| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 1c32ca5dc6d00012f0c964e5fdd7042fcc71efb1 upstream.
When deciding whether a guest has to be stopped we check whether this
is a private interrupt or not. Unfortunately, there's an off-by-one bug
here, and we fail to recognize a whole range of interrupts as being
global (GICv2 SPIs 32-63).
Fix the condition from > to be >=.
Cc: stable@vger.kernel.org
Fixes: abd7229626b93 ("KVM: arm/arm64: Simplify active_change_prepare and plug race")
Reported-by: André Przywara <andre.przywara@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 8c58be34494b7f1b2adb446e2d8beeb90e5de65b upstream.
Saving/restoring an unmapped collection is a valid scenario. For
example this happens if a MAPTI command was sent, featuring an
unmapped collection. At the moment the CTE fails to be restored.
Only compare against the number of online vcpus if the rdist
base is set.
Fixes: ea1ad53e1e31a ("KVM: arm64: vgic-its: Collection table save/restore")
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Zenghui Yu <yuzenghui@huawei.com>
Link: https://lore.kernel.org/r/20191213094237.19627-1-eric.auger@redhat.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit ca185b260951d3b55108c0b95e188682d8a507b7 upstream.
It's possible that two LPIs locate in the same "byte_offset" but target
two different vcpus, where their pending status are indicated by two
different pending tables. In such a scenario, using last_byte_offset
optimization will lead KVM relying on the wrong pending table entry.
Let us use last_ptr instead, which can be treated as a byte index into
a pending table and also, can be vcpu specific.
Fixes: 280771252c1b ("KVM: arm64: vgic-v3: KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES")
Cc: stable@vger.kernel.org
Signed-off-by: Zenghui Yu <yuzenghui@huawei.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Acked-by: Eric Auger <eric.auger@redhat.com>
Link: https://lore.kernel.org/r/20191029071919.177-4-yuzenghui@huawei.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit 82e40f558de566fdee214bec68096bbd5e64a6a4 ]
A guest is not allowed to inject a SGI (or clear its pending state)
by writing to GICD_ISPENDR0 (resp. GICD_ICPENDR0), as these bits are
defined as WI (as per ARM IHI 0048B 4.3.7 and 4.3.8).
Make sure we correctly emulate the architecture.
Fixes: 96b298000db4 ("KVM: arm/arm64: vgic-new: Add PENDING registers handlers")
Cc: stable@vger.kernel.org # 4.7+
Reported-by: Andre Przywara <andre.przywara@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit d4a8061a7c5f7c27a2dc002ee4cb89b3e6637e44 ]
If the ap_list is longer than 256 entries, merge_final() in list_sort()
will call the comparison callback with the same element twice, causing
a deadlock in vgic_irq_cmp().
Fix it by returning early when irqa == irqb.
Cc: stable@vger.kernel.org # 4.7+
Fixes: 8e4447457965 ("KVM: arm/arm64: vgic-new: Add IRQ sorting")
Signed-off-by: Zenghui Yu <yuzenghui@huawei.com>
Signed-off-by: Heyi Guo <guoheyi@huawei.com>
[maz: massaged commit log and patch, added Fixes and Cc-stable]
Signed-off-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 5eeaf10eec394b28fad2c58f1f5c3a5da0e87d1c upstream.
Since commit commit 328e56647944 ("KVM: arm/arm64: vgic: Defer
touching GICH_VMCR to vcpu_load/put"), we leave ICH_VMCR_EL2 (or
its GICv2 equivalent) loaded as long as we can, only syncing it
back when we're scheduled out.
There is a small snag with that though: kvm_vgic_vcpu_pending_irq(),
which is indirectly called from kvm_vcpu_check_block(), needs to
evaluate the guest's view of ICC_PMR_EL1. At the point were we
call kvm_vcpu_check_block(), the vcpu is still loaded, and whatever
changes to PMR is not visible in memory until we do a vcpu_put().
Things go really south if the guest does the following:
mov x0, #0 // or any small value masking interrupts
msr ICC_PMR_EL1, x0
[vcpu preempted, then rescheduled, VMCR sampled]
mov x0, #ff // allow all interrupts
msr ICC_PMR_EL1, x0
wfi // traps to EL2, so samping of VMCR
[interrupt arrives just after WFI]
Here, the hypervisor's view of PMR is zero, while the guest has enabled
its interrupts. kvm_vgic_vcpu_pending_irq() will then say that no
interrupts are pending (despite an interrupt being received) and we'll
block for no reason. If the guest doesn't have a periodic interrupt
firing once it has blocked, it will stay there forever.
