summaryrefslogtreecommitdiffstats
path: root/Documentation/trace/ftrace.txt
blob: 7bd27f0e288008c641c31474341a2dd84ef8bf73 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
		ftrace - Function Tracer
		========================

Copyright 2008 Red Hat Inc.
   Author:   Steven Rostedt <srostedt@redhat.com>
  License:   The GNU Free Documentation License, Version 1.2
               (dual licensed under the GPL v2)
Reviewers:   Elias Oltmanns, Randy Dunlap, Andrew Morton,
	     John Kacur, and David Teigland.

Written for: 2.6.28-rc2

Introduction
------------

Ftrace is an internal tracer designed to help out developers and
designers of systems to find what is going on inside the kernel.
It can be used for debugging or analyzing latencies and
performance issues that take place outside of user-space.

Although ftrace is the function tracer, it also includes an
infrastructure that allows for other types of tracing. Some of
the tracers that are currently in ftrace include a tracer to
trace context switches, the time it takes for a high priority
task to run after it was woken up, the time interrupts are
disabled, and more (ftrace allows for tracer plugins, which
means that the list of tracers can always grow).


The File System
---------------

Ftrace uses the debugfs file system to hold the control files as
well as the files to display output.

To mount the debugfs system:

  # mkdir /debug
  # mount -t debugfs nodev /debug

( Note: it is more common to mount at /sys/kernel/debug, but for
  simplicity this document will use /debug)

That's it! (assuming that you have ftrace configured into your kernel)

After mounting the debugfs, you can see a directory called
"tracing".  This directory contains the control and output files
of ftrace. Here is a list of some of the key files:


 Note: all time values are in microseconds.

  current_tracer:

	This is used to set or display the current tracer
	that is configured.

  available_tracers:

	This holds the different types of tracers that
	have been compiled into the kernel. The
	tracers listed here can be configured by
	echoing their name into current_tracer.

  tracing_enabled:

	This sets or displays whether the current_tracer
	is activated and tracing or not. Echo 0 into this
	file to disable the tracer or 1 to enable it.

  trace:

	This file holds the output of the trace in a human
	readable format (described below).

  latency_trace:

	This file shows the same trace but the information
	is organized more to display possible latencies
	in the system (described below).

  trace_pipe:

	The output is the same as the "trace" file but this
	file is meant to be streamed with live tracing.
	Reads from this file will block until new data
	is retrieved. Unlike the "trace" and "latency_trace"
	files, this file is a consumer. This means reading
	from this file causes sequential reads to display
	more current data. Once data is read from this
	file, it is consumed, and will not be read
	again with a sequential read. The "trace" and
	"latency_trace" files are static, and if the
	tracer is not adding more data, they will display
	the same information every time they are read.

  trace_options:

	This file lets the user control the amount of data
	that is displayed in one of the above output
	files.

  tracing_max_latency:

	Some of the tracers record the max latency.
	For example, the time interrupts are disabled.
	This time is saved in this file. The max trace
	will also be stored, and displayed by either
	"trace" or "latency_trace".  A new max trace will
	only be recorded if the latency is greater than
	the value in this file. (in microseconds)

  buffer_size_kb:

	This sets or displays the number of kilobytes each CPU
	buffer can hold. The tracer buffers are the same size
	for each CPU. The displayed number is the size of the
	CPU buffer and not total size of all buffers. The
	trace buffers are allocated in pages (blocks of memory
	that the kernel uses for allocation, usually 4 KB in size).
	If the last page allocated has room for more bytes
	than requested, the rest of the page will be used,
	making the actual allocation bigger than requested.
	( Note, the size may not be a multiple of the page size
	  due to buffer managment overhead. )

	This can only be updated when the current_tracer
	is set to "nop".

  tracing_cpumask:

	This is a mask that lets the user only trace
	on specified CPUS. The format is a hex string
	representing the CPUS.

  set_ftrace_filter:

	When dynamic ftrace is configured in (see the
	section below "dynamic ftrace"), the code is dynamically
	modified (code text rewrite) to disable calling of the
	function profiler (mcount). This lets tracing be configured
	in with practically no overhead in performance.  This also
	has a side effect of enabling or disabling specific functions
	to be traced. Echoing names of functions into this file
	will limit the trace to only those functions.

  set_ftrace_notrace:

	This has an effect opposite to that of
	set_ftrace_filter. Any function that is added here will not
	be traced. If a function exists in both set_ftrace_filter
	and set_ftrace_notrace,	the function will _not_ be traced.

  set_ftrace_pid:

	Have the function tracer only trace a single thread.

  set_graph_function:

	Set a "trigger" function where tracing should start
	with the function graph tracer (See the section
	"dynamic ftrace" for more details).

  available_filter_functions:

	This lists the functions that ftrace
	has processed and can trace. These are the function
	names that you can pass to "set_ftrace_filter" or
	"set_ftrace_notrace". (See the section "dynamic ftrace"
	below for more details.)


The Tracers
-----------

Here is the list of current tracers that may be configured.

  "function"

	Function call tracer to trace all kernel functions.

  "function_graph"

	Similar to the function tracer except that the
	function tracer probes the functions on their entry
	whereas the function graph tracer traces on both entry
	and exit of the functions. It then provides the ability
	to draw a graph of function calls similar to C code
	source.

  "sched_switch"

	Traces the context switches and wakeups between tasks.

  "irqsoff"

	Traces the areas that disable interrupts and saves
	the trace with the longest max latency.
	See tracing_max_latency. When a new max is recorded,
	it replaces the old trace. It is best to view this
	trace via the latency_trace file.

  "preemptoff"

	Similar to irqsoff but traces and records the amount of
	time for which preemption is disabled.

  "preemptirqsoff"

	Similar to irqsoff and preemptoff, but traces and
	records the largest time for which irqs and/or preemption
	is disabled.

  "wakeup"

	Traces and records the max latency that it takes for
	the highest priority task to get scheduled after
	it has been woken up.

  "hw-branch-tracer"

	Uses the BTS CPU feature on x86 CPUs to traces all
	branches executed.

  "nop"

	This is the "trace nothing" tracer. To remove all
	tracers from tracing simply echo "nop" into
	current_tracer.


Examples of using the tracer
----------------------------

Here are typical examples of using the tracers when controlling
them only with the debugfs interface (without using any
user-land utilities).

Output format:
--------------

Here is an example of the output format of the file "trace"

                             --------
# tracer: function
#
#           TASK-PID   CPU#    TIMESTAMP  FUNCTION
#              | |      |          |         |
            bash-4251  [01] 10152.583854: path_put <-path_walk
            bash-4251  [01] 10152.583855: dput <-path_put
            bash-4251  [01] 10152.583855: _atomic_dec_and_lock <-dput
                             --------

A header is printed with the tracer name that is represented by
the trace. In this case the tracer is "function". Then a header
showing the format. Task name "bash", the task PID "4251", the
CPU that it was running on "01", the timestamp in <secs>.<usecs>
format, the function name that was traced "path_put" and the
parent function that called this function "path_walk". The
timestamp is the time at which the function was entered.

The sched_switch tracer also includes tracing of task wakeups
and context switches.

     ksoftirqd/1-7     [01]  1453.070013:      7:115:R   +  2916:115:S
     ksoftirqd/1-7     [01]  1453.070013:      7:115:R   +    10:115:S
     ksoftirqd/1-7     [01]  1453.070013:      7:115:R ==>    10:115:R
        events/1-10    [01]  1453.070013:     10:115:S ==>  2916:115:R
     kondemand/1-2916  [01]  1453.070013:   2916:115:S ==>     7:115:R
     ksoftirqd/1-7     [01]  1453.070013:      7:115:S ==>     0:140:R

Wake ups are represented by a "+" and the context switches are
shown as "==>".  The format is:

 Context switches:

       Previous task              Next Task

  <pid>:<prio>:<state>  ==>  <pid>:<prio>:<state>

 Wake ups:

       Current task               Task waking up

  <pid>:<prio>:<state>    +  <pid>:<prio>:<state>

The prio is the internal kernel priority, which is the inverse
of the priority that is usually displayed by user-space tools.
Zero represents the highest priority (99). Prio 100 starts the
"nice" priorities with 100 being equal to nice -20 and 139 being
nice 19. The prio "140" is reserved for the idle task which is
the lowest priority thread (pid 0).


Latency trace format
--------------------

For traces that display latency times, the latency_trace file
gives somewhat more information to see why a latency happened.
Here is a typical trace.

