org>
Tested-by: Tobias Brunner <tobias@strongswan.org>
Signed-off-by: Xin Long <lucien.xin@gmail.com>
Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit 1946014ca3b19be9e485e780e862c375c6f98bad ]
Current code can lead to the following race:
CPU0 CPU1
rxrpc_exit_net()
rxrpc_peer_keepalive_worker()
if (rxnet->live)
rxnet->live = false;
del_timer_sync(&rxnet->peer_keepalive_timer);
timer_reduce(&rxnet->peer_keepalive_timer, jiffies + delay);
cancel_work_sync(&rxnet->peer_keepalive_work);
rxrpc_exit_net() exits while peer_keepalive_timer is still armed,
leading to use-after-free.
syzbot report was:
ODEBUG: free active (active state 0) object type: timer_list hint: rxrpc_peer_keepalive_timeout+0x0/0xb0
WARNING: CPU: 0 PID: 3660 at lib/debugobjects.c:505 debug_print_object+0x16e/0x250 lib/debugobjects.c:505
Modules linked in:
CPU: 0 PID: 3660 Comm: kworker/u4:6 Not tainted 5.17.0-syzkaller-13993-g88e6c0207623 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
Workqueue: netns cleanup_net
RIP: 0010:debug_print_object+0x16e/0x250 lib/debugobjects.c:505
Code: ff df 48 89 fa 48 c1 ea 03 80 3c 02 00 0f 85 af 00 00 00 48 8b 14 dd 00 1c 26 8a 4c 89 ee 48 c7 c7 00 10 26 8a e8 b1 e7 28 05 <0f> 0b 83 05 15 eb c5 09 01 48 83 c4 18 5b 5d 41 5c 41 5d 41 5e c3
RSP: 0018:ffffc9000353fb00 EFLAGS: 00010082
RAX: 0000000000000000 RBX: 0000000000000003 RCX: 0000000000000000
RDX: ffff888029196140 RSI: ffffffff815efad8 RDI: fffff520006a7f52
RBP: 0000000000000001 R08: 0000000000000000 R09: 0000000000000000
R10: ffffffff815ea4ae R11: 0000000000000000 R12: ffffffff89ce23e0
R13: ffffffff8a2614e0 R14: ffffffff816628c0 R15: dffffc0000000000
FS: 0000000000000000(0000) GS:ffff8880b9c00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fe1f2908924 CR3: 0000000043720000 CR4: 00000000003506f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
__debug_check_no_obj_freed lib/debugobjects.c:992 [inline]
debug_check_no_obj_freed+0x301/0x420 lib/debugobjects.c:1023
kfree+0xd6/0x310 mm/slab.c:3809
ops_free_list.part.0+0x119/0x370 net/core/net_namespace.c:176
ops_free_list net/core/net_namespace.c:174 [inline]
cleanup_net+0x591/0xb00 net/core/net_namespace.c:598
process_one_work+0x996/0x1610 kernel/workqueue.c:2289
worker_thread+0x665/0x1080 kernel/workqueue.c:2436
kthread+0x2e9/0x3a0 kernel/kthread.c:376
ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:298
</TASK>
Fixes: ace45bec6d77 ("rxrpc: Fix firewall route keepalive")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Marc Dionne <marc.dionne@auristor.com>
Cc: linux-afs@lists.infradead.org
Reported-by: syzbot <syzkaller@googlegroups.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit 3f2a3050b4a3e7f32fc0ea3c9b0183090ae00522 ]
'OVS_CLONE_ATTR_EXEC' is an internal attribute that is used for
performance optimization inside the kernel. It's added by the kernel
while parsing user-provided actions and should not be sent during the
flow dump as it's not part of the uAPI.
The issue doesn't cause any significant problems to the ovs-vswitchd
process, because reported actions are not really used in the
application lifecycle and only supposed to be shown to a human via
ovs-dpctl flow dump. However, the action list is still incorrect
and causes the following error if the user wants to look at the
datapath flows:
# ovs-dpctl add-dp system@ovs-system
# ovs-dpctl add-flow "<flow match>" "clone(ct(commit),0)"
# ovs-dpctl dump-flows
<flow match>, packets:0, bytes:0, used:never,
actions:clone(bad length 4, expected -1 for: action0(01 00 00 00),
ct(commit),0)
With the fix:
# ovs-dpctl dump-flows
<flow match>, packets:0, bytes:0, used:never,
actions:clone(ct(commit),0)
Additionally fixed an incorrect attribute name in the comment.
Fixes: b233504033db ("openvswitch: kernel datapath clone action")
Signed-off-by: Ilya Maximets <i.maximets@ovn.org>
Acked-by: Aaron Conole <aconole@redhat.com>
Link: https://lore.kernel.org/r/20220404104150.2865736-1-i.maximets@ovn.org
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit 8f932f762e7928d250e21006b00ff9b7718b0a64 ]
SOF_TIMESTAMPING_OPT_ID is supported on TCP, UDP and RAW sockets.
But it was missing on RAW with IPPROTO_IP, PF_PACKET and CAN.
Add skb_setup_tx_timestamp that configures both tx_flags and tskey
for these paths that do not need corking or use bytestream keys.