To avoid this unfortuante situation, let's resync VMCR from
kvm_arch_vcpu_blocking(), ensuring that a following kvm_vcpu_check_block()
will observe the latest value of PMR.
This has been found by booting an arm64 Linux guest with the pseudo NMI
feature, and thus using interrupt priorities to mask interrupts instead
of the usual PSTATE masking.
Cc: stable@vger.kernel.org # 4.12
Fixes: 328e56647944 ("KVM: arm/arm64: vgic: Defer touching GICH_VMCR to vcpu_load/put")
Signed-off-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit 4729ec8c1e1145234aeeebad5d96d77f4ccbb00a ]
kvm_device->destroy() seems to be supposed to free its kvm_device
struct, but vgic_its_destroy() is not currently doing this,
resulting in a memory leak, resulting in kmemleak reports such as
the following:
unreferenced object 0xffff800aeddfe280 (size 128):
comm "qemu-system-aar", pid 13799, jiffies 4299827317 (age 1569.844s)
[...]
backtrace:
[<00000000a08b80e2>] kmem_cache_alloc+0x178/0x208
[<00000000dcad2bd3>] kvm_vm_ioctl+0x350/0xbc0
Fix it.
Cc: Andre Przywara <andre.przywara@arm.com>
Fixes: 1085fdc68c60 ("KVM: arm64: vgic-its: Introduce new KVM ITS device")
Signed-off-by: Dave Martin <Dave.Martin@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit 7494cec6cb3ba7385a6a223b81906384f15aae34 ]
Calling kvm_is_visible_gfn() implies that we're parsing the memslots,
and doing this without the srcu lock is frown upon:
[12704.164532] =============================
[12704.164544] WARNING: suspicious RCU usage
[12704.164560] 5.1.0-rc1-00008-g600025238f51-dirty #16 Tainted: G W
[12704.164573] -----------------------------
[12704.164589] ./include/linux/kvm_host.h:605 suspicious rcu_dereference_check() usage!
[12704.164602] other info that might help us debug this:
[12704.164616] rcu_scheduler_active = 2, debug_locks = 1
[12704.164631] 6 locks held by qemu-system-aar/13968:
[12704.164644] #0: 000000007ebdae4f (&kvm->lock){+.+.}, at: vgic_its_set_attr+0x244/0x3a0
[12704.164691] #1: 000000007d751022 (&its->its_lock){+.+.}, at: vgic_its_set_attr+0x250/0x3a0
[12704.164726] #2: 00000000219d2706 (&vcpu->mutex){+.+.}, at: lock_all_vcpus+0x64/0xd0
[12704.164761] #3: 00000000a760aecd (&vcpu->mutex){+.+.}, at: lock_all_vcpus+0x64/0xd0
[12704.164794] #4: 000000000ef8e31d (&vcpu->mutex){+.+.}, at: lock_all_vcpus+0x64/0xd0
[12704.164827] #5: 000000007a872093 (&vcpu->mutex){+.+.}, at: lock_all_vcpus+0x64/0xd0
[12704.164861] stack backtrace:
[12704.164878] CPU: 2 PID: 13968 Comm: qemu-system-aar Tainted: G W 5.1.0-rc1-00008-g600025238f51-dirty #16
[12704.164887] Hardware name: rockchip evb_rk3399/evb_rk3399, BIOS 2019.04-rc3-00124-g2feec69fb1 03/15/2019
[12704.164896] Call trace:
[12704.164910] dump_backtrace+0x0/0x138
[12704.164920] show_stack+0x24/0x30
[12704.164934] dump_stack+0xbc/0x104
[12704.164946] lockdep_rcu_suspicious+0xcc/0x110
[12704.164958] gfn_to_memslot+0x174/0x190
[12704.164969] kvm_is_visible_gfn+0x28/0x70
[12704.164980] vgic_its_check_id.isra.0+0xec/0x1e8
[12704.164991] vgic_its_save_tables_v0+0x1ac/0x330
[12704.165001] vgic_its_set_attr+0x298/0x3a0
[12704.165012] kvm_device_ioctl_attr+0x9c/0xd8
[12704.165022] kvm_device_ioctl+0x8c/0xf8
[12704.165035] do_vfs_ioctl+0xc8/0x960
[12704.165045] ksys_ioctl+0x8c/0xa0
[12704.165055] __arm64_sys_ioctl+0x28/0x38
[12704.165067] el0_svc_common+0xd8/0x138
[12704.165078] el0_svc_handler+0x38/0x78
[12704.165089] el0_svc+0x8/0xc
Make sure the lock is taken when doing this.
