summaryrefslogtreecommitdiffstats
path: root/arch/x86/kernel/process.c
blob: 6833bffaadb7f07734ce9ed57851f4e4645ba7c7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/prctl.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/module.h>
#include <linux/pm.h>
#include <linux/clockchips.h>
#include <linux/random.h>
#include <linux/user-return-notifier.h>
#include <linux/dmi.h>
#include <linux/utsname.h>
#include <linux/stackprotector.h>
#include <linux/tick.h>
#include <linux/cpuidle.h>
#include <trace/events/power.h>
#include <linux/hw_breakpoint.h>
#include <asm/cpu.h>
#include <asm/apic.h>
#include <asm/syscalls.h>
#include <asm/idle.h>
#include <asm/uaccess.h>
#include <asm/i387.h>
#include <asm/fpu-internal.h>
#include <asm/debugreg.h>
#include <asm/nmi.h>

/*
 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
 * no more per-task TSS's. The TSS size is kept cacheline-aligned
 * so they are allowed to end up in the .data..cacheline_aligned
 * section. Since TSS's are completely CPU-local, we want them
 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
 */
DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, init_tss) = INIT_TSS;

#ifdef CONFIG_X86_64
static DEFINE_PER_CPU(unsigned char, is_idle);
static ATOMIC_NOTIFIER_HEAD(idle_notifier);

void idle_notifier_register(struct notifier_block *n)
{
	atomic_notifier_chain_register(&idle_notifier, n);
}
EXPORT_SYMBOL_GPL(idle_notifier_register);

void idle_notifier_unregister(struct notifier_block *n)
{
	atomic_notifier_chain_unregister(&idle_notifier, n);
}
EXPORT_SYMBOL_GPL(idle_notifier_unregister);
#endif

struct kmem_cache *task_xstate_cachep;
EXPORT_SYMBOL_GPL(task_xstate_cachep);

/*
 * this gets called so that we can store lazy state into memory and copy the
 * current task into the new thread.
 */
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
{
	int ret;

	*dst = *src;
	if (fpu_allocated(&src->thread.fpu)) {
		memset(&dst->thread.fpu, 0, sizeof(dst->thread.fpu));
		ret = fpu_alloc(&dst->thread.fpu);
		if (ret)
			return ret;
		fpu_copy(dst, src);
	}
	return 0;
}

void free_thread_xstate(struct task_struct *tsk)
{
	fpu_free(&tsk->thread.fpu);
}

void arch_release_task_struct(struct task_struct *tsk)
{
	free_thread_xstate(tsk);
}

void arch_task_cache_init(void)
{
        task_xstate_cachep =
        	kmem_cache_create("task_xstate", xstate_size,
				  __alignof__(union thread_xstate),
				  SLAB_PANIC | SLAB_NOTRACK, NULL);
}

/*
 * Free current thread data structures etc..
 */
void exit_thread(void)
{
	struct task_struct *me = current;
	struct thread_struct *t = &me->thread;
	unsigned long *bp = t->io_bitmap_ptr;

	if (bp) {
		struct tss_struct *tss = &per_cpu(init_tss, get_cpu());

		t->io_bitmap_ptr = NULL;
		clear_thread_flag(TIF_IO_BITMAP);
		/*
		 * Careful, clear this in the TSS too:
		 */
		memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
		t->io_bitmap_max = 0;
		put_cpu();
		kfree(bp);
	}

	drop_fpu(me);
}

void show_regs_common(void)
{
	const char *vendor, *product, *board;

	vendor = dmi_get_system_info(DMI_SYS_VENDOR);
	if (!vendor)
		vendor = "";
	product = dmi_get_system_info(DMI_PRODUCT_NAME);
	if (!product)
		product = "";