# tracer: irqsoff
#
irqsoff latency trace v1.1.5 on 2.6.26-rc8
--------------------------------------------------------------------
 latency: 97 us, #3/3, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
    -----------------
    | task: swapper-0 (uid:0 nice:0 policy:0 rt_prio:0)
    -----------------
 => started at: apic_timer_interrupt
 => ended at:   do_softirq

#                _------=> CPU#
#               / _-----=> irqs-off
#              | / _----=> need-resched
#              || / _---=> hardirq/softirq
#              ||| / _--=> preempt-depth
#              |||| /
#              |||||     delay
#  cmd     pid ||||| time  |   caller
#     \   /    |||||   \   |   /
  <idle>-0     0d..1    0us+: trace_hardirqs_off_thunk (apic_timer_interrupt)
  <idle>-0     0d.s.   97us : __do_softirq (do_softirq)
  <idle>-0     0d.s1   98us : trace_hardirqs_on (do_softirq)


This shows that the current tracer is "irqsoff" tracing the time
for which interrupts were disabled. It gives the trace version
and the version of the kernel upon which this was executed on
(2.6.26-rc8). Then it displays the max latency in microsecs (97
us). The number of trace entries displayed and the total number
recorded (both are three: #3/3). The type of preemption that was
used (PREEMPT). VP, KP, SP, and HP are always zero and are
reserved for later use. #P is the number of online CPUS (#P:2).

The task is the process that was running when the latency
occurred. (swapper pid: 0).

The start and stop (the functions in which the interrupts were
disabled and enabled respectively) that caused the latencies:

  apic_timer_interrupt is where the interrupts were disabled.
  do_softirq is where they were enabled again.

The next lines after the header are the trace itself. The header
explains which is which.

  cmd: The name of the process in the trace.

  pid: The PID of that process.

  CPU#: The CPU which the process was running on.

  irqs-off: 'd' interrupts are disabled. '.' otherwise.
	    Note: If the architecture does not support a way to
		  read the irq flags variable, an 'X' will always
		  be printed here.

  need-resched: 'N' task need_resched is set, '.' otherwise.

  hardirq/softirq:
	'H' - hard irq occurred inside a softirq.
	'h' - hard irq is running
	's' - soft irq is running
	'.' - normal context.

  preempt-depth: The level of preempt_disabled

The above is mostly meaningful for kernel developers.

  time: This differs from the trace file output. The trace file output
	includes an absolute timestamp. The timestamp used by the
	latency_trace file is relative to the start of the trace.

  delay: This is just to help catch your eye a bit better. And
	 needs to be fixed to be only relative to the same CPU.
	 The marks are determined by the difference between this
	 current trace and the next trace.
	  '!' - greater than preempt_mark_thresh (default 100)
	  '+' - greater than 1 microsecond
	  ' ' - less than or equal to 1 microsecond.

  The rest is the same as the 'trace' file.


trace_options
-------------

The trace_options file is used to control what gets printed in
the trace output. To see what is available, simply cat the file:

  cat /debug/tracing/trace_options
  print-parent nosym-offset nosym-addr noverbose noraw nohex nobin \
  noblock nostacktrace nosched-tree nouserstacktrace nosym-userobj

To disable one of the options, echo in the option prepended with
"no".

  echo noprint-parent > /debug/tracing/trace_options

To enable an option, leave off the "no".

  echo sym-offset > /debug/tracing/trace_options

Here are the available options:

  print-parent - On function traces, display the calling (parent)
		 function as well as the function being traced.

  print-parent:
   bash-4000  [01]  1477.606694: simple_strtoul <-strict_strtoul

  noprint-parent:
   bash-4000  [01]  1477.606694: simple_strtoul


  sym-offset - Display not only the function name, but also the
	       offset in the function. For example, instead of
	       seeing just "ktime_get", you will see
	       "ktime_get+0xb/0x20".

  sym-offset:
   bash-4000  [01]  1477.606694: simple_strtoul+0x6/0xa0

  sym-addr - this will also display the function address as well
	     as the function name.

  sym-addr:
   bash-4000  [01]  1477.606694: simple_strtoul <c0339346>

  verbose - This deals with the latency_trace file.

    bash  4000 1 0 00000000 00010a95 [58127d26] 1720.415ms \
    (+0.000ms): simple_strtoul (strict_strtoul)

  raw - This will display raw numbers. This option is best for
	use with user applications that can translate the raw
	numbers better than having it done in the kernel.

  hex - Similar to raw, but the numbers will be in a hexadecimal
	format.

  bin - This will print out the formats in raw binary.

  block - TBD (needs update)

  stacktrace - This is one of the options that changes the trace
	       itself. When a trace is recorded, so is the stack
	       of functions. This allows for back traces of
	       trace sites.

  userstacktrace - This option changes the trace. It records a
		   stacktrace of the current userspace thread.

  sym-userobj - when user stacktrace are enabled, look up which
		object the address belongs to, and print a
		relative address. This is especially useful when
		ASLR is on, otherwise you don't get a chance to
		resolve the address to object/file/line after
		the app is no longer running

		The lookup is performed when you read
		trace,trace_pipe,latency_trace. Example:

		a.out-1623  [000] 40874.465068: /root/a.out[+0x480] <-/root/a.out[+0
x494] <- /root/a.out[+0x4a8] <- /lib/libc-2.7.so[+0x1e1a6]

  sched-tree - trace all tasks that are on the runqueue, at
	       every scheduling event. Will add overhead if
	       there's a lot of tasks running at once.


sched_switch
------------

This tracer simply records schedule switches. Here is an example
of how to use it.

 # echo sched_switch > /debug/tracing/current_tracer
 # echo 1 > /debug/tracing/tracing_enabled
 # sleep 1
 # echo 0 > /debug/tracing/tracing_enabled
 # cat /debug/tracing/trace

# tracer: sched_switch
#
#           TASK-PID   CPU#    TIMESTAMP  FUNCTION
#              | |      |          |         |
            bash-3997  [01]   240.132281:   3997:120:R   +  4055:120:R
            bash-3997  [01]   240.132284:   3997:120:R ==>  4055:120:R
           sleep-4055  [01]   240.132371:   4055:120:S ==>  3997:120:R
            bash-3997  [01]   240.132454:   3997:120:R   +  4055:120:S
            bash-3997  [01]   240.132457:   3997:120:R ==>  4055:120:R
           sleep-4055  [01]   240.132460:   4055:120:D ==>  3997:120:R
            bash-3997  [01]   240.132463:   3997:120:R   +  4055:120:D
            bash-3997  [01]   240.132465:   3997:120:R ==>  4055:120:R
          <idle>-0     [00]   240.132589:      0:140:R   +     4:115:S
          <idle>-0     [00]   240.132591:      0:140:R ==>     4:115:R
     ksoftirqd/0-4     [00]   240.132595:      4:115:S ==>     0:140:R
          <idle>-0     [00]   240.132598:      0:140:R   +     4:115:S
          <idle>-0     [00]   240.132599:      0:140:R ==>     4:115:R
     ksoftirqd/0-4     [00]   240.132603:      4:115:S ==>     0:140:R
           sleep-4055  [01]   240.133058:   4055:120:S ==>  3997:120:R
 [...]


As we have discussed previously about this format, the header
shows the name of the trace and points to the options. The
"FUNCTION" is a misnomer since here it represents the wake ups
and context switches.

The sched_switch file only lists the wake ups (represented with
'+') and context switches ('==>') with the previous task or
current task first followed by the next task or task waking up.
The format for both of these is PID:KERNEL-PRIO:TASK-STATE.
Remember that the KERNEL-PRIO is the inverse of the actual
priority with zero (0) being the highest priority and the nice
values starting at 100 (nice -20). Below is a quick chart to map
the kernel priority to user land priorities.

   Kernel Space                     User Space
 ===============================================================
   0(high) to  98(low)     user RT priority 99(high) to 1(low)
                           with SCHED_RR or SCHED_FIFO
 ---------------------------------------------------------------
  99                       sched_priority is not used in scheduling
                           decisions(it must be specified as 0)
 ---------------------------------------------------------------
 100(high) to 139(low)     user nice -20(high) to 19(low)
 ---------------------------------------------------------------
 140                       idle task priority
 ---------------------------------------------------------------

The task states are:

 R - running : wants to run, may not actually be running
 S - sleep   : process is waiting to be woken up (handles signals)
 D - disk sleep (uninterruptible sleep) : process must be woken up
					(ignores signals)
 T - stopped : process suspended
 t - traced  : process is being traced (with something like gdb)
 Z - zombie  : process waiting to be cleaned up
 X - unknown


ftrace_enabled
--------------

The following tracers (listed below) give different output
depending on whether or not the sysctl ftrace_enabled is set. To
set ftrace_enabled, one can either use the sysctl function or
set it via the proc file system interface.

  sysctl kernel.ftrace_enabled=1

 or

  echo 1 > /proc/sys/kernel/ftrace_enabled

To disable ftrace_enabled simply replace the '1' with '0' in the
above commands.

When ftrace_enabled is set the tracers will also record the
functions that are within the trace. The descriptions of the
tracers will also show an example with ftrace enabled.


irqsoff
-------

When interrupts are disabled, the CPU can not react to any other
external event (besides NMIs and SMIs). This prevents the timer
interrupt from triggering or the mouse interrupt from letting
the kernel know of a new mouse event. The result is a latency
with the reaction time.