Fixes: bf308242ab98 ("KVM: arm/arm64: VGIC/ITS: protect kvm_read_guest() calls with SRCU lock")
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Sasha Levin (Microsoft) <sashal@kernel.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
PPIs/SGIs
commit 107352a24900fb458152b92a4e72fbdc83fd5510 upstream.
We currently only halt the guest when a vCPU messes with the active
state of an SPI. This is perfectly fine for GICv2, but isn't enough
for GICv3, where all vCPUs can access the state of any other vCPU.
Let's broaden the condition to include any GICv3 interrupt that
has an active state (i.e. all but LPIs).
Cc: stable@vger.kernel.org
Reviewed-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit 1d47191de7e15900f8fbfe7cccd7c6e1c2d7c31a ]
The vgic_init function can race with kvm_arch_vcpu_create() which does
not hold kvm_lock() and we therefore have no synchronization primitives
to ensure we're doing the right thing.
As the user is trying to initialize or run the VM while at the same time
creating more VCPUs, we just have to refuse to initialize the VGIC in
this case rather than silently failing with a broken VCPU.
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit 6b8b9a48545e08345b8ff77c9fd51b1aebdbefb3 ]
It's possible for userspace to control n. Sanitize n when using it as an
array index, to inhibit the potential spectre-v1 write gadget.
Note that while it appears that n must be bound to the interval [0,3]
due to the way it is extracted from addr, we cannot guarantee that
compiler transformations (and/or future refactoring) will ensure this is
the case, and given this is a slow path it's better to always perform
the masking.
Found by smatch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Christoffer Dall <christoffer.dall@arm.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: kvmarm@lists.cs.columbia.edu
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit ba56bc3a0786992755e6804fbcbdc60ef6cfc24c ]
When booting a 64 KB pages kernel on a ACPI GICv3 system that
implements support for v2 emulation, the following warning is
produced
GICV size 0x2000 not a multiple of page size 0x10000
and support for v2 emulation is disabled, preventing GICv2 VMs
from being able to run on such hosts.
The reason is that vgic_v3_probe() performs a sanity check on the
size of the window (it should be a multiple of the page size),
while the ACPI MADT parsing code hardcodes the size of the window
to 8 KB. This makes sense, considering that ACPI does not bother
to describe the size in the first place, under the assumption that
platforms implementing ACPI will follow the architecture and not
put anything else in the same 64 KB window.
So let's just drop the sanity check altogether, and assume that
the window is at least 64 KB in size.
Fixes: 909777324588 ("KVM: arm/arm64: vgic-new: vgic_init: implement kvm_vgic_hyp_init")
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit 5e1ca5e23b167987d5b6d8b08f2d5b7dd2d13f49 ]
It's possible for userspace to control n. Sanitize n when using it as an
array index.
Note that while it appears that n must be bound to the interval [0,3]
due to the way it is extracted from addr, we cannot guarantee that
compiler transformations (and/or future refactoring) will ensure this is
the case, and given this is a slow path it's better to always perform
the masking.
Found by smatch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@arm.com>
Acked-by: Marc Zyngier <marc.zyngier@arm.com>
Cc: kvmarm@lists.cs.columbia.edu
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit 62b06f8f429cd233e4e2e7bbd21081ad60c9018f ]
Our irq_is_pending() helper function accesses multiple members of the
vgic_irq struct, so we need to hold the lock when calling it.
Add that requirement as a comment to the definition and take the lock
around the call in vgic_mmio_read_pending(), where we were missing it
before.
Fixes: 96b298000db4 ("KVM: arm/arm64: vgic-new: Add PENDING registers handlers")
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Sasha Levin <alexander.levin@microsoft.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit bf308242ab98b5d1648c3663e753556bef9bec01 upstream.
kvm_read_guest() will eventually look up in kvm_memslots(), which requires
either to hold the kvm->slots_lock or to be inside a kvm->srcu critical
section.
In contrast to x86 and s390 we don't take the SRCU lock on every guest
exit, so we have to do it individually for each kvm_read_guest() call.