Fixes: 09c2d251b707 ("net-timestamp: add key to disambiguate concurrent datagrams")
Signed-off-by: Willem de Bruijn <willemb@google.com>
Acked-by: Soheil Hassas Yeganeh <soheil@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit c487216bec83b0c5a8803e5c61433d33ad7b104d ]
When memory is short, new worker threads cannot be created and we depend
on the minimum one rpciod thread to be able to handle everything.
So it must not block waiting for memory.
mempools are particularly a problem as memory can only be released back
to the mempool by an async rpc task running. If all available
workqueue threads are waiting on the mempool, no thread is available to
return anything.
rpc_malloc() can block, and this might cause deadlocks.
So check RPC_IS_ASYNC(), rather than RPC_IS_SWAPPER() to determine if
blocking is acceptable.
Signed-off-by: NeilBrown <neilb@suse.de>
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit f63d24baff787e13b723d86fe036f84bdbc35045 ]
This fixes the following trace caused by receiving
HCI_EV_DISCONN_PHY_LINK_COMPLETE which does call hci_conn_del without
first checking if conn->type is in fact AMP_LINK and in case it is
do properly cleanup upper layers with hci_disconn_cfm:
==================================================================
BUG: KASAN: use-after-free in hci_send_acl+0xaba/0xc50
Read of size 8 at addr ffff88800e404818 by task bluetoothd/142
CPU: 0 PID: 142 Comm: bluetoothd Not tainted
5.17.0-rc5-00006-gda4022eeac1a #7
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x45/0x59
print_address_description.constprop.0+0x1f/0x150
kasan_report.cold+0x7f/0x11b
hci_send_acl+0xaba/0xc50
l2cap_do_send+0x23f/0x3d0
l2cap_chan_send+0xc06/0x2cc0
l2cap_sock_sendmsg+0x201/0x2b0
sock_sendmsg+0xdc/0x110
sock_write_iter+0x20f/0x370
do_iter_readv_writev+0x343/0x690
do_iter_write+0x132/0x640
vfs_writev+0x198/0x570
do_writev+0x202/0x280
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
RSP: 002b:00007ffce8a099b8 EFLAGS: 00000246 ORIG_RAX: 0000000000000014
Code: 0f 00 f7 d8 64 89 02 48 c7 c0 ff ff ff ff eb b8 0f 1f 00 f3
0f 1e fa 64 8b 04 25 18 00 00 00 85 c0 75 10 b8 14 00 00 00 0f 05
<48> 3d 00 f0 ff ff 77 51 c3 48 83 ec 28 89 54 24 1c 48 89 74 24 10
RDX: 0000000000000001 RSI: 00007ffce8a099e0 RDI: 0000000000000015
RAX: ffffffffffffffda RBX: 00007ffce8a099e0 RCX: 00007f788fc3cf77
R10: 00007ffce8af7080 R11: 0000000000000246 R12: 000055e4ccf75580
RBP: 0000000000000015 R08: 0000000000000002 R09: 0000000000000001
</TASK>
R13: 000055e4ccf754a0 R14: 000055e4ccf75cd0 R15: 000055e4ccf4a6b0
Allocated by task 45:
kasan_save_stack+0x1e/0x40
__kasan_kmalloc+0x81/0xa0
hci_chan_create+0x9a/0x2f0
l2cap_conn_add.part.0+0x1a/0xdc0
l2cap_connect_cfm+0x236/0x1000
le_conn_complete_evt+0x15a7/0x1db0
hci_le_conn_complete_evt+0x226/0x2c0
hci_le_meta_evt+0x247/0x450
hci_event_packet+0x61b/0xe90
hci_rx_work+0x4d5/0xc50
process_one_work+0x8fb/0x15a0
worker_thread+0x576/0x1240
kthread+0x29d/0x340
ret_from_fork+0x1f/0x30
Freed by task 45:
kasan_save_stack+0x1e/0x40
kasan_set_track+0x21/0x30
kasan_set_free_info+0x20/0x30
__kasan_slab_free+0xfb/0x130
kfree+0xac/0x350
hci_conn_cleanup+0x101/0x6a0
hci_conn_del+0x27e/0x6c0
hci_disconn_phylink_complete_evt+0xe0/0x120
hci_event_packet+0x812/0xe90
hci_rx_work+0x4d5/0xc50
process_one_work+0x8fb/0x15a0
worker_thread+0x576/0x1240
kthread+0x29d/0x340
ret_from_fork+0x1f/0x30
The buggy address belongs to the object at ffff88800c0f0500
The buggy address is located 24 bytes inside of
which belongs to the cache kmalloc-128 of size 128
The buggy address belongs to the page:
128-byte region [ffff88800c0f0500, ffff88800c0f0580)
flags: 0x100000000000200(slab|node=0|zone=1)
page:00000000fe45cd86 refcount:1 mapcount:0
mapping:0000000000000000 index:0x0 pfn:0xc0f0
raw: 0000000000000000 0000000080100010 00000001ffffffff
0000000000000000
raw: 0100000000000200 ffffea00003a2c80 dead000000000004
ffff8880078418c0
page dumped because: kasan: bad access detected
ffff88800c0f0400: 00 00 00 00 00 00 00 00 00 00 00 00 00 fc fc fc
Memory state around the buggy address:
>ffff88800c0f0500: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
ffff88800c0f0480: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
ffff88800c0f0580: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
^
==================================================================
ffff88800c0f0600: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
Reported-by: Sönke Huster <soenke.huster@eknoes.de>
Tested-by: Sönke Huster <soenke.huster@eknoes.de>
Signed-off-by: Luiz Augusto von Dentz <luiz.von.dentz@intel.com>
Signed-off-by: Marcel Holtmann <marcel@holtmann.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit 6bf536eb5c8ca011d1ff57b5c5f7c57ceac06a37 ]
rmbe_update_limit is used to limit announcing receive
window updating too frequently. RFC7609 request a minimal
increase in the window size of 10% of the receive buffer
space. But current implementation used:
min_t(int, rmbe_size / 10, SOCK_MIN_SNDBUF / 2)
and SOCK_MIN_SNDBUF / 2 == 2304 Bytes, which is almost
always less then 10% of the receive buffer space.