The irqsoff tracer tracks the time for which interrupts are
disabled. When a new maximum latency is hit, the tracer saves
the trace leading up to that latency point so that every time a
new maximum is reached, the old saved trace is discarded and the
new trace is saved.

To reset the maximum, echo 0 into tracing_max_latency. Here is
an example:

 # echo irqsoff > /debug/tracing/current_tracer
 # echo 0 > /debug/tracing/tracing_max_latency
 # echo 1 > /debug/tracing/tracing_enabled
 # ls -ltr
 [...]
 # echo 0 > /debug/tracing/tracing_enabled
 # cat /debug/tracing/latency_trace
# tracer: irqsoff
#
irqsoff latency trace v1.1.5 on 2.6.26
--------------------------------------------------------------------
 latency: 12 us, #3/3, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
    -----------------
    | task: bash-3730 (uid:0 nice:0 policy:0 rt_prio:0)
    -----------------
 => started at: sys_setpgid
 => ended at:   sys_setpgid

#                _------=> CPU#
#               / _-----=> irqs-off
#              | / _----=> need-resched
#              || / _---=> hardirq/softirq
#              ||| / _--=> preempt-depth
#              |||| /
#              |||||     delay
#  cmd     pid ||||| time  |   caller
#     \   /    |||||   \   |   /
    bash-3730  1d...    0us : _write_lock_irq (sys_setpgid)
    bash-3730  1d..1    1us+: _write_unlock_irq (sys_setpgid)
    bash-3730  1d..2   14us : trace_hardirqs_on (sys_setpgid)


Here we see that that we had a latency of 12 microsecs (which is
very good). The _write_lock_irq in sys_setpgid disabled
interrupts. The difference between the 12 and the displayed
timestamp 14us occurred because the clock was incremented
between the time of recording the max latency and the time of
recording the function that had that latency.

Note the above example had ftrace_enabled not set. If we set the
ftrace_enabled, we get a much larger output:

# tracer: irqsoff
#
irqsoff latency trace v1.1.5 on 2.6.26-rc8
--------------------------------------------------------------------
 latency: 50 us, #101/101, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
    -----------------
    | task: ls-4339 (uid:0 nice:0 policy:0 rt_prio:0)
    -----------------
 => started at: __alloc_pages_internal
 => ended at:   __alloc_pages_internal

#                _------=> CPU#
#               / _-----=> irqs-off
#              | / _----=> need-resched
#              || / _---=> hardirq/softirq
#              ||| / _--=> preempt-depth
#              |||| /
#              |||||     delay
#  cmd     pid ||||| time  |   caller
#     \   /    |||||   \   |   /
      ls-4339  0...1    0us+: get_page_from_freelist (__alloc_pages_internal)
      ls-4339  0d..1    3us : rmqueue_bulk (get_page_from_freelist)
      ls-4339  0d..1    3us : _spin_lock (rmqueue_bulk)
      ls-4339  0d..1    4us : add_preempt_count (_spin_lock)
      ls-4339  0d..2    4us : __rmqueue (rmqueue_bulk)
      ls-4339  0d..2    5us : __rmqueue_smallest (__rmqueue)
      ls-4339  0d..2    5us : __mod_zone_page_state (__rmqueue_smallest)
      ls-4339  0d..2    6us : __rmqueue (rmqueue_bulk)
      ls-4339  0d..2    6us : __rmqueue_smallest (__rmqueue)
      ls-4339  0d..2    7us : __mod_zone_page_state (__rmqueue_smallest)
      ls-4339  0d..2    7us : __rmqueue (rmqueue_bulk)
      ls-4339  0d..2    8us : __rmqueue_smallest (__rmqueue)
[...]
      ls-4339  0d..2   46us : __rmqueue_smallest (__rmqueue)
      ls-4339  0d..2   47us : __mod_zone_page_state (__rmqueue_smallest)
      ls-4339  0d..2   47us : __rmqueue (rmqueue_bulk)
      ls-4339  0d..2   48us : __rmqueue_smallest (__rmqueue)
      ls-4339  0d..2   48us : __mod_zone_page_state (__rmqueue_smallest)
      ls-4339  0d..2   49us : _spin_unlock (rmqueue_bulk)
      ls-4339  0d..2   49us : sub_preempt_count (_spin_unlock)
      ls-4339  0d..1   50us : get_page_from_freelist (__alloc_pages_internal)
      ls-4339  0d..2   51us : trace_hardirqs_on (__alloc_pages_internal)



Here we traced a 50 microsecond latency. But we also see all the
functions that were called during that time. Note that by
enabling function tracing, we incur an added overhead. This
overhead may extend the latency times. But nevertheless, this
trace has provided some very helpful debugging information.


preemptoff
----------

When preemption is disabled, we may be able to receive
interrupts but the task cannot be preempted and a higher
priority task must wait for preemption to be enabled again
before it can preempt a lower priority task.

The preemptoff tracer traces the places that disable preemption.
Like the irqsoff tracer, it records the maximum latency for
which preemption was disabled. The control of preemptoff tracer
is much like the irqsoff tracer.

 # echo preemptoff > /debug/tracing/current_tracer
 # echo 0 > /debug/tracing/tracing_max_latency
 # echo 1 > /debug/tracing/tracing_enabled
 # ls -ltr
 [...]
 # echo 0 > /debug/tracing/tracing_enabled
 # cat /debug/tracing/latency_trace
# tracer: preemptoff
#
preemptoff latency trace v1.1.5 on 2.6.26-rc8
--------------------------------------------------------------------
 latency: 29 us, #3/3, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
    -----------------
    | task: sshd-4261 (uid:0 nice:0 policy:0 rt_prio:0)
    -----------------
 => started at: do_IRQ
 => ended at:   __do_softirq

#                _------=> CPU#
#               / _-----=> irqs-off
#              | / _----=> need-resched
#              || / _---=> hardirq/softirq
#              ||| / _--=> preempt-depth
#              |||| /
#              |||||     delay
#  cmd     pid ||||| time  |   caller
#     \   /    |||||   \   |   /
    sshd-4261  0d.h.    0us+: irq_enter (do_IRQ)
    sshd-4261  0d.s.   29us : _local_bh_enable (__do_softirq)
    sshd-4261  0d.s1   30us : trace_preempt_on (__do_softirq)


This has some more changes. Preemption was disabled when an
interrupt came in (notice the 'h'), and was enabled while doing
a softirq. (notice the 's'). But we also see that interrupts
have been disabled when entering the preempt off section and
leaving it (the 'd'). We do not know if interrupts were enabled
in the mean time.

# tracer: preemptoff
#
preemptoff latency trace v1.1.5 on 2.6.26-rc8
--------------------------------------------------------------------
 latency: 63 us, #87/87, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
    -----------------
    | task: sshd-4261 (uid:0 nice:0 policy:0 rt_prio:0)
    -----------------
 => started at: remove_wait_queue
 => ended at:   __do_softirq

#                _------=> CPU#
#               / _-----=> irqs-off
#              | / _----=> need-resched
#              || / _---=> hardirq/softirq
#              ||| / _--=> preempt-depth
#              |||| /
#              |||||     delay
#  cmd     pid ||||| time  |   caller
#     \   /    |||||   \   |   /
    sshd-4261  0d..1    0us : _spin_lock_irqsave (remove_wait_queue)
    sshd-4261  0d..1    1us : _spin_unlock_irqrestore (remove_wait_queue)
    sshd-4261  0d..1    2us : do_IRQ (common_interrupt)
    sshd-4261  0d..1    2us : irq_enter (do_IRQ)
    sshd-4261  0d..1    2us : idle_cpu (irq_enter)
    sshd-4261  0d..1    3us : add_preempt_count (irq_enter)
    sshd-4261  0d.h1    3us : idle_cpu (irq_enter)
    sshd-4261  0d.h.    4us : handle_fasteoi_irq (do_IRQ)
[...]
    sshd-4261  0d.h.   12us : add_preempt_count (_spin_lock)
    sshd-4261  0d.h1   12us : ack_ioapic_quirk_irq (handle_fasteoi_irq)
    sshd-4261  0d.h1   13us : move_native_irq (ack_ioapic_quirk_irq)
    sshd-4261  0d.h1   13us : _spin_unlock (handle_fasteoi_irq)
    sshd-4261  0d.h1   14us : sub_preempt_count (_spin_unlock)
    sshd-4261  0d.h1   14us : irq_exit (do_IRQ)
    sshd-4261  0d.h1   15us : sub_preempt_count (irq_exit)
    sshd-4261  0d..2   15us : do_softirq (irq_exit)
    sshd-4261  0d...   15us : __do_softirq (do_softirq)
    sshd-4261  0d...   16us : __local_bh_disable (__do_softirq)
    sshd-4261  0d...   16us+: add_preempt_count (__local_bh_disable)
    sshd-4261  0d.s4   20us : add_preempt_count (__local_bh_disable)
    sshd-4261  0d.s4   21us : sub_preempt_count (local_bh_enable)
    sshd-4261  0d.s5   21us : sub_preempt_count (local_bh_enable)
[...]
    sshd-4261  0d.s6   41us : add_preempt_count (__local_bh_disable)
    sshd-4261  0d.s6   42us : sub_preempt_count (local_bh_enable)
    sshd-4261  0d.s7   42us : sub_preempt_count (local_bh_enable)
    sshd-4261  0d.s5   43us : add_preempt_count (__local_bh_disable)
    sshd-4261  0d.s5   43us : sub_preempt_count (local_bh_enable_ip)
    sshd-4261  0d.s6   44us : sub_preempt_count (local_bh_enable_ip)
    sshd-4261  0d.s5   44us : add_preempt_count (__local_bh_disable)
    sshd-4261  0d.s5   45us : sub_preempt_count (local_bh_enable)
[...]
    sshd-4261  0d.s.   63us : _local_bh_enable (__do_softirq)
    sshd-4261  0d.s1   64us : trace_preempt_on (__do_softirq)