Provide a wrapper which does that and use that everywhere.
Note that ending the SRCU critical section before returning from the
kvm_read_guest() wrapper is safe, because the data has been *copied*, so
we don't need to rely on valid references to the memslot anymore.
Cc: Stable <stable@vger.kernel.org> # 4.8+
Reported-by: Jan Glauber <jan.glauber@caviumnetworks.com>
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 711702b57cc3c50b84bd648de0f1ca0a378805be upstream.
kvm_read_guest() will eventually look up in kvm_memslots(), which requires
either to hold the kvm->slots_lock or to be inside a kvm->srcu critical
section.
In contrast to x86 and s390 we don't take the SRCU lock on every guest
exit, so we have to do it individually for each kvm_read_guest() call.
Use the newly introduced wrapper for that.
Cc: Stable <stable@vger.kernel.org> # 4.12+
Reported-by: Jan Glauber <jan.glauber@caviumnetworks.com>
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Acked-by: Christoffer Dall <christoffer.dall@arm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 7d8b44c54e0c7c8f688e3a07f17e6083f849f01f upstream.
vgic_copy_lpi_list() parses the LPI list and picks LPIs targeting
a given vcpu. We allocate the array containing the intids before taking
the lpi_list_lock, which means we can have an array size that is not
equal to the number of LPIs.
This is particularly obvious when looking at the path coming from
vgic_enable_lpis, which is not a command, and thus can run in parallel
with commands:
vcpu 0: vcpu 1:
vgic_enable_lpis
its_sync_lpi_pending_table
vgic_copy_lpi_list
intids = kmalloc_array(irq_count)
MAPI(lpi targeting vcpu 0)
list_for_each_entry(lpi_list_head)
intids[i++] = irq->intid;
At that stage, we will happily overrun the intids array. Boo. An easy
fix is is to break once the array is full. The MAPI command will update
the config anyway, and we won't miss a thing. We also make sure that
lpi_list_count is read exactly once, so that further updates of that
value will not affect the array bound check.
Cc: stable@vger.kernel.org
Fixes: ccb1d791ab9e ("KVM: arm64: vgic-its: Fix pending table sync")
Reviewed-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 16ca6a607d84bef0129698d8d808f501afd08d43 upstream.
The vgic code is trying to be clever when injecting GICv2 SGIs,
and will happily populate LRs with the same interrupt number if
they come from multiple vcpus (after all, they are distinct
interrupt sources).
Unfortunately, this is against the letter of the architecture,
and the GICv2 architecture spec says "Each valid interrupt stored
in the List registers must have a unique VirtualID for that
virtual CPU interface.". GICv3 has similar (although slightly
ambiguous) restrictions.
This results in guests locking up when using GICv2-on-GICv3, for
example. The obvious fix is to stop trying so hard, and inject
a single vcpu per SGI per guest entry. After all, pending SGIs
with multiple source vcpus are pretty rare, and are mostly seen
in scenario where the physical CPUs are severely overcomitted.
But as we now only inject a single instance of a multi-source SGI per
vcpu entry, we may delay those interrupts for longer than strictly
necessary, and run the risk of injecting lower priority interrupts
in the meantime.
In order to address this, we adopt a three stage strategy:
- If we encounter a multi-source SGI in the AP list while computing
its depth, we force the list to be sorted
- When populating the LRs, we prevent the injection of any interrupt
of lower priority than that of the first multi-source SGI we've
injected.
- Finally, the injection of a multi-source SGI triggers the request
of a maintenance interrupt when there will be no pending interrupt
in the LRs (HCR_NPIE).
At the point where the last pending interrupt in the LRs switches
from Pending to Active, the maintenance interrupt will be delivered,
allowing us to add the remaining SGIs using the same process.
Cc: stable@vger.kernel.org
Fixes: 0919e84c0fc1 ("KVM: arm/arm64: vgic-new: Add IRQ sync/flush framework")
Acked-by: Christoffer Dall <cdall@kernel.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 76600428c3677659e3c3633bb4f2ea302220a275 upstream.