This causes the receiver always sending CDC message to
update its consumer cursor when it consumes more then 2K
of data. And as a result, we may encounter something like
"TCP silly window syndrome" when sending 2.5~8K message.
This patch fixes this using max(rmbe_size / 10, SOCK_MIN_SNDBUF / 2).
With this patch and SMC autocorking enabled, qperf 2K/4K/8K
tcp_bw test shows 45%/75%/40% increase in throughput respectively.
Signed-off-by: Dust Li <dust.li@linux.alibaba.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit 0c51e12e218f20b7d976158fdc18019627326f7a ]
In case user space sends a packet destined to a broadcast address when a
matching broadcast route is not configured, the kernel will create a
unicast neighbour entry that will never be resolved [1].
When the broadcast route is configured, the unicast neighbour entry will
not be invalidated and continue to linger, resulting in packets being
dropped.
Solve this by invalidating unresolved neighbour entries for broadcast
addresses after routes for these addresses are internally configured by
the kernel. This allows the kernel to create a broadcast neighbour entry
following the next route lookup.
Another possible solution that is more generic but also more complex is
to have the ARP code register a listener to the FIB notification chain
and invalidate matching neighbour entries upon the addition of broadcast
routes.
It is also possible to wave off the issue as a user space problem, but
it seems a bit excessive to expect user space to be that intimately
familiar with the inner workings of the FIB/neighbour kernel code.
[1] https://lore.kernel.org/netdev/55a04a8f-56f3-f73c-2aea-2195923f09d1@huawei.com/
Reported-by: Wang Hai <wanghai38@huawei.com>
Signed-off-by: Ido Schimmel <idosch@nvidia.com>
Tested-by: Wang Hai <wanghai38@huawei.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit f19c44452b58a84d95e209b847f5495d91c9983a upstream.
IPv6 nd target mask was not getting populated in flow dump.
In the function __ovs_nla_put_key the icmp code mask field was checked
instead of icmp code key field to classify the flow as neighbour discovery.
ufid:bdfbe3e5-60c2-43b0-a5ff-dfcac1c37328, recirc_id(0),dp_hash(0/0),
skb_priority(0/0),in_port(ovs-nm1),skb_mark(0/0),ct_state(0/0),
ct_zone(0/0),ct_mark(0/0),ct_label(0/0),
eth(src=00:00:00:00:00:00/00:00:00:00:00:00,
dst=00:00:00:00:00:00/00:00:00:00:00:00),
eth_type(0x86dd),
ipv6(src=::/::,dst=::/::,label=0/0,proto=58,tclass=0/0,hlimit=0/0,frag=no),
icmpv6(type=135,code=0),
nd(target=2001::2/::,
sll=00:00:00:00:00:00/00:00:00:00:00:00,
tll=00:00:00:00:00:00/00:00:00:00:00:00),
packets:10, bytes:860, used:0.504s, dp:ovs, actions:ovs-nm2
Fixes: e64457191a25 (openvswitch: Restructure datapath.c and flow.c)
Signed-off-by: Martin Varghese <martin.varghese@nokia.com>
Link: https://lore.kernel.org/r/20220328054148.3057-1-martinvarghesenokia@gmail.com
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit 7781607938c8371d4c2b243527430241c62e39c2 ]
When the link layer is terminating, x25->neighbour will be set to NULL
in x25_disconnect(). As a result, it could cause null-ptr-deref bugs in
x25_sendmsg(),x25_recvmsg() and x25_connect(). One of the bugs is
shown below.
(Thread 1) | (Thread 2)
x25_link_terminated() | x25_recvmsg()
x25_kill_by_neigh() | ...
x25_disconnect() | lock_sock(sk)
... | ...
x25->neighbour = NULL //(1) |
... | x25->neighbour->extended //(2)
The code sets NULL to x25->neighbour in position (1) and dereferences
x25->neighbour in position (2), which could cause null-ptr-deref bug.