The above is an example of the preemptoff trace with
ftrace_enabled set. Here we see that interrupts were disabled
the entire time. The irq_enter code lets us know that we entered
an interrupt 'h'. Before that, the functions being traced still
show that it is not in an interrupt, but we can see from the
functions themselves that this is not the case.

Notice that __do_softirq when called does not have a
preempt_count. It may seem that we missed a preempt enabling.
What really happened is that the preempt count is held on the
thread's stack and we switched to the softirq stack (4K stacks
in effect). The code does not copy the preempt count, but
because interrupts are disabled, we do not need to worry about
it. Having a tracer like this is good for letting people know
what really happens inside the kernel.


preemptirqsoff
--------------

Knowing the locations that have interrupts disabled or
preemption disabled for the longest times is helpful. But
sometimes we would like to know when either preemption and/or
interrupts are disabled.

Consider the following code:

    local_irq_disable();
    call_function_with_irqs_off();
    preempt_disable();
    call_function_with_irqs_and_preemption_off();
    local_irq_enable();
    call_function_with_preemption_off();
    preempt_enable();

The irqsoff tracer will record the total length of
call_function_with_irqs_off() and
call_function_with_irqs_and_preemption_off().

The preemptoff tracer will record the total length of
call_function_with_irqs_and_preemption_off() and
call_function_with_preemption_off().

But neither will trace the time that interrupts and/or
preemption is disabled. This total time is the time that we can
not schedule. To record this time, use the preemptirqsoff
tracer.

Again, using this trace is much like the irqsoff and preemptoff
tracers.

 # echo preemptirqsoff > /debug/tracing/current_tracer
 # echo 0 > /debug/tracing/tracing_max_latency
 # echo 1 > /debug/tracing/tracing_enabled
 # ls -ltr
 [...]
 # echo 0 > /debug/tracing/tracing_enabled
 # cat /debug/tracing/latency_trace
# tracer: preemptirqsoff
#
preemptirqsoff latency trace v1.1.5 on 2.6.26-rc8
--------------------------------------------------------------------
 latency: 293 us, #3/3, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
    -----------------
    | task: ls-4860 (uid:0 nice:0 policy:0 rt_prio:0)
    -----------------
 => started at: apic_timer_interrupt
 => ended at:   __do_softirq

#                _------=> CPU#
#               / _-----=> irqs-off
#              | / _----=> need-resched
#              || / _---=> hardirq/softirq
#              ||| / _--=> preempt-depth
#              |||| /
#              |||||     delay
#  cmd     pid ||||| time  |   caller
#     \   /    |||||   \   |   /
      ls-4860  0d...    0us!: trace_hardirqs_off_thunk (apic_timer_interrupt)
      ls-4860  0d.s.  294us : _local_bh_enable (__do_softirq)
      ls-4860  0d.s1  294us : trace_preempt_on (__do_softirq)



The trace_hardirqs_off_thunk is called from assembly on x86 when
interrupts are disabled in the assembly code. Without the
function tracing, we do not know if interrupts were enabled
within the preemption points. We do see that it started with
preemption enabled.

Here is a trace with ftrace_enabled set:


# tracer: preemptirqsoff
#
preemptirqsoff latency trace v1.1.5 on 2.6.26-rc8
--------------------------------------------------------------------
 latency: 105 us, #183/183, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
    -----------------
    | task: sshd-4261 (uid:0 nice:0 policy:0 rt_prio:0)
    -----------------
 => started at: write_chan
 => ended at:   __do_softirq

#                _------=> CPU#
#               / _-----=> irqs-off
#              | / _----=> need-resched
#              || / _---=> hardirq/softirq
#              ||| / _--=> preempt-depth
#              |||| /
#              |||||     delay
#  cmd     pid ||||| time  |   caller
#     \   /    |||||   \   |   /
      ls-4473  0.N..    0us : preempt_schedule (write_chan)
      ls-4473  0dN.1    1us : _spin_lock (schedule)
      ls-4473  0dN.1    2us : add_preempt_count (_spin_lock)
      ls-4473  0d..2    2us : put_prev_task_fair (schedule)
[...]
      ls-4473  0d..2   13us : set_normalized_timespec (ktime_get_ts)
      ls-4473  0d..2   13us : __switch_to (schedule)
    sshd-4261  0d..2   14us : finish_task_switch (schedule)
    sshd-4261  0d..2   14us : _spin_unlock_irq (finish_task_switch)
    sshd-4261  0d..1   15us : add_preempt_count (_spin_lock_irqsave)
    sshd-4261  0d..2   16us : _spin_unlock_irqrestore (hrtick_set)
    sshd-4261  0d..2   16us : do_IRQ (common_interrupt)
    sshd-4261  0d..2   17us : irq_enter (do_IRQ)
    sshd-4261  0d..2   17us : idle_cpu (irq_enter)
    sshd-4261  0d..2   18us : add_preempt_count (irq_enter)
    sshd-4261  0d.h2   18us : idle_cpu (irq_enter)
    sshd-4261  0d.h.   18us : handle_fasteoi_irq (do_IRQ)
    sshd-4261  0d.h.   19us : _spin_lock (handle_fasteoi_irq)
    sshd-4261  0d.h.   19us : add_preempt_count (_spin_lock)
    sshd-4261  0d.h1   20us : _spin_unlock (handle_fasteoi_irq)
    sshd-4261  0d.h1   20us : sub_preempt_count (_spin_unlock)
[...]
    sshd-4261  0d.h1   28us : _spin_unlock (handle_fasteoi_irq)
    sshd-4261  0d.h1   29us : sub_preempt_count (_spin_unlock)
    sshd-4261  0d.h2   29us : irq_exit (do_IRQ)
    sshd-4261  0d.h2   29us : sub_preempt_count (irq_exit)
    sshd-4261  0d..3   30us : do_softirq (irq_exit)
    sshd-4261  0d...   30us : __do_softirq (do_softirq)
    sshd-4261  0d...   31us : __local_bh_disable (__do_softirq)
    sshd-4261  0d...   31us+: add_preempt_count (__local_bh_disable)
    sshd-4261  0d.s4   34us : add_preempt_count (__local_bh_disable)
[...]
    sshd-4261  0d.s3   43us : sub_preempt_count (local_bh_enable_ip)
    sshd-4261  0d.s4   44us : sub_preempt_count (local_bh_enable_ip)
    sshd-4261  0d.s3   44us : smp_apic_timer_interrupt (apic_timer_interrupt)
    sshd-4261  0d.s3   45us : irq_enter (smp_apic_timer_interrupt)
    sshd-4261  0d.s3   45us : idle_cpu (irq_enter)
    sshd-4261  0d.s3   46us : add_preempt_count (irq_enter)
    sshd-4261  0d.H3   46us : idle_cpu (irq_enter)
    sshd-4261  0d.H3   47us : hrtimer_interrupt (smp_apic_timer_interrupt)
    sshd-4261  0d.H3   47us : ktime_get (hrtimer_interrupt)
[...]
    sshd-4261  0d.H3   81us : tick_program_event (hrtimer_interrupt)
    sshd-4261  0d.H3   82us : ktime_get (tick_program_event)
    sshd-4261  0d.H3   82us : ktime_get_ts (ktime_get)
    sshd-4261  0d.H3   83us : getnstimeofday (ktime_get_ts)
    sshd-4261  0d.H3   83us : set_normalized_timespec (ktime_get_ts)
    sshd-4261  0d.H3   84us : clockevents_program_event (tick_program_event)
    sshd-4261  0d.H3   84us : lapic_next_event (clockevents_program_event)
    sshd-4261  0d.H3   85us : irq_exit (smp_apic_timer_interrupt)
    sshd-4261  0d.H3   85us : sub_preempt_count (irq_exit)
    sshd-4261  0d.s4   86us : sub_preempt_count (irq_exit)
    sshd-4261  0d.s3   86us : add_preempt_count (__local_bh_disable)
[...]
    sshd-4261  0d.s1   98us : sub_preempt_count (net_rx_action)
    sshd-4261  0d.s.   99us : add_preempt_count (_spin_lock_irq)
    sshd-4261  0d.s1   99us+: _spin_unlock_irq (run_timer_softirq)
    sshd-4261  0d.s.  104us : _local_bh_enable (__do_softirq)
    sshd-4261  0d.s.  104us : sub_preempt_count (_local_bh_enable)
    sshd-4261  0d.s.  105us : _local_bh_enable (__do_softirq)
    sshd-4261  0d.s1  105us : trace_preempt_on (__do_softirq)