On my GICv3 system, the following is printed to the kernel log at boot:
kvm [1]: 8-bit VMID
kvm [1]: IDMAP page: d20e35000
kvm [1]: HYP VA range: 800000000000:ffffffffffff
kvm [1]: vgic-v2@2c020000
kvm [1]: GIC system register CPU interface enabled
kvm [1]: vgic interrupt IRQ1
kvm [1]: virtual timer IRQ4
kvm [1]: Hyp mode initialized successfully
The KVM IDMAP is a mapping of a statically allocated kernel structure,
and so printing its physical address leaks the physical placement of
the kernel when physical KASLR in effect. So change the kvm_info() to
kvm_debug() to remove it from the log output.
While at it, trim the output a bit more: IRQ numbers can be found in
/proc/interrupts, and the HYP VA and vgic-v2 lines are not highly
informational either.
Cc: <stable@vger.kernel.org>
Acked-by: Will Deacon <will.deacon@arm.com>
Acked-by: Christoffer Dall <cdall@kernel.org>
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
[ Upstream commit 7465894e90e5a47e0e52aa5f1f708653fc40020f ]
vgic_set_owner acquires the irq lock without disabling interrupts,
resulting in a lockdep splat (an interrupt could fire and result
in the same lock being taken if the same virtual irq is to be
injected).
In practice, it is almost impossible to trigger this bug, but
better safe than sorry. Convert the lock acquisition to a
spin_lock_irqsave() and keep lockdep happy.
Reported-by: James Morse <james.morse@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 64afe6e9eb4841f35317da4393de21a047a883b3 upstream.
The current pending table parsing code assumes that we keep the
previous read of the pending bits, but keep that variable in
the current block, making sure it is discarded on each loop.
We end-up using whatever is on the stack. Who knows, it might
just be the right thing...
Fixes: 33d3bc9556a7d ("KVM: arm64: vgic-its: Read initial LPI pending table")
Reported-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 686f294f2f1ae40705283dd413ca1e4c14f20f93 upstream.
We miss a test against NULL after allocation.
Fixes: 6d03a68f8054 ("KVM: arm64: vgic-its: Turn device_id validation into generic ID validation")
Reported-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit ddb4b0102cb9cdd2398d98b3e1e024e08a2f4239 upstream.
The current pending table parsing code assumes that we keep the
previous read of the pending bits, but keep that variable in
the current block, making sure it is discarded on each loop.
We end-up using whatever is on the stack. Who knows, it might
just be the right thing...
Fixes: 280771252c1ba ("KVM: arm64: vgic-v3: KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES")
Reported-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 150009e2c70cc3c6e97f00e7595055765d32fb85 upstream.
Using the size of the structure we're allocating is a good idea
and avoids any surprise... In this case, we're happilly confusing
kvm_kernel_irq_routing_entry and kvm_irq_routing_entry...
Fixes: 95b110ab9a09 ("KVM: arm/arm64: Enable irqchip routing")
Reported-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|\
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
Pull KVM fixes from Paolo Bonzini:
"Fixes for interrupt controller emulation in ARM/ARM64 and x86, plus a
one-liner x86 KVM guest fix"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: x86: Update APICv on APIC reset
KVM: VMX: Do not fully reset PI descriptor on vCPU reset
kvm: Return -ENODEV from update_persistent_clock
KVM: arm/arm64: vgic-its: Check GITS_BASER Valid bit before saving tables
KVM: arm/arm64: vgic-its: Check CBASER/BASER validity before enabling the ITS
KVM: arm/arm64: vgic-its: Fix vgic_its_restore_collection_table returned value
KVM: arm/arm64: vgic-its: Fix return value for device table restore
arm/arm64: kvm: Disable branch profiling in HYP code
arm/arm64: kvm: Move initialization completion message
arm/arm64: KVM: set right LR register value for 32 bit guest when inject abort
KVM: arm64: its: Fix missing dynamic allocation check in scan_its_table
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
At the moment we don't properly check the GITS_BASER<n>.Valid
bit before saving the collection and device tables.
On vgic_its_save_collection_table() we use the GITS_BASER gpa
field whereas the Valid bit should be used.
On vgic_its_save_device_tables() there is no check. This can
cause various bugs, among which a subsequent fault when accessing
the table in guest memory.
Let's systematically check the Valid bit before doing anything.
We also uniformize the code between save and restore.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
The spec says it is UNPREDICTABLE to enable the ITS
if any of the following conditions are true:
- GITS_CBASER.Valid == 0.
- GITS_BASER<n>.Valid == 0, for any GITS_BASER<n> register
where the Type field indicates Device.
- GITS_BASER<n>.Valid == 0, for any GITS_BASER<n> register
where the Type field indicates Interrupt Collection and
GITS_TYPER.HCC == 0.