This patch adds lock_sock() in x25_kill_by_neigh() in order to synchronize
with x25_sendmsg(), x25_recvmsg() and x25_connect(). What`s more, the
sock held by lock_sock() is not NULL, because it is extracted from x25_list
and uses x25_list_lock to synchronize.
Fixes: 4becb7ee5b3d ("net/x25: Fix x25_neigh refcnt leak when x25 disconnect")
Signed-off-by: Duoming Zhou <duoming@zju.edu.cn>
Reviewed-by: Lin Ma <linma@zju.edu.cn>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit f2dd495a8d589371289981d5ed33e6873df94ecc ]
Do not reset IP_CT_TCP_FLAG_BE_LIBERAL flag in out-of-sync scenarios
coming before the TCP window tracking, otherwise such connections will
fail in the window check.
Update tcp_options() to leave this flag in place and add a new helper
function to reset the tcp window state.
Based on patch from Sven Auhagen.
Fixes: c4832c7bbc3f ("netfilter: nf_ct_tcp: improve out-of-sync situation in TCP tracking")
Tested-by: Sven Auhagen <sven.auhagen@voleatech.de>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit ed0c99dc0f499ff8b6e75b5ae6092ab42be1ad39 ]
tp->rx_opt.mss_clamp is not populated, yet, during TFO send so we
rise it to the local MSS. tp->mss_cache is not updated, however:
tcp_v6_connect():
tp->rx_opt.mss_clamp = IPV6_MIN_MTU - headers;
tcp_connect():
tcp_connect_init():
tp->mss_cache = min(mtu, tp->rx_opt.mss_clamp)
tcp_send_syn_data():
tp->rx_opt.mss_clamp = tp->advmss
After recent fixes to ICMPv6 PTB handling we started dropping
PMTU updates higher than tp->mss_cache. Because of the stale
tp->mss_cache value PMTU updates during TFO are always dropped.
Thanks to Wei for helping zero in on the problem and the fix!
Fixes: c7bb4b89033b ("ipv6: tcp: drop silly ICMPv6 packet too big messages")
Reported-by: Andre Nash <alnash@fb.com>
Reported-by: Neil Spring <ntspring@fb.com>
Reviewed-by: Wei Wang <weiwan@google.com>
Acked-by: Yuchung Cheng <ycheng@google.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Link: https://lore.kernel.org/r/20220321165957.1769954-1-kuba@kernel.org
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit 0caf6d9922192dd1afa8dc2131abfb4df1443b9f ]
When a netlink message is received, netlink_recvmsg() fills in the address
of the sender. One of the fields is the 32-bit bitfield nl_groups, which
carries the multicast group on which the message was received. The least
significant bit corresponds to group 1, and therefore the highest group
that the field can represent is 32. Above that, the UB sanitizer flags the
out-of-bounds shift attempts.
Which bits end up being set in such case is implementation defined, but
it's either going to be a wrong non-zero value, or zero, which is at least
not misleading. Make the latter choice deterministic by always setting to 0
for higher-numbered multicast groups.
To get information about membership in groups >= 32, userspace is expected
to use nl_pktinfo control messages[0], which are enabled by NETLINK_PKTINFO
socket option.
[0] https://lwn.net/Articles/147608/
The way to trigger this issue is e.g. through monitoring the BRVLAN group:
# bridge monitor vlan &
# ip link add name br type bridge
Which produces the following citation:
UBSAN: shift-out-of-bounds in net/netlink/af_netlink.c:162:19
shift exponent 32 is too large for 32-bit type 'int'
Fixes: f7fa9b10edbb ("[NETLINK]: Support dynamic number of multicast groups per netlink family")
Signed-off-by: Petr Machata <petrm@nvidia.com>
Reviewed-by: Ido Schimmel <idosch@nvidia.com>
Link: https://lore.kernel.org/r/2bef6aabf201d1fc16cca139a744700cff9dcb04.1647527635.git.petrm@nvidia.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 3848e96edf4788f772d83990022fa7023a233d83 upstream.
xprt_destory() claims XPRT_LOCKED and then calls del_timer_sync().
Both xprt_unlock_connect() and xprt_release() call
->release_xprt()
which drops XPRT_LOCKED and *then* xprt_schedule_autodisconnect()
which calls mod_timer().
This may result in mod_timer() being called *after* del_timer_sync().
When this happens, the timer may fire long after the xprt has been freed,
and run_timer_softirq() will probably crash.
The pairing of ->release_xprt() and xprt_schedule_autodisconnect() is
always called under ->transport_lock. So if we take ->transport_lock to
call del_timer_sync(), we can be sure that mod_timer() will run first
(if it runs at all).
Cc: stable@vger.kernel.org
Signed-off-by: NeilBrown <neilb@suse.de>
Signed-off-by: Trond Myklebust <trond.myklebust@hammerspace.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
pfkey_register
[ Upstream commit 9a564bccb78a76740ea9d75a259942df8143d02c ]
Add __GFP_ZERO flag for compose_sadb_supported in function pfkey_register
to initialize the buffer of supp_skb to fix a kernel-info-leak issue.