	/* Board Name is optional */
	board = dmi_get_system_info(DMI_BOARD_NAME);

	printk(KERN_DEFAULT "Pid: %d, comm: %.20s %s %s %.*s %s %s%s%s\n",
	       current->pid, current->comm, print_tainted(),
	       init_utsname()->release,
	       (int)strcspn(init_utsname()->version, " "),
	       init_utsname()->version,
	       vendor, product,
	       board ? "/" : "",
	       board ? board : "");
}

void flush_thread(void)
{
	struct task_struct *tsk = current;

	flush_ptrace_hw_breakpoint(tsk);
	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
	drop_init_fpu(tsk);
	/*
	 * Free the FPU state for non xsave platforms. They get reallocated
	 * lazily at the first use.
	 */
	if (!use_eager_fpu())
		free_thread_xstate(tsk);
}

static void hard_disable_TSC(void)
{
	write_cr4(read_cr4() | X86_CR4_TSD);
}

void disable_TSC(void)
{
	preempt_disable();
	if (!test_and_set_thread_flag(TIF_NOTSC))
		/*
		 * Must flip the CPU state synchronously with
		 * TIF_NOTSC in the current running context.
		 */
		hard_disable_TSC();
	preempt_enable();
}

static void hard_enable_TSC(void)
{
	write_cr4(read_cr4() & ~X86_CR4_TSD);
}

static void enable_TSC(void)
{
	preempt_disable();
	if (test_and_clear_thread_flag(TIF_NOTSC))
		/*
		 * Must flip the CPU state synchronously with
		 * TIF_NOTSC in the current running context.
		 */
		hard_enable_TSC();
	preempt_enable();
}

int get_tsc_mode(unsigned long adr)
{
	unsigned int val;

	if (test_thread_flag(TIF_NOTSC))
		val = PR_TSC_SIGSEGV;
	else
		val = PR_TSC_ENABLE;

	return put_user(val, (unsigned int __user *)adr);
}

int set_tsc_mode(unsigned int val)
{
	if (val == PR_TSC_SIGSEGV)
		disable_TSC();
	else if (val == PR_TSC_ENABLE)
		enable_TSC();
	else
		return -EINVAL;

	return 0;
}

void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
		      struct tss_struct *tss)
{
	struct thread_struct *prev, *next;

	prev = &prev_p->thread;
	next = &next_p->thread;

	if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
	    test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
		unsigned long debugctl = get_debugctlmsr();

		debugctl &= ~DEBUGCTLMSR_BTF;
		if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
			debugctl |= DEBUGCTLMSR_BTF;

		update_debugctlmsr(debugctl);
	}

	if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
	    test_tsk_thread_flag(next_p, TIF_NOTSC)) {
		/* prev and next are different */
		if (test_tsk_thread_flag(next_p, TIF_NOTSC))
			hard_disable_TSC();
		else
			hard_enable_TSC();
	}

	if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
		/*
		 * Copy the relevant range of the IO bitmap.
		 * Normally this is 128 bytes or less:
		 */
		memcpy(tss->io_bitmap, next->io_bitmap_ptr,
		       max(prev->io_bitmap_max, next->io_bitmap_max));
	} else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
		/*
		 * Clear any possible leftover bits:
		 */
		memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
	}
	propagate_user_return_notify(prev_p, next_p);
}

/*
 * Idle related variables and functions
 */
unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
EXPORT_SYMBOL(boot_option_idle_override);

static void (*x86_idle)(void);

#ifndef CONFIG_SMP
static inline void play_dead(void)
{
	BUG();
}
#endif

#ifdef CONFIG_X86_64
void enter_idle(void)
{
	this_cpu_write(is_idle, 1);
	atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
}

static void __exit_idle(void)
{
	if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
		return;
	atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
}

/* Called from interrupts to signify idle end */
void exit_idle(void)
{
	/* idle loop has pid 0 */
	if (current->pid)
		return;
	__exit_idle();
}
#endif

void arch_cpu_idle_prepare(void)
{
	/*
	 * If we're the non-boot CPU, nothing set the stack canary up
	 * for us.  CPU0 already has it initialized but no harm in
	 * doing it again.  This is a good place for updating it, as
	 * we wont ever return from this function (so the invalid
	 * canaries already on the stack wont ever trigger).
	 */
	boot_init_stack_canary();
}

void arch_cpu_idle_enter(void)
{
	local_touch_nmi();
	enter_idle();
}

void arch_cpu_idle_exit(void)
{
	__exit_idle();
}

void arch_cpu_idle_dead(void)
{
	play_dead();
}

/*
 * Called from the generic idle code.
 */
void arch_cpu_idle(void)
{
	if (cpuidle_idle_call())
		x86_idle();
}