In that case, let's keep the ITS disabled.
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reported-by: Andre Przywara <andre.przywara@arm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
vgic_its_restore_cte returns +1 if the collection table entry
is valid and properly decoded. As a consequence, if the
collection table is fully filled with valid data that are
decoded without error, vgic_its_restore_collection_table()
returns +1. This is wrong.
Let's return 0 in that case.
Fixes: ea1ad53e1e31a3 (KVM: arm64: vgic-its: Collection table save/restore)
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
If ITT only contains invalid entries, vgic_its_restore_itt
returns 1 and this is considered as an an error in
vgic_its_restore_dte.
Also in case the device table only contains invalid entries,
the table restore fails and this is not correct.
This patch fixes those 2 issues:
- vgic_its_restore_itt now returns <= 0 values. If all
ITEs are invalid, this is considered as successful.
- vgic_its_restore_device_tables also returns <= 0 values.
We also simplify the returned value computation in
handle_l1_dte.
Signed-off-by: wanghaibin <wanghaibin.wang@huawei.com>
Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
We currently allocate an entry dynamically, but we never check if the
allocation actually succeeded. We actually don't need a dynamic
allocation, because we know the maximum size of an ITS table entry, so
we can simply use an allocation on the stack.
Cc: <stable@vger.kernel.org>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
|
|/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When migrating guests around we need to know the active priorities to
ensure functional virtual interrupt prioritization by the GIC.
This commit clarifies the API and how active priorities of interrupts in
different groups are represented, and implements the accessor functions
for the uaccess register range.
We live with a slight layering violation in accessing GICv3 data
structures from vgic-mmio-v2.c, because anything else just adds too much
complexity for us to deal with (it's not like there's a benefit
elsewhere in the code of an intermediate representation as is the case
with the VMCR). We accept this, because while doing v3 processing from
a file named something-v2.c can look strange at first, this really is
specific to dealing with the user space interface for something that
looks like a GICv2.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
|
|
|
|
|
|
|
|
| |
As we are about to access the APRs from the GICv2 uaccess interface,
make this logic generally available.
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
|
|
|
|
|
|
|
|
|
|
|
| |
For unknown reasons, the its_ite data structure carries an "lpi" field
which contains the intid of the LPI. This is an obvious duplication
of the vgic_irq->intid field, so let's fix the only user and remove
the now useless field.
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Andre Przywara <andre.przywara@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
|
|
|
|
|
|
|
|
| |
vgic_debug_seq_ops and file_operations are not supposed to change
at runtime and none of the structures is modified.
Signed-off-by: Arvind Yadav <arvind.yadav.cs@gmail.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
|
|
|
|
|
|
|
|
|
|
|
|
| |
There is a small chance that the compiler could generate separate loads
for the dist->propbaser which could be modified from another CPU. As we
want to make sure we atomically update the entire value, and don't race
with other updates, guarantee that the cmpxchg operation compares
against the original value.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Commit 0e4e82f154e3 ("KVM: arm64: vgic-its: Enable ITS emulation as
a virtual MSI controller") tried to advertise KVM_CAP_MSI_DEVID, but
the code logic was not updating the dist->msis_require_devid field
correctly. If hypervisor tool creates the ITS device after VGIC
initialization then we don't advertise KVM_CAP_MSI_DEVID capability.
Update the field msis_require_devid to true inside vgic_its_create()
to fix the issue.
Fixes: 0e4e82f154e3 ("vgic-its: Enable ITS emulation as a virtual MSI controller")
Signed-off-by: Shanker Donthineni <shankerd@codeaurora.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
|
|
|
|
|
|
|
|
|
|
|
| |
In order to facilitate debug, let's log which class of GICv3 system
registers are trapped.
Tested-by: Alexander Graf <agraf@suse.de>
Acked-by: David Daney <david.daney@cavium.com>
Acked-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
|
|
|
|
|
|
|
|
|
|
|
|
| |
Now that we're able to safely handle common sysreg access, let's
give the user the opportunity to enable it by passing a specific
command-line option (vgic_v3.common_trap).
Tested-by: Alexander Graf <agraf@suse.de>
Acked-by: David Daney <david.daney@cavium.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Some Cavium Thunder CPUs suffer a problem where a KVM guest may
inadvertently cause the host kernel to quit receiving interrupts.
Use the Group-0/1 trapping in order to deal with it.