1) Function pfkey_register calls compose_sadb_supported to request
a sk_buff. 2) compose_sadb_supported calls alloc_sbk to allocate
a sk_buff, but it doesn't zero it. 3) If auth_len is greater 0, then
compose_sadb_supported treats the memory as a struct sadb_supported and
begins to initialize. But it just initializes the field sadb_supported_len
and field sadb_supported_exttype without field sadb_supported_reserved.
Reported-by: TCS Robot <tcs_robot@tencent.com>
Signed-off-by: Haimin Zhang <tcs_kernel@tencent.com>
Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit 4ff2980b6bd2aa6b4ded3ce3b7c0ccfab29980af ]
in tunnel mode, if outer interface(ipv4) is less, it is easily to let
inner IPV6 mtu be less than 1280. If so, a Packet Too Big ICMPV6 message
is received. When send again, packets are fragmentized with 1280, they
are still rejected with ICMPV6(Packet Too Big) by xfrmi_xmit2().
According to RFC4213 Section3.2.2:
if (IPv4 path MTU - 20) is less than 1280
if packet is larger than 1280 bytes
Send ICMPv6 "packet too big" with MTU=1280
Drop packet
else
Encapsulate but do not set the Don't Fragment
flag in the IPv4 header. The resulting IPv4
packet might be fragmented by the IPv4 layer
on the encapsulator or by some router along
the IPv4 path.
endif
else
if packet is larger than (IPv4 path MTU - 20)
Send ICMPv6 "packet too big" with
MTU = (IPv4 path MTU - 20).
Drop packet.
else
Encapsulate and set the Don't Fragment flag
in the IPv4 header.
endif
endif
Packets should be fragmentized with ipv4 outer interface, so change it.
After it is fragemtized with ipv4, there will be double fragmenation.
No.48 & No.51 are ipv6 fragment packets, No.48 is double fragmentized,
then tunneled with IPv4(No.49& No.50), which obey spec. And received peer
cannot decrypt it rightly.
48 2002::10 2002::11 1296(length) IPv6 fragment (off=0 more=y ident=0xa20da5bc nxt=50)
49 0x0000 (0) 2002::10 2002::11 1304 IPv6 fragment (off=0 more=y ident=0x7448042c nxt=44)
50 0x0000 (0) 2002::10 2002::11 200 ESP (SPI=0x00035000)
51 2002::10 2002::11 180 Echo (ping) request
52 0x56dc 2002::10 2002::11 248 IPv6 fragment (off=1232 more=n ident=0xa20da5bc nxt=50)
xfrm6_noneed_fragment has fixed above issues. Finally, it acted like below:
1 0x6206 192.168.1.138 192.168.1.1 1316 Fragmented IP protocol (proto=Encap Security Payload 50, off=0, ID=6206) [Reassembled in #2]
2 0x6206 2002::10 2002::11 88 IPv6 fragment (off=0 more=y ident=0x1f440778 nxt=50)
3 0x0000 2002::10 2002::11 248 ICMPv6 Echo (ping) request
Signed-off-by: Lina Wang <lina.wang@mediatek.com>
Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 2d327a79ee176930dc72c131a970c891d367c1dc upstream.
My latest patch, attempting to fix the refcount leak in a minimal
way turned out to add a new bug.
Whenever the bind operation fails before we attempt to grab
a reference count on a device, we might release the device refcount
of a prior successful bind() operation.
syzbot was not happy about this [1].
Note to stable teams:
Make sure commit b37a46683739 ("netdevice: add the case if dev is NULL")
is already present in your trees.
[1]
general protection fault, probably for non-canonical address 0xdffffc0000000070: 0000 [#1] PREEMPT SMP KASAN
KASAN: null-ptr-deref in range [0x0000000000000380-0x0000000000000387]
CPU: 1 PID: 3590 Comm: syz-executor361 Tainted: G W 5.17.0-syzkaller-04796-g169e77764adc #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
RIP: 0010:llc_ui_connect+0x400/0xcb0 net/llc/af_llc.c:500
Code: 80 3c 02 00 0f 85 fc 07 00 00 4c 8b a5 38 05 00 00 48 b8 00 00 00 00 00 fc ff df 49 8d bc 24 80 03 00 00 48 89 fa 48 c1 ea 03 <80> 3c 02 00 0f 85 a9 07 00 00 49 8b b4 24 80 03 00 00 4c 89 f2 48
RSP: 0018:ffffc900038cfcc0 EFLAGS: 00010202
RAX: dffffc0000000000 RBX: ffff8880756eb600 RCX: 0000000000000000
RDX: 0000000000000070 RSI: ffffc900038cfe3e RDI: 0000000000000380
RBP: ffff888015ee5000 R08: 0000000000000001 R09: ffff888015ee5535
R10: ffffed1002bdcaa6 R11: 0000000000000000 R12: 0000000000000000
R13: ffffc900038cfe37 R14: ffffc900038cfe38 R15: ffff888015ee5012
FS: 0000555555acd300(0000) GS:ffff8880b9d00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000020000280 CR3: 0000000077db6000 CR4: 00000000003506e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
__sys_connect_file+0x155/0x1a0 net/socket.c:1900
__sys_connect+0x161/0x190 net/socket.c:1917
__do_sys_connect net/socket.c:1927 [inline]
__se_sys_connect net/socket.c:1924 [inline]
__x64_sys_connect+0x6f/0xb0 net/socket.c:1924
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0xae
RIP: 0033:0x7f016acb90b9
Code: 28 c3 e8 2a 14 00 00 66 2e 0f 1f 84 00 00 00 00 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 c0 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007ffd417947f8 EFLAGS: 00000246 ORIG_RAX: 000000000000002a
RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f016acb90b9
RDX: 0000000000000010 RSI: 0000000020000140 RDI: 0000000000000003
RBP: 00007f016ac7d0a0 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 00007f016ac7d130
R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000
</TASK>
Modules linked in:
---[ end trace 0000000000000000 ]---
RIP: 0010:llc_ui_connect+0x400/0xcb0 net/llc/af_llc.c:500
Fixes: 764f4eb6846f ("llc: fix netdevice reference leaks in llc_ui_bind()")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: syzbot <syzkaller@googlegroups.com>
Cc: 赵子轩 <beraphin@gmail.com>
Cc: Stoyan Manolov <smanolov@suse.de>
Link: https://lore.kernel.org/r/20220325035827.360418-1-eric.dumazet@gmail.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 4a2d4496e15ea5bb5c8e83b94ca8ca7fb045e7d3 upstream.