This is a very interesting trace. It started with the preemption
of the ls task. We see that the task had the "need_resched" bit
set via the 'N' in the trace.  Interrupts were disabled before
the spin_lock at the beginning of the trace. We see that a
schedule took place to run sshd.  When the interrupts were
enabled, we took an interrupt. On return from the interrupt
handler, the softirq ran. We took another interrupt while
running the softirq as we see from the capital 'H'.


wakeup
------

In a Real-Time environment it is very important to know the
wakeup time it takes for the highest priority task that is woken
up to the time that it executes. This is also known as "schedule
latency". I stress the point that this is about RT tasks. It is
also important to know the scheduling latency of non-RT tasks,
but the average schedule latency is better for non-RT tasks.
Tools like LatencyTop are more appropriate for such
measurements.

Real-Time environments are interested in the worst case latency.
That is the longest latency it takes for something to happen,
and not the average. We can have a very fast scheduler that may
only have a large latency once in a while, but that would not
work well with Real-Time tasks.  The wakeup tracer was designed
to record the worst case wakeups of RT tasks. Non-RT tasks are
not recorded because the tracer only records one worst case and
tracing non-RT tasks that are unpredictable will overwrite the
worst case latency of RT tasks.

Since this tracer only deals with RT tasks, we will run this
slightly differently than we did with the previous tracers.
Instead of performing an 'ls', we will run 'sleep 1' under
'chrt' which changes the priority of the task.

 # echo wakeup > /debug/tracing/current_tracer
 # echo 0 > /debug/tracing/tracing_max_latency
 # echo 1 > /debug/tracing/tracing_enabled
 # chrt -f 5 sleep 1
 # echo 0 > /debug/tracing/tracing_enabled
 # cat /debug/tracing/latency_trace
# tracer: wakeup
#
wakeup latency trace v1.1.5 on 2.6.26-rc8
--------------------------------------------------------------------
 latency: 4 us, #2/2, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
    -----------------
    | task: sleep-4901 (uid:0 nice:0 policy:1 rt_prio:5)
    -----------------

#                _------=> CPU#
#               / _-----=> irqs-off
#              | / _----=> need-resched
#              || / _---=> hardirq/softirq
#              ||| / _--=> preempt-depth
#              |||| /
#              |||||     delay
#  cmd     pid ||||| time  |   caller
#     \   /    |||||   \   |   /
  <idle>-0     1d.h4    0us+: try_to_wake_up (wake_up_process)
  <idle>-0     1d..4    4us : schedule (cpu_idle)


Running this on an idle system, we see that it only took 4
microseconds to perform the task switch.  Note, since the trace
marker in the schedule is before the actual "switch", we stop
the tracing when the recorded task is about to schedule in. This
may change if we add a new marker at the end of the scheduler.

Notice that the recorded task is 'sleep' with the PID of 4901
and it has an rt_prio of 5. This priority is user-space priority
and not the internal kernel priority. The policy is 1 for
SCHED_FIFO and 2 for SCHED_RR.

Doing the same with chrt -r 5 and ftrace_enabled set.

# tracer: wakeup
#
wakeup latency trace v1.1.5 on 2.6.26-rc8
--------------------------------------------------------------------
 latency: 50 us, #60/60, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
    -----------------
    | task: sleep-4068 (uid:0 nice:0 policy:2 rt_prio:5)
    -----------------

#                _------=> CPU#
#               / _-----=> irqs-off
#              | / _----=> need-resched
#              || / _---=> hardirq/softirq
#              ||| / _--=> preempt-depth
#              |||| /
#              |||||     delay
#  cmd     pid ||||| time  |   caller
#     \   /    |||||   \   |   /
ksoftirq-7     1d.H3    0us : try_to_wake_up (wake_up_process)
ksoftirq-7     1d.H4    1us : sub_preempt_count (marker_probe_cb)
ksoftirq-7     1d.H3    2us : check_preempt_wakeup (try_to_wake_up)
ksoftirq-7     1d.H3    3us : update_curr (check_preempt_wakeup)
ksoftirq-7     1d.H3    4us : calc_delta_mine (update_curr)
ksoftirq-7     1d.H3    5us : __resched_task (check_preempt_wakeup)
ksoftirq-7     1d.H3    6us : task_wake_up_rt (try_to_wake_up)
ksoftirq-7     1d.H3    7us : _spin_unlock_irqrestore (try_to_wake_up)
[...]
ksoftirq-7     1d.H2   17us : irq_exit (smp_apic_timer_interrupt)
ksoftirq-7     1d.H2   18us : sub_preempt_count (irq_exit)
ksoftirq-7     1d.s3   19us : sub_preempt_count (irq_exit)
ksoftirq-7     1..s2   20us : rcu_process_callbacks (__do_softirq)
[...]
ksoftirq-7     1..s2   26us : __rcu_process_callbacks (rcu_process_callbacks)
ksoftirq-7     1d.s2   27us : _local_bh_enable (__do_softirq)
ksoftirq-7     1d.s2   28us : sub_preempt_count (_local_bh_enable)
ksoftirq-7     1.N.3   29us : sub_preempt_count (ksoftirqd)
ksoftirq-7     1.N.2   30us : _cond_resched (ksoftirqd)
ksoftirq-7     1.N.2   31us : __cond_resched (_cond_resched)
ksoftirq-7     1.N.2   32us : add_preempt_count (__cond_resched)
ksoftirq-7     1.N.2   33us : schedule (__cond_resched)
ksoftirq-7     1.N.2   33us : add_preempt_count (schedule)
ksoftirq-7     1.N.3   34us : hrtick_clear (schedule)
ksoftirq-7     1dN.3   35us : _spin_lock (schedule)
ksoftirq-7     1dN.3   36us : add_preempt_count (_spin_lock)
ksoftirq-7     1d..4   37us : put_prev_task_fair (schedule)
ksoftirq-7     1d..4   38us : update_curr (put_prev_task_fair)
[...]
ksoftirq-7     1d..5   47us : _spin_trylock (tracing_record_cmdline)
ksoftirq-7     1d..5   48us : add_preempt_count (_spin_trylock)
ksoftirq-7     1d..6   49us : _spin_unlock (tracing_record_cmdline)
ksoftirq-7     1d..6   49us : sub_preempt_count (_spin_unlock)
ksoftirq-7     1d..4   50us : schedule (__cond_resched)

The interrupt went off while running ksoftirqd. This task runs
at SCHED_OTHER. Why did not we see the 'N' set early? This may
be a harmless bug with x86_32 and 4K stacks. On x86_32 with 4K
stacks configured, the interrupt and softirq run with their own
stack. Some information is held on the top of the task's stack
(need_resched and preempt_count are both stored there). The
setting of the NEED_RESCHED bit is done directly to the task's
stack, but the reading of the NEED_RESCHED is done by looking at
the current stack, which in this case is the stack for the hard
interrupt. This hides the fact that NEED_RESCHED has been set.
We do not see the 'N' until we switch back to the task's
assigned stack.

function
--------

This tracer is the function tracer. Enabling the function tracer
can be done from the debug file system. Make sure the
ftrace_enabled is set; otherwise this tracer is a nop.