[maz]: Adapted patch to the Group-0/1 trapping, reworked commit log
Tested-by: Alexander Graf <agraf@suse.de>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: David Daney <david.daney@cavium.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
|
|
|
|
|
|
|
|
|
|
|
| |
Now that we're able to safely handle Group-0 sysreg access, let's
give the user the opportunity to enable it by passing a specific
command-line option (vgic_v3.group0_trap).
Tested-by: Alexander Graf <agraf@suse.de>
Acked-by: David Daney <david.daney@cavium.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In order to be able to trap Group-0 GICv3 system registers, we need to
set ICH_HCR_EL2.TALL0 begore entering the guest. This is conditionnaly
done after having restored the guest's state, and cleared on exit.
Tested-by: Alexander Graf <agraf@suse.de>
Acked-by: David Daney <david.daney@cavium.com>
Acked-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
|
|
|
|
|
|
|
|
|
|
|
|
| |
Now that we're able to safely handle Group-1 sysreg access, let's
give the user the opportunity to enable it by passing a specific
command-line option (vgic_v3.group1_trap).
Tested-by: Alexander Graf <agraf@suse.de>
Acked-by: David Daney <david.daney@cavium.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Acked-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
|
|
|
|
|
|
|
|
|
|
|
|
| |
In order to be able to trap Group-1 GICv3 system registers, we need to
set ICH_HCR_EL2.TALL1 before entering the guest. This is conditionally
done after having restored the guest's state, and cleared on exit.
Tested-by: Alexander Graf <agraf@suse.de>
Acked-by: David Daney <david.daney@cavium.com>
Acked-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In order to start handling guest access to GICv3 system registers,
let's add a hook that will get called when we trap a system register
access. This is gated by a new static key (vgic_v3_cpuif_trap).
Tested-by: Alexander Graf <agraf@suse.de>
Acked-by: David Daney <david.daney@cavium.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
|
|\ |
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
We have been a little loose with our intermediate VMCR representation
where we had a 'ctlr' field, but we failed to differentiate between the
GICv2 GICC_CTLR and ICC_CTLR_EL1 layouts, and therefore ended up mapping
the wrong bits into the individual fields of the ICH_VMCR_EL2 when
emulating a GICv2 on a GICv3 system.
Fix this by using explicit fields for the VMCR bits instead.
Cc: Eric Auger <eric.auger@redhat.com>
Reported-by: wanghaibin <wanghaibin.wang@huawei.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Tested-by: Marc Zyngier <marc.zyngier@arm.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
We were not holding the kvm->slots_lock as required when calling
kvm_io_bus_unregister_dev() as required.
This only affects the error path, but still, let's do our due
diligence.
Reported by: Eric Auger <eric.auger@redhat.com>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
If userspace creates the VCPUs after initializing the VGIC, then we end
up in a situation where we trigger a bug in kvm_vcpu_get_idx(), because
it is called prior to adding the VCPU into the vcpus array on the VM.
There is no tight coupling between the VCPU index and the area of the
redistributor region used for the VCPU, so we can simply ensure that all
creations of redistributors are serialized per VM, and increment an
offset when we successfully add a redistributor.
The vgic_register_redist_iodev() function can be called from two paths:
vgic_redister_all_redist_iodev() which is called via the kvm_vgic_addr()
device attribute handler. This patch already holds the kvm->lock mutex.
The other path is via kvm_vgic_vcpu_init, which is called through a
longer chain from kvm_vm_ioctl_create_vcpu(), which releases the
kvm->lock mutex just before calling kvm_arch_vcpu_create(), so we can
simply take this mutex again later for our purposes.
Fixes: ab6f468c10 ("KVM: arm/arm64: Register iodevs when setting redist base and creating VCPUs")
Signed-off-by: Christoffer Dall <cdall@linaro.org>
Tested-by: Jean-Philippe Brucker <jean-philippe.brucker@arm.com>
Reviewed-by: Eric Auger <eric.auger@redhat.com>
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
When an interrupt is injected with the HW bit set (indicating that
deactivation should be propagated to the physical distributor),
special care must be taken so that we never mark the corresponding
LR with the Active+Pending state (as the pending state is kept in
the physycal distributor).
Cc: stable@vger.kernel.org
Fixes: 59529f69f504 ("KVM: arm/arm64: vgic-new: Add GICv3 world switch backend")
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
Reviewed-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
|