While commit 6a01afcf8468 ("mac80211: mesh: Free ie data when leaving
mesh") fixed a memory leak on mesh leave / teardown it introduced a
potential memory corruption caused by a double free when rejoining the
mesh:
ieee80211_leave_mesh()
-> kfree(sdata->u.mesh.ie);
...
ieee80211_join_mesh()
-> copy_mesh_setup()
-> old_ie = ifmsh->ie;
-> kfree(old_ie);
This double free / kernel panics can be reproduced by using wpa_supplicant
with an encrypted mesh (if set up without encryption via "iw" then
ifmsh->ie is always NULL, which avoids this issue). And then calling:
$ iw dev mesh0 mesh leave
$ iw dev mesh0 mesh join my-mesh
Note that typically these commands are not used / working when using
wpa_supplicant. And it seems that wpa_supplicant or wpa_cli are going
through a NETDEV_DOWN/NETDEV_UP cycle between a mesh leave and mesh join
where the NETDEV_UP resets the mesh.ie to NULL via a memcpy of
default_mesh_setup in cfg80211_netdev_notifier_call, which then avoids
the memory corruption, too.
The issue was first observed in an application which was not using
wpa_supplicant but "Senf" instead, which implements its own calls to
nl80211.
Fixing the issue by removing the kfree()'ing of the mesh IE in the mesh
join function and leaving it solely up to the mesh leave to free the
mesh IE.
Cc: stable@vger.kernel.org
Fixes: 6a01afcf8468 ("mac80211: mesh: Free ie data when leaving mesh")
Reported-by: Matthias Kretschmer <mathias.kretschmer@fit.fraunhofer.de>
Signed-off-by: Linus Lüssing <ll@simonwunderlich.de>
Tested-by: Mathias Kretschmer <mathias.kretschmer@fit.fraunhofer.de>
Link: https://lore.kernel.org/r/20220310183513.28589-1-linus.luessing@c0d3.blue
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
| |
commit 4c905f6740a365464e91467aa50916555b28213d upstream.
Initialize registers to avoid stack leak into userspace.
Fixes: 96518518cc41 ("netfilter: add nftables")
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 764f4eb6846f5475f1244767d24d25dd86528a4a upstream.
Whenever llc_ui_bind() and/or llc_ui_autobind()
took a reference on a netdevice but subsequently fail,
they must properly release their reference
or risk the infamous message from unregister_netdevice()
at device dismantle.
unregister_netdevice: waiting for eth0 to become free. Usage count = 3
Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: 赵子轩 <beraphin@gmail.com>
Reported-by: Stoyan Manolov <smanolov@suse.de>
Link: https://lore.kernel.org/r/20220323004147.1990845-1-eric.dumazet@gmail.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit ebe48d368e97d007bfeb76fcb065d6cfc4c96645 upstream.
The maximum message size that can be send is bigger than
the maximum site that skb_page_frag_refill can allocate.
So it is possible to write beyond the allocated buffer.
Fix this by doing a fallback to COW in that case.
v2:
Avoid get get_order() costs as suggested by Linus Torvalds.
Fixes: cac2661c53f3 ("esp4: Avoid skb_cow_data whenever possible")
Fixes: 03e2a30f6a27 ("esp6: Avoid skb_cow_data whenever possible")
Reported-by: valis <sec@valis.email>
Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
Signed-off-by: Vaibhav Rustagi <vaibhavrustagi@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 5e34af4142ffe68f01c8a9acae83300f8911e20c upstream.