 # sysctl kernel.ftrace_enabled=1
 # echo function > /debug/tracing/current_tracer
 # echo 1 > /debug/tracing/tracing_enabled
 # usleep 1
 # echo 0 > /debug/tracing/tracing_enabled
 # cat /debug/tracing/trace
# tracer: function
#
#           TASK-PID   CPU#    TIMESTAMP  FUNCTION
#              | |      |          |         |
            bash-4003  [00]   123.638713: finish_task_switch <-schedule
            bash-4003  [00]   123.638714: _spin_unlock_irq <-finish_task_switch
            bash-4003  [00]   123.638714: sub_preempt_count <-_spin_unlock_irq
            bash-4003  [00]   123.638715: hrtick_set <-schedule
            bash-4003  [00]   123.638715: _spin_lock_irqsave <-hrtick_set
            bash-4003  [00]   123.638716: add_preempt_count <-_spin_lock_irqsave
            bash-4003  [00]   123.638716: _spin_unlock_irqrestore <-hrtick_set
            bash-4003  [00]   123.638717: sub_preempt_count <-_spin_unlock_irqrestore
            bash-4003  [00]   123.638717: hrtick_clear <-hrtick_set
            bash-4003  [00]   123.638718: sub_preempt_count <-schedule
            bash-4003  [00]   123.638718: sub_preempt_count <-preempt_schedule
            bash-4003  [00]   123.638719: wait_for_completion <-__stop_machine_run
            bash-4003  [00]   123.638719: wait_for_common <-wait_for_completion
            bash-4003  [00]   123.638720: _spin_lock_irq <-wait_for_common
            bash-4003  [00]   123.638720: add_preempt_count <-_spin_lock_irq
[...]


Note: function tracer uses ring buffers to store the above
entries. The newest data may overwrite the oldest data.
Sometimes using echo to stop the trace is not sufficient because
the tracing could have overwritten the data that you wanted to
record. For this reason, it is sometimes better to disable
tracing directly from a program. This allows you to stop the
tracing at the point that you hit the part that you are
interested in. To disable the tracing directly from a C program,
something like following code snippet can be used:

int trace_fd;
[...]
int main(int argc, char *argv[]) {
	[...]
	trace_fd = open("/debug/tracing/tracing_enabled", O_WRONLY);
	[...]
	if (condition_hit()) {
		write(trace_fd, "0", 1);
	}
	[...]
}

Note: Here we hard coded the path name. The debugfs mount is not
guaranteed to be at /debug (and is more commonly at
/sys/kernel/debug). For simple one time traces, the above is
sufficent. For anything else, a search through /proc/mounts may
be needed to find where the debugfs file-system is mounted.


Single thread tracing
---------------------

By writing into /debug/tracing/set_ftrace_pid you can trace a
single thread. For example:

# cat /debug/tracing/set_ftrace_pid
no pid
# echo 3111 > /debug/tracing/set_ftrace_pid
# cat /debug/tracing/set_ftrace_pid
3111
# echo function > /debug/tracing/current_tracer
# cat /debug/tracing/trace | head
 # tracer: function
 #
 #           TASK-PID    CPU#    TIMESTAMP  FUNCTION
 #              | |       |          |         |
     yum-updatesd-3111  [003]  1637.254676: finish_task_switch <-thread_return
     yum-updatesd-3111  [003]  1637.254681: hrtimer_cancel <-schedule_hrtimeout_range
     yum-updatesd-3111  [003]  1637.254682: hrtimer_try_to_cancel <-hrtimer_cancel
     yum-updatesd-3111  [003]  1637.254683: lock_hrtimer_base <-hrtimer_try_to_cancel
     yum-updatesd-3111  [003]  1637.254685: fget_light <-do_sys_poll
     yum-updatesd-3111  [003]  1637.254686: pipe_poll <-do_sys_poll
# echo -1 > /debug/tracing/set_ftrace_pid
# cat /debug/tracing/trace |head
 # tracer: function
 #
 #           TASK-PID    CPU#    TIMESTAMP  FUNCTION
 #              | |       |          |         |
 ##### CPU 3 buffer started ####
     yum-updatesd-3111  [003]  1701.957688: free_poll_entry <-poll_freewait
     yum-updatesd-3111  [003]  1701.957689: remove_wait_queue <-free_poll_entry
     yum-updatesd-3111  [003]  1701.957691: fput <-free_poll_entry
     yum-updatesd-3111  [003]  1701.957692: audit_syscall_exit <-sysret_audit
     yum-updatesd-3111  [003]  1701.957693: path_put <-audit_syscall_exit

If you want to trace a function when executing, you could use
something like this simple program:

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>

int main (int argc, char **argv)
{
        if (argc < 1)
                exit(-1);

        if (fork() > 0) {
                int fd, ffd;
                char line[64];
                int s;

                ffd = open("/debug/tracing/current_tracer", O_WRONLY);
                if (ffd < 0)
                        exit(-1);
                write(ffd, "nop", 3);

                fd = open("/debug/tracing/set_ftrace_pid", O_WRONLY);
                s = sprintf(line, "%d\n", getpid());
                write(fd, line, s);

                write(ffd, "function", 8);

                close(fd);
                close(ffd);

                execvp(argv[1], argv+1);
        }

        return 0;
}


hw-branch-tracer (x86 only)
---------------------------

This tracer uses the x86 last branch tracing hardware feature to
collect a branch trace on all cpus with relatively low overhead.

The tracer uses a fixed-size circular buffer per cpu and only
traces ring 0 branches. The trace file dumps that buffer in the
following format:

# tracer: hw-branch-tracer
#
# CPU#        TO  <-  FROM
   0  scheduler_tick+0xb5/0x1bf	  <-  task_tick_idle+0x5/0x6
   2  run_posix_cpu_timers+0x2b/0x72a	  <-  run_posix_cpu_timers+0x25/0x72a
   0  scheduler_tick+0x139/0x1bf	  <-  scheduler_tick+0xed/0x1bf
   0  scheduler_tick+0x17c/0x1bf	  <-  scheduler_tick+0x148/0x1bf
   2  run_posix_cpu_timers+0x9e/0x72a	  <-  run_posix_cpu_timers+0x5e/0x72a
   0  scheduler_tick+0x1b6/0x1bf	  <-  scheduler_tick+0x1aa/0x1bf


The tracer may be used to dump the trace for the oops'ing cpu on
a kernel oops into the system log. To enable this,
ftrace_dump_on_oops must be set. To set ftrace_dump_on_oops, one
can either use the sysctl function or set it via the proc system
interface.

  sysctl kernel.ftrace_dump_on_oops=1

or

  echo 1 > /proc/sys/kernel/ftrace_dump_on_oops


Here's an example of such a dump after a null pointer
dereference in a kernel module:

[57848.105921] BUG: unable to handle kernel NULL pointer dereference at 0000000000000000
[57848.106019] IP: [<ffffffffa0000006>] open+0x6/0x14 [oops]
[57848.106019] PGD 2354e9067 PUD 2375e7067 PMD 0
[57848.106019] Oops: 0002 [#1] SMP
[57848.106019] last sysfs file: /sys/devices/pci0000:00/0000:00:1e.0/0000:20:05.0/local_cpus
[57848.106019] Dumping ftrace buffer:
[57848.106019] ---------------------------------
[...]
[57848.106019]    0  chrdev_open+0xe6/0x165	  <-  cdev_put+0x23/0x24
[57848.106019]    0  chrdev_open+0x117/0x165	  <-  chrdev_open+0xfa/0x165
[57848.106019]    0  chrdev_open+0x120/0x165	  <-  chrdev_open+0x11c/0x165
[57848.106019]    0  chrdev_open+0x134/0x165	  <-  chrdev_open+0x12b/0x165
[57848.106019]    0  open+0x0/0x14 [oops]	  <-  chrdev_open+0x144/0x165
[57848.106019]    0  page_fault+0x0/0x30	  <-  open+0x6/0x14 [oops]
[57848.106019]    0  error_entry+0x0/0x5b	  <-  page_fault+0x4/0x30
[57848.106019]    0  error_kernelspace+0x0/0x31	  <-  error_entry+0x59/0x5b
[57848.106019]    0  error_sti+0x0/0x1	  <-  error_kernelspace+0x2d/0x31
[57848.106019]    0  page_fault+0x9/0x30	  <-  error_sti+0x0/0x1
[57848.106019]    0  do_page_fault+0x0/0x881	  <-  page_fault+0x1a/0x30
[...]
[57848.106019]    0  do_page_fault+0x66b/0x881	  <-  is_prefetch+0x1ee/0x1f2
[57848.106019]    0  do_page_fault+0x6e0/0x881	  <-  do_page_fault+0x67a/0x881
[57848.106019]    0  oops_begin+0x0/0x96	  <-  do_page_fault+0x6e0/0x881
[57848.106019]    0  trace_hw_branch_oops+0x0/0x2d	  <-  oops_begin+0x9/0x96
[...]
[57848.106019]    0  ds_suspend_bts+0x2a/0xe3	  <-  ds_suspend_bts+0x1a/0xe3
[57848.106019] ---------------------------------
[57848.106019] CPU 0
[57848.106019] Modules linked in: oops
[57848.106019] Pid: 5542, comm: cat Tainted: G        W  2.6.28 #23
[57848.106019] RIP: 0010:[<ffffffffa0000006>]  [<ffffffffa0000006>] open+0x6/0x14 [oops]
[57848.106019] RSP: 0018:ffff880235457d48  EFLAGS: 00010246
[...]


function graph tracer
---------------------------

This tracer is similar to the function tracer except that it
probes a function on its entry and its exit. This is done by
using a dynamically allocated stack of return addresses in each
task_struct. On function entry the tracer overwrites the return
address of each function traced to set a custom probe. Thus the
original return address is stored on the stack of return address
in the task_struct.