/*
 * We use this if we don't have any better idle routine..
 */
void default_idle(void)
{
	trace_cpu_idle_rcuidle(1, smp_processor_id());
	safe_halt();
	trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
}
#ifdef CONFIG_APM_MODULE
EXPORT_SYMBOL(default_idle);
#endif

#ifdef CONFIG_XEN
bool xen_set_default_idle(void)
{
	bool ret = !!x86_idle;

	x86_idle = default_idle;

	return ret;
}
#endif
void stop_this_cpu(void *dummy)
{
	local_irq_disable();
	/*
	 * Remove this CPU:
	 */
	set_cpu_online(smp_processor_id(), false);
	disable_local_APIC();

	for (;;)
		halt();
}

bool amd_e400_c1e_detected;
EXPORT_SYMBOL(amd_e400_c1e_detected);

static cpumask_var_t amd_e400_c1e_mask;

void amd_e400_remove_cpu(int cpu)
{
	if (amd_e400_c1e_mask != NULL)
		cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
}

/*
 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
 * pending message MSR. If we detect C1E, then we handle it the same
 * way as C3 power states (local apic timer and TSC stop)
 */
static void amd_e400_idle(void)
{
	if (need_resched())
		return;

	if (!amd_e400_c1e_detected) {
		u32 lo, hi;

		rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);

		if (lo & K8_INTP_C1E_ACTIVE_MASK) {
			amd_e400_c1e_detected = true;
			if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
				mark_tsc_unstable("TSC halt in AMD C1E");
			pr_info("System has AMD C1E enabled\n");
		}
	}

	if (amd_e400_c1e_detected) {
		int cpu = smp_processor_id();

		if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
			cpumask_set_cpu(cpu, amd_e400_c1e_mask);
			/*
			 * Force broadcast so ACPI can not interfere.
			 */
			clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
					   &cpu);
			pr_info("Switch to broadcast mode on CPU%d\n", cpu);
		}
		clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);

		default_idle();

		/*
		 * The switch back from broadcast mode needs to be
		 * called with interrupts disabled.
		 */
		 local_irq_disable();
		 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
		 local_irq_enable();
	} else
		default_idle();
}

void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
{
#ifdef CONFIG_SMP
	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
#endif
	if (x86_idle || boot_option_idle_override == IDLE_POLL)
		return;

	if (cpu_has_amd_erratum(amd_erratum_400)) {
		/* E400: APIC timer interrupt does not wake up CPU from C1e */
		pr_info("using AMD E400 aware idle routine\n");
		x86_idle = amd_e400_idle;
	} else
		x86_idle = default_idle;
}

void __init init_amd_e400_c1e_mask(void)
{
	/* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
	if (x86_idle == amd_e400_idle)
		zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
}

static int __init idle_setup(char *str)
{
	if (!str)
		return -EINVAL;

	if (!strcmp(str, "poll")) {
		pr_info("using polling idle threads\n");
		boot_option_idle_override = IDLE_POLL;
		cpu_idle_poll_ctrl(true);
	} else if (!strcmp(str, "halt")) {
		/*
		 * When the boot option of idle=halt is added, halt is
		 * forced to be used for CPU idle. In such case CPU C2/C3
		 * won't be used again.
		 * To continue to load the CPU idle driver, don't touch
		 * the boot_option_idle_override.
		 */
		x86_idle = default_idle;
		boot_option_idle_override = IDLE_HALT;
	} else if (!strcmp(str, "nomwait")) {
		/*
		 * If the boot option of "idle=nomwait" is added,
		 * it means that mwait will be disabled for CPU C2/C3
		 * states. In such case it won't touch the variable
		 * of boot_option_idle_override.
		 */
		boot_option_idle_override = IDLE_NOMWAIT;
	} else
		return -1;

	return 0;
}
early_param("idle", idle_setup);

unsigned long arch_align_stack(unsigned long sp)
{
	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
		sp -= get_random_int() % 8192;
	return sp & ~0xf;
}

unsigned long arch_randomize_brk(struct mm_struct *mm)
{
	unsigned long range_end = mm->brk + 0x02000000;
	return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
}