Syzbot found a kernel bug in the ipv6 stack:
LINK: https://syzkaller.appspot.com/bug?id=205d6f11d72329ab8d62a610c44c5e7e25415580
The reproducer triggers it by sending a crafted message via sendmmsg()
call, which triggers skb_over_panic, and crashes the kernel:
skbuff: skb_over_panic: text:ffffffff84647fb4 len:65575 put:65575
head:ffff888109ff0000 data:ffff888109ff0088 tail:0x100af end:0xfec0
dev:<NULL>
Update the check that prevents an invalid packet with MTU equal
to the fregment header size to eat up all the space for payload.
The reproducer can be found here:
LINK: https://syzkaller.appspot.com/text?tag=ReproC&x=1648c83fb00000
Reported-by: syzbot+e223cf47ec8ae183f2a0@syzkaller.appspotmail.com
Signed-off-by: Tadeusz Struk <tadeusz.struk@linaro.org>
Acked-by: Willem de Bruijn <willemb@google.com>
Link: https://lore.kernel.org/r/20220310232538.1044947-1-tadeusz.struk@linaro.org
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit cb0b430b4e3acc88c85e0ad2e25f2a25a5765262 ]
The device_node pointer is returned by of_parse_phandle() with refcount
incremented. We should use of_node_put() on it when done.
Fixes: 6d4e5c570c2d ("net: dsa: get port type at parse time")
Signed-off-by: Miaoqian Lin <linmq006@gmail.com>
Link: https://lore.kernel.org/r/20220316082602.10785-1-linmq006@gmail.com
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit c700525fcc06b05adfea78039de02628af79e07a ]
syzbot found that when an AF_PACKET socket is using PACKET_COPY_THRESH
and mmap operations, tpacket_rcv() is queueing skbs with
garbage in skb->cb[], triggering a too big copy [1]
Presumably, users of af_packet using mmap() already gets correct
metadata from the mapped buffer, we can simply make sure
to clear 12 bytes that might be copied to user space later.
BUG: KASAN: stack-out-of-bounds in memcpy include/linux/fortify-string.h:225 [inline]
BUG: KASAN: stack-out-of-bounds in packet_recvmsg+0x56c/0x1150 net/packet/af_packet.c:3489
Write of size 165 at addr ffffc9000385fb78 by task syz-executor233/3631
CPU: 0 PID: 3631 Comm: syz-executor233 Not tainted 5.17.0-rc7-syzkaller-02396-g0b3660695e80 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106
print_address_description.constprop.0.cold+0xf/0x336 mm/kasan/report.c:255
__kasan_report mm/kasan/report.c:442 [inline]
kasan_report.cold+0x83/0xdf mm/kasan/report.c:459
check_region_inline mm/kasan/generic.c:183 [inline]
kasan_check_range+0x13d/0x180 mm/kasan/generic.c:189
memcpy+0x39/0x60 mm/kasan/shadow.c:66
memcpy include/linux/fortify-string.h:225 [inline]
packet_recvmsg+0x56c/0x1150 net/packet/af_packet.c:3489
sock_recvmsg_nosec net/socket.c:948 [inline]
sock_recvmsg net/socket.c:966 [inline]
sock_recvmsg net/socket.c:962 [inline]
____sys_recvmsg+0x2c4/0x600 net/socket.c:2632
___sys_recvmsg+0x127/0x200 net/socket.c:2674
__sys_recvmsg+0xe2/0x1a0 net/socket.c:2704
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0xae
RIP: 0033:0x7fdfd5954c29
Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 41 15 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 c0 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007ffcf8e71e48 EFLAGS: 00000246 ORIG_RAX: 000000000000002f
RAX: ffffffffffffffda RBX: 0000000000000003 RCX: 00007fdfd5954c29
RDX: 0000000000000000 RSI: 0000000020000500 RDI: 0000000000000005
RBP: 0000000000000000 R08: 000000000000000d R09: 000000000000000d
R10: 0000000000000000 R11: 0000000000000246 R12: 00007ffcf8e71e60
R13: 00000000000f4240 R14: 000000000000c1ff R15: 00007ffcf8e71e54
</TASK>
addr ffffc9000385fb78 is located in stack of task syz-executor233/3631 at offset 32 in frame:
____sys_recvmsg+0x0/0x600 include/linux/uio.h:246
this frame has 1 object:
[32, 160) 'addr'
Memory state around the buggy address:
ffffc9000385fa80: 00 04 f3 f3 f3 f3 f3 00 00 00 00 00 00 00 00 00
ffffc9000385fb00: 00 00 00 00 00 00 00 00 00 00 00 f1 f1 f1 f1 00
>ffffc9000385fb80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 f3
^
ffffc9000385fc00: f3 f3 f3 00 00 00 00 00 00 00 00 00 00 00 00 f1
ffffc9000385fc80: f1 f1 f1 00 f2 f2 f2 00 f2 f2 f2 00 00 00 00 00
==================================================================
Fixes: 0fb375fb9b93 ("[AF_PACKET]: Allow for > 8 byte hardware addresses.")
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reported-by: syzbot <syzkaller@googlegroups.com>
Link: https://lore.kernel.org/r/20220312232958.3535620-1-eric.dumazet@gmail.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit e3d5ea2c011ecb16fb94c56a659364e6b30fac94 ]
If recv_actor() returns an incorrect value, tcp_read_sock()
might loop forever.