Probing on both ends of a function leads to special features
such as:

- measure of a function's time execution
- having a reliable call stack to draw function calls graph

This tracer is useful in several situations:

- you want to find the reason of a strange kernel behavior and
  need to see what happens in detail on any areas (or specific
  ones).

- you are experiencing weird latencies but it's difficult to
  find its origin.

- you want to find quickly which path is taken by a specific
  function

- you just want to peek inside a working kernel and want to see
  what happens there.

# tracer: function_graph
#
# CPU  DURATION                  FUNCTION CALLS
# |     |   |                     |   |   |   |

 0)               |  sys_open() {
 0)               |    do_sys_open() {
 0)               |      getname() {
 0)               |        kmem_cache_alloc() {
 0)   1.382 us    |          __might_sleep();
 0)   2.478 us    |        }
 0)               |        strncpy_from_user() {
 0)               |          might_fault() {
 0)   1.389 us    |            __might_sleep();
 0)   2.553 us    |          }
 0)   3.807 us    |        }
 0)   7.876 us    |      }
 0)               |      alloc_fd() {
 0)   0.668 us    |        _spin_lock();
 0)   0.570 us    |        expand_files();
 0)   0.586 us    |        _spin_unlock();


There are several columns that can be dynamically
enabled/disabled. You can use every combination of options you
want, depending on your needs.

- The cpu number on which the function executed is default
  enabled.  It is sometimes better to only trace one cpu (see
  tracing_cpu_mask file) or you might sometimes see unordered
  function calls while cpu tracing switch.

	hide: echo nofuncgraph-cpu > /debug/tracing/trace_options
	show: echo funcgraph-cpu > /debug/tracing/trace_options

- The duration (function's time of execution) is displayed on
  the closing bracket line of a function or on the same line
  than the current function in case of a leaf one. It is default
  enabled.

	hide: echo nofuncgraph-duration > /debug/tracing/trace_options
	show: echo funcgraph-duration > /debug/tracing/trace_options

- The overhead field precedes the duration field in case of
  reached duration thresholds.

	hide: echo nofuncgraph-overhead > /debug/tracing/trace_options
	show: echo funcgraph-overhead > /debug/tracing/trace_options
	depends on: funcgraph-duration

  ie:

  0)               |    up_write() {
  0)   0.646 us    |      _spin_lock_irqsave();
  0)   0.684 us    |      _spin_unlock_irqrestore();
  0)   3.123 us    |    }
  0)   0.548 us    |    fput();
  0) + 58.628 us   |  }

  [...]

  0)               |      putname() {
  0)               |        kmem_cache_free() {
  0)   0.518 us    |          __phys_addr();
  0)   1.757 us    |        }
  0)   2.861 us    |      }
  0) ! 115.305 us  |    }
  0) ! 116.402 us  |  }

  + means that the function exceeded 10 usecs.
  ! means that the function exceeded 100 usecs.


- The task/pid field displays the thread cmdline and pid which
  executed the function. It is default disabled.

	hide: echo nofuncgraph-proc > /debug/tracing/trace_options
	show: echo funcgraph-proc > /debug/tracing/trace_options

  ie:

  # tracer: function_graph
  #
  # CPU  TASK/PID        DURATION                  FUNCTION CALLS
  # |    |    |           |   |                     |   |   |   |
  0)    sh-4802     |               |                  d_free() {
  0)    sh-4802     |               |                    call_rcu() {
  0)    sh-4802     |               |                      __call_rcu() {
  0)    sh-4802     |   0.616 us    |                        rcu_process_gp_end();
  0)    sh-4802     |   0.586 us    |                        check_for_new_grace_period();
  0)    sh-4802     |   2.899 us    |                      }
  0)    sh-4802     |   4.040 us    |                    }
  0)    sh-4802     |   5.151 us    |                  }
  0)    sh-4802     | + 49.370 us   |                }


- The absolute time field is an absolute timestamp given by the
  system clock since it started. A snapshot of this time is
  given on each entry/exit of functions

	hide: echo nofuncgraph-abstime > /debug/tracing/trace_options
	show: echo funcgraph-abstime > /debug/tracing/trace_options

  ie:

  #
  #      TIME       CPU  DURATION                  FUNCTION CALLS
  #       |         |     |   |                     |   |   |   |
  360.774522 |   1)   0.541 us    |                                          }
  360.774522 |   1)   4.663 us    |                                        }
  360.774523 |   1)   0.541 us    |                                        __wake_up_bit();
  360.774524 |   1)   6.796 us    |                                      }
  360.774524 |   1)   7.952 us    |                                    }
  360.774525 |   1)   9.063 us    |                                  }
  360.774525 |   1)   0.615 us    |                                  journal_mark_dirty();
  360.774527 |   1)   0.578 us    |                                  __brelse();
  360.774528 |   1)               |                                  reiserfs_prepare_for_journal() {
  360.774528 |   1)               |                                    unlock_buffer() {
  360.774529 |   1)               |                                      wake_up_bit() {
  360.774529 |   1)               |                                        bit_waitqueue() {
  360.774530 |   1)   0.594 us    |                                          __phys_addr();


You can put some comments on specific functions by using
trace_printk() For example, if you want to put a comment inside
the __might_sleep() function, you just have to include
<linux/ftrace.h> and call trace_printk() inside __might_sleep()

trace_printk("I'm a comment!\n")

will produce:

 1)               |             __might_sleep() {
 1)               |                /* I'm a comment! */
 1)   1.449 us    |             }


You might find other useful features for this tracer in the
following "dynamic ftrace" section such as tracing only specific
functions or tasks.

dynamic ftrace
--------------

If CONFIG_DYNAMIC_FTRACE is set, the system will run with
virtually no overhead when function tracing is disabled. The way
this works is the mcount function call (placed at the start of
every kernel function, produced by the -pg switch in gcc),
starts of pointing to a simple return. (Enabling FTRACE will
include the -pg switch in the compiling of the kernel.)

At compile time every C file object is run through the
recordmcount.pl script (located in the scripts directory). This
script will process the C object using objdump to find all the
locations in the .text section that call mcount. (Note, only the
.text section is processed, since processing other sections like
.init.text may cause races due to those sections being freed).

A new section called "__mcount_loc" is created that holds
references to all the mcount call sites in the .text section.
This section is compiled back into the original object. The
final linker will add all these references into a single table.

On boot up, before SMP is initialized, the dynamic ftrace code
scans this table and updates all the locations into nops. It
also records the locations, which are added to the
available_filter_functions list.  Modules are processed as they
are loaded and before they are executed.  When a module is
unloaded, it also removes its functions from the ftrace function
list. This is automatic in the module unload code, and the
module author does not need to worry about it.

When tracing is enabled, kstop_machine is called to prevent
races with the CPUS executing code being modified (which can
cause the CPU to do undesireable things), and the nops are
patched back to calls. But this time, they do not call mcount
(which is just a function stub). They now call into the ftrace
infrastructure.

One special side-effect to the recording of the functions being
traced is that we can now selectively choose which functions we
wish to trace and which ones we want the mcount calls to remain
as nops.

Two files are used, one for enabling and one for disabling the
tracing of specified functions. They are:

  set_ftrace_filter

and

  set_ftrace_notrace

A list of available functions that you can add to these files is
listed in:

   available_filter_functions

 # cat /debug/tracing/available_filter_functions
put_prev_task_idle
kmem_cache_create
pick_next_task_rt
get_online_cpus
pick_next_task_fair
mutex_lock
[...]

If I am only interested in sys_nanosleep and hrtimer_interrupt:

 # echo sys_nanosleep hrtimer_interrupt \
		> /debug/tracing/set_ftrace_filter
 # echo ftrace > /debug/tracing/current_tracer
 # echo 1 > /debug/tracing/tracing_enabled
 # usleep 1
 # echo 0 > /debug/tracing/tracing_enabled
 # cat /debug/tracing/trace
# tracer: ftrace
#
#           TASK-PID   CPU#    TIMESTAMP  FUNCTION
#              | |      |          |         |
          usleep-4134  [00]  1317.070017: hrtimer_interrupt <-smp_apic_timer_interrupt
          usleep-4134  [00]  1317.070111: sys_nanosleep <-syscall_call
          <idle>-0     [00]  1317.070115: hrtimer_interrupt <-smp_apic_timer_interrupt

To see which functions are being traced, you can cat the file:

 # cat /debug/tracing/set_ftrace_filter
hrtimer_interrupt
sys_nanosleep


Perhaps this is not enough. The filters also allow simple wild
cards. Only the following are currently available

  <match>*  - will match functions that begin with <match>
  *<match>  - will match functions that end with <match>
  *<match>* - will match functions that have <match> in it

These are the only wild cards which are supported.

