1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
|
/*
* DMA coherent memory allocation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* Copyright (C) 2002 - 2005 Tensilica Inc.
* Copyright (C) 2015 Cadence Design Systems Inc.
*
* Based on version for i386.
*
* Chris Zankel <chris@zankel.net>
* Joe Taylor <joe@tensilica.com, joetylr@yahoo.com>
*/
#include <linux/dma-contiguous.h>
#include <linux/dma-direct.h>
#include <linux/gfp.h>
#include <linux/highmem.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/string.h>
#include <linux/types.h>
#include <asm/cacheflush.h>
#include <asm/io.h>
static void do_cache_op(dma_addr_t dma_handle, size_t size,
void (*fn)(unsigned long, unsigned long))
{
unsigned long off = dma_handle & (PAGE_SIZE - 1);
unsigned long pfn = PFN_DOWN(dma_handle);
struct page *page = pfn_to_page(pfn);
if (!PageHighMem(page))
fn((unsigned long)bus_to_virt(dma_handle), size);
else
while (size > 0) {
size_t sz = min_t(size_t, size, PAGE_SIZE - off);
void *vaddr = kmap_atomic(page);
fn((unsigned long)vaddr + off, sz);
kunmap_atomic(vaddr);
off = 0;
++page;
size -= sz;
}
}
static void xtensa_sync_single_for_cpu(struct device *dev,
dma_addr_t dma_handle, size_t size,
enum dma_data_direction dir)
{
switch (dir) {
case DMA_BIDIRECTIONAL:
case DMA_FROM_DEVICE:
do_cache_op(dma_handle, size, __invalidate_dcache_range);
break;
case DMA_NONE:
BUG();
break;
default:
break;
}
}
static void xtensa_sync_single_for_device(struct device *dev,
dma_addr_t dma_handle, size_t size,
enum dma_data_direction dir)
{
switch (dir) {
case DMA_BIDIRECTIONAL:
case DMA_TO_DEVICE:
if (XCHAL_DCACHE_IS_WRITEBACK)
do_cache_op(dma_handle, size, __flush_dcache_range);
break;
case DMA_NONE:
BUG();
break;
default:
break;
}
}
static void xtensa_sync_sg_for_cpu(struct device *dev,
struct scatterlist *sg, int nents,
enum dma_data_direction dir)
{
struct scatterlist *s;
int i;
for_each_sg(sg, s, nents, i) {
xtensa_sync_single_for_cpu(dev, sg_dma_address(s),
sg_dma_len(s), dir);
}
}
static void xtensa_sync_sg_for_device(struct device *dev,
struct scatterlist *sg, int nents,
enum dma_data_direction dir)
{
struct scatterlist *s;
int i;
for_each_sg(sg, s, nents, i) {
xtensa_sync_single_for_device(dev, sg_dma_address(s),
sg_dma_len(s), dir);
}
}
/*
* Note: We assume that the full memory space is always mapped to 'kseg'
* Otherwise we have to use page attributes (not implemented).
*/
static void *xtensa_dma_alloc(struct device *dev, size_t size,
dma_addr_t *handle, gfp_t flag,
unsigned long attrs)
{
unsigned long ret;
unsigned long uncached;
unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
struct page *page = NULL;
/* ignore region speicifiers */
flag &= ~(__GFP_DMA | __GFP_HIGHMEM);
if (dev == NULL || (dev->coherent_dma_mask < 0xffffffff))
flag |= GFP_DMA;
if (gfpflags_allow_blocking(flag))
page = dma_alloc_from_contiguous(dev, count, get_order(size),
flag);
if (!page)
page = alloc_pages(flag, get_order(size));
if (!page)
return NULL;
*handle = phys_to_dma(dev, page_to_phys(page));
#ifdef CONFIG_MMU
if (PageHighMem(page)) {
void *p;
p = dma_common_contiguous_remap(page, size, VM_MAP,
pgprot_noncached(PAGE_KERNEL),
__builtin_return_address(0));
if (!p) {
if (!dma_release_from_contiguous(dev, page, count))
__free_pages(page, get_order(size));
}
return p;
}
#endif
ret = (unsigned long)page_address(page);
BUG_ON(ret < XCHAL_KSEG_CACHED_VADDR ||
ret > XCHAL_KSEG_CACHED_VADDR + XCHAL_KSEG_SIZE - 1);
uncached = ret + XCHAL_KSEG_BYPASS_VADDR - XCHAL_KSEG_CACHED_VADDR;
__invalidate_dcache_range(ret, size);
return (void *)uncached;
}
static void xtensa_dma_free(struct device *dev, size_t size, void *vaddr,
dma_addr_t dma_handle, unsigned long attrs)
{
unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
unsigned long addr = (unsigned long)vaddr;
struct page *page;
if (addr >= XCHAL_KSEG_BYPASS_VADDR &&
addr - XCHAL_KSEG_BYPASS_VADDR < XCHAL_KSEG_SIZE) {
addr += XCHAL_KSEG_CACHED_VADDR - XCHAL_KSEG_BYPASS_VADDR;
page = virt_to_page(addr);
} else {
#ifdef CONFIG_MMU
dma_common_free_remap(vaddr, size, VM_MAP);
#endif
page = pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_handle)));
}
if (!dma_release_from_contiguous(dev, page, count))
__free_pages(page, get_order(size));
}
static dma_addr_t xtensa_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size,
enum dma_data_direction dir,
unsigned long attrs)
{
dma_addr_t dma_handle = page_to_phys(page) + offset;
if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
xtensa_sync_single_for_device(dev, dma_handle, size, dir);
return dma_handle;
}
static void xtensa_unmap_page(struct device *dev, dma_addr_t dma_handle,
size_t size, enum dma_data_direction dir,
unsigned long attrs)
{
if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
xtensa_sync_single_for_cpu(dev, dma_handle, size, dir);
}
static int xtensa_map_sg(struct device *dev, struct scatterlist *sg,
int nents, enum dma_data_direction dir,
unsigned long attrs)
{
struct scatterlist *s;
int i;
for_each_sg(sg, s, nents, i) {
s->dma_address = xtensa_map_page(dev, sg_page(s), s->offset,
s->length, dir, attrs);
}
return nents;
}
static void xtensa_unmap_sg(struct device *dev,
struct scatterlist *sg, int nents,
enum dma_data_direction dir,
unsigned long attrs)
{
struct scatterlist *s;
int i;
for_each_sg(sg, s, nents, i) {
xtensa_unmap_page(dev, sg_dma_address(s),
sg_dma_len(s), dir, attrs);
}
}
int xtensa_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
{
return 0;
}
const struct dma_map_ops xtensa_dma_map_ops = {
.alloc = xtensa_dma_alloc,
.free = xtensa_dma_free,
.map_page = xtensa_map_page,
.unmap_page = xtensa_unmap_page,
.map_sg = xtensa_map_sg,
.unmap_sg = xtensa_unmap_sg,
.sync_single_for_cpu = xtensa_sync_single_for_cpu,
.sync_single_for_device = xtensa_sync_single_for_device,
.sync_sg_for_cpu = xtensa_sync_sg_for_cpu,
.sync_sg_for_device = xtensa_sync_sg_for_device,
.mapping_error = xtensa_dma_mapping_error,
};
EXPORT_SYMBOL(xtensa_dma_map_ops);
#define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16)
static int __init xtensa_dma_init(void)
{
dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
return 0;
}
fs_initcall(xtensa_dma_init);
|