Instead, issue a one time warning and make sure to make progress.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Acked-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Jakub Sitnicki <jakub@cloudflare.com>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/r/20220302161723.3910001-2-eric.dumazet@gmail.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit e50b88c4f076242358b66ddb67482b96947438f2 ]
The wdev channel information is updated post channel switch only for
the station mode and not for the other modes. Due to this, the P2P client
still points to the old value though it moved to the new channel
when the channel change is induced from the P2P GO.
Update the bss channel after CSA channel switch completion for P2P client
interface as well.
Signed-off-by: Sreeramya Soratkal <quic_ssramya@quicinc.com>
Link: https://lore.kernel.org/r/1646114600-31479-1-git-send-email-quic_ssramya@quicinc.com
Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit e03c3bba351f99ad932e8f06baa9da1afc418e02 ]
xfrm_migrate cannot handle address family change of an xfrm_state.
The symptons are the xfrm_state will be migrated to a wrong address,
and sending as well as receiving packets wil be broken.
This commit fixes it by breaking the original xfrm_state_clone
method into two steps so as to update the props.family before
running xfrm_init_state. As the result, xfrm_state's inner mode,
outer mode, type and IP header length in xfrm_state_migrate can
be updated with the new address family.
Tested with additions to Android's kernel unit test suite:
https://android-review.googlesource.com/c/kernel/tests/+/1885354
Signed-off-by: Yan Yan <evitayan@google.com>
Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit c1aca3080e382886e2e58e809787441984a2f89b ]
This patch enables distinguishing SAs and SPs based on if_id during
the xfrm_migrate flow. This ensures support for xfrm interfaces
throughout the SA/SP lifecycle.
When there are multiple existing SPs with the same direction,
the same xfrm_selector and different endpoint addresses,
xfrm_migrate might fail with ENODATA.
Specifically, the code path for performing xfrm_migrate is:
Stage 1: find policy to migrate with
xfrm_migrate_policy_find(sel, dir, type, net)
Stage 2: find and update state(s) with
xfrm_migrate_state_find(mp, net)
Stage 3: update endpoint address(es) of template(s) with
xfrm_policy_migrate(pol, m, num_migrate)
Currently "Stage 1" always returns the first xfrm_policy that
matches, and "Stage 3" looks for the xfrm_tmpl that matches the
old endpoint address. Thus if there are multiple xfrm_policy
with same selector, direction, type and net, "Stage 1" might
rertun a wrong xfrm_policy and "Stage 3" will fail with ENODATA
because it cannot find a xfrm_tmpl with the matching endpoint
address.
The fix is to allow userspace to pass an if_id and add if_id
to the matching rule in Stage 1 and Stage 2 since if_id is a
unique ID for xfrm_policy and xfrm_state. For compatibility,
if_id will only be checked if the attribute is set.
Tested with additions to Android's kernel unit test suite:
https://android-review.googlesource.com/c/kernel/tests/+/1668886
Signed-off-by: Yan Yan <evitayan@google.com>
Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 438b95a7c98f77d51cbf4db021f41b602d750a3f upstream.
Currently INIT_ACK chunk in non-cookie_echoed state is processed in
sctp_sf_discard_chunk() to send an abort with the existent asoc's
vtag if the chunk length is not valid. But the vtag in the chunk's
sctphdr is not verified, which may be exploited by one to cook a
malicious chunk to terminal a SCTP asoc.
sctp_sf_discard_chunk() also is called in many other places to send
an abort, and most of those have this problem. This patch is to fix
it by sending abort with the existent asoc's vtag only if the vtag
from the chunk's sctphdr is verified in sctp_sf_discard_chunk().
Note on sctp_sf_do_9_1_abort() and sctp_sf_shutdown_pending_abort(),
the chunk length has been verified before sctp_sf_discard_chunk(),
so replace it with sctp_sf_discard(). On sctp_sf_do_asconf_ack() and
sctp_sf_do_asconf(), move the sctp_chunk_length_valid check ahead of
sctp_sf_discard_chunk(), then replace it with sctp_sf_discard().
Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2")
Signed-off-by: Xin Long <lucien.xin@gmail.com>
Acked-by: Marcelo Ricardo Leitner <marcelo.leitner@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Ovidiu Panait <ovidiu.panait@windriver.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit eae5783908042a762c24e1bd11876edb91d314b1 upstream.
This patch fixes the problems below:
1. In non-shutdown_ack_sent states: in sctp_sf_do_5_1B_init() and
sctp_sf_do_5_2_2_dupinit():
chunk length check should be done before any checks that may cause
to send abort, as making packet for abort will access the init_tag
from init_hdr in sctp_ootb_pkt_new().
2. In shutdown_ack_sent state: in sctp_sf_do_9_2_reshutack():
The same checks as does in sctp_sf_do_5_2_2_dupinit() is needed
for sctp_sf_do_9_2_reshutack().
Fixes: 1da177e4c3f4 ("Linux-2.6.12-rc2")
Signed-off-by: Xin Long <lucien.xin@gmail.com>
Acked-by: Marcelo Ricardo Leitner <marcelo.leitner@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Ovidiu Panait <ovidiu.panait@windriver.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|