  <match>*<match> will not work.

Note: It is better to use quotes to enclose the wild cards,
      otherwise the shell may expand the parameters into names
      of files in the local directory.

 # echo 'hrtimer_*' > /debug/tracing/set_ftrace_filter

Produces:

# tracer: ftrace
#
#           TASK-PID   CPU#    TIMESTAMP  FUNCTION
#              | |      |          |         |
            bash-4003  [00]  1480.611794: hrtimer_init <-copy_process
            bash-4003  [00]  1480.611941: hrtimer_start <-hrtick_set
            bash-4003  [00]  1480.611956: hrtimer_cancel <-hrtick_clear
            bash-4003  [00]  1480.611956: hrtimer_try_to_cancel <-hrtimer_cancel
          <idle>-0     [00]  1480.612019: hrtimer_get_next_event <-get_next_timer_interrupt
          <idle>-0     [00]  1480.612025: hrtimer_get_next_event <-get_next_timer_interrupt
          <idle>-0     [00]  1480.612032: hrtimer_get_next_event <-get_next_timer_interrupt
          <idle>-0     [00]  1480.612037: hrtimer_get_next_event <-get_next_timer_interrupt
          <idle>-0     [00]  1480.612382: hrtimer_get_next_event <-get_next_timer_interrupt


Notice that we lost the sys_nanosleep.

 # cat /debug/tracing/set_ftrace_filter
hrtimer_run_queues
hrtimer_run_pending
hrtimer_init
hrtimer_cancel
hrtimer_try_to_cancel
hrtimer_forward
hrtimer_start
hrtimer_reprogram
hrtimer_force_reprogram
hrtimer_get_next_event
hrtimer_interrupt
hrtimer_nanosleep
hrtimer_wakeup
hrtimer_get_remaining
hrtimer_get_res
hrtimer_init_sleeper


This is because the '>' and '>>' act just like they do in bash.
To rewrite the filters, use '>'
To append to the filters, use '>>'

To clear out a filter so that all functions will be recorded
again:

 # echo > /debug/tracing/set_ftrace_filter
 # cat /debug/tracing/set_ftrace_filter
 #

Again, now we want to append.

 # echo sys_nanosleep > /debug/tracing/set_ftrace_filter
 # cat /debug/tracing/set_ftrace_filter
sys_nanosleep
 # echo 'hrtimer_*' >> /debug/tracing/set_ftrace_filter
 # cat /debug/tracing/set_ftrace_filter
hrtimer_run_queues
hrtimer_run_pending
hrtimer_init
hrtimer_cancel
hrtimer_try_to_cancel
hrtimer_forward
hrtimer_start
hrtimer_reprogram
hrtimer_force_reprogram
hrtimer_get_next_event
hrtimer_interrupt
sys_nanosleep
hrtimer_nanosleep
hrtimer_wakeup
hrtimer_get_remaining
hrtimer_get_res
hrtimer_init_sleeper


The set_ftrace_notrace prevents those functions from being
traced.

 # echo '*preempt*' '*lock*' > /debug/tracing/set_ftrace_notrace

Produces:

# tracer: ftrace
#
#           TASK-PID   CPU#    TIMESTAMP  FUNCTION
#              | |      |          |         |
            bash-4043  [01]   115.281644: finish_task_switch <-schedule
            bash-4043  [01]   115.281645: hrtick_set <-schedule
            bash-4043  [01]   115.281645: hrtick_clear <-hrtick_set
            bash-4043  [01]   115.281646: wait_for_completion <-__stop_machine_run
            bash-4043  [01]   115.281647: wait_for_common <-wait_for_completion
            bash-4043  [01]   115.281647: kthread_stop <-stop_machine_run
            bash-4043  [01]   115.281648: init_waitqueue_head <-kthread_stop
            bash-4043  [01]   115.281648: wake_up_process <-kthread_stop
            bash-4043  [01]   115.281649: try_to_wake_up <-wake_up_process

We can see that there's no more lock or preempt tracing.


Dynamic ftrace with the function graph tracer
---------------------------------------------

Although what has been explained above concerns both the
function tracer and the function-graph-tracer, there are some
special features only available in the function-graph tracer.

If you want to trace only one function and all of its children,
you just have to echo its name into set_graph_function:

 echo __do_fault > set_graph_function

will produce the following "expanded" trace of the __do_fault()
function:

 0)               |  __do_fault() {
 0)               |    filemap_fault() {
 0)               |      find_lock_page() {
 0)   0.804 us    |        find_get_page();
 0)               |        __might_sleep() {
 0)   1.329 us    |        }
 0)   3.904 us    |      }
 0)   4.979 us    |    }
 0)   0.653 us    |    _spin_lock();
 0)   0.578 us    |    page_add_file_rmap();
 0)   0.525 us    |    native_set_pte_at();
 0)   0.585 us    |    _spin_unlock();
 0)               |    unlock_page() {
 0)   0.541 us    |      page_waitqueue();
 0)   0.639 us    |      __wake_up_bit();
 0)   2.786 us    |    }
 0) + 14.237 us   |  }
 0)               |  __do_fault() {
 0)               |    filemap_fault() {
 0)               |      find_lock_page() {
 0)   0.698 us    |        find_get_page();
 0)               |        __might_sleep() {
 0)   1.412 us    |        }
 0)   3.950 us    |      }
 0)   5.098 us    |    }
 0)   0.631 us    |    _spin_lock();
 0)   0.571 us    |    page_add_file_rmap();
 0)   0.526 us    |    native_set_pte_at();
 0)   0.586 us    |    _spin_unlock();
 0)               |    unlock_page() {
 0)   0.533 us    |      page_waitqueue();
 0)   0.638 us    |      __wake_up_bit();
 0)   2.793 us    |    }
 0) + 14.012 us   |  }

You can also expand several functions at once:

 echo sys_open > set_graph_function
 echo sys_close >> set_graph_function

Now if you want to go back to trace all functions you can clear
this special filter via:

 echo > set_graph_function


trace_pipe
----------

The trace_pipe outputs the same content as the trace file, but
the effect on the tracing is different. Every read from
trace_pipe is consumed. This means that subsequent reads will be
different. The trace is live.

 # echo function > /debug/tracing/current_tracer
 # cat /debug/tracing/trace_pipe > /tmp/trace.out &
[1] 4153
 # echo 1 > /debug/tracing/tracing_enabled
 # usleep 1
 # echo 0 > /debug/tracing/tracing_enabled
 # cat /debug/tracing/trace
# tracer: function
#
#           TASK-PID   CPU#    TIMESTAMP  FUNCTION
#              | |      |          |         |

 #
 # cat /tmp/trace.out
            bash-4043  [00] 41.267106: finish_task_switch <-schedule
            bash-4043  [00] 41.267106: hrtick_set <-schedule
            bash-4043  [00] 41.267107: hrtick_clear <-hrtick_set
            bash-4043  [00] 41.267108: wait_for_completion <-__stop_machine_run
            bash-4043  [00] 41.267108: wait_for_common <-wait_for_completion
            bash-4043  [00] 41.267109: kthread_stop <-stop_machine_run
            bash-4043  [00] 41.267109: init_waitqueue_head <-kthread_stop
            bash-4043  [00] 41.267110: wake_up_process <-kthread_stop
            bash-4043  [00] 41.267110: try_to_wake_up <-wake_up_process
            bash-4043  [00] 41.267111: select_task_rq_rt <-try_to_wake_up


Note, reading the trace_pipe file will block until more input is
added. By changing the tracer, trace_pipe will issue an EOF. We
needed to set the function tracer _before_ we "cat" the
trace_pipe file.


trace entries
-------------

Having too much or not enough data can be troublesome in
diagnosing an issue in the kernel. The file buffer_size_kb is
used to modify the size of the internal trace buffers. The
number listed is the number of entries that can be recorded per
CPU. To know the full size, multiply the number of possible CPUS
with the number of entries.

 # cat /debug/tracing/buffer_size_kb
1408 (units kilobytes)

Note, to modify this, you must have tracing completely disabled.
To do that, echo "nop" into the current_tracer. If the
current_tracer is not set to "nop", an EINVAL error will be
returned.

 # echo nop > /debug/tracing/current_tracer
 # echo 10000 > /debug/tracing/buffer_size_kb
 # cat /debug/tracing/buffer_size_kb
10000 (units kilobytes)

The number of pages which will be allocated is limited to a
percentage of available memory. Allocating too much will produce
an error.

 # echo 1000000000000 > /debug/tracing/buffer_size_kb
-bash: echo: write error: Cannot allocate memory
 # cat /debug/tracing/buffer_size_kb
85

-----------

More details can be found in the source code, in the
kernel/trace/*.c files.