summaryrefslogtreecommitdiffstats
path: root/drivers/base/regmap/regmap.c
blob: 25d26bb18970694d808a3d679e613a5487fa8236 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
/*
 * Register map access API
 *
 * Copyright 2011 Wolfson Microelectronics plc
 *
 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/device.h>
#include <linux/slab.h>
#include <linux/export.h>
#include <linux/mutex.h>
#include <linux/err.h>
#include <linux/of.h>
#include <linux/rbtree.h>
#include <linux/sched.h>
#include <linux/delay.h>
#include <linux/log2.h>

#define CREATE_TRACE_POINTS
#include "trace.h"

#include "internal.h"

/*
 * Sometimes for failures during very early init the trace
 * infrastructure isn't available early enough to be used.  For this
 * sort of problem defining LOG_DEVICE will add printks for basic
 * register I/O on a specific device.
 */
#undef LOG_DEVICE

static int _regmap_update_bits(struct regmap *map, unsigned int reg,
			       unsigned int mask, unsigned int val,
			       bool *change, bool force_write);

static int _regmap_bus_reg_read(void *context, unsigned int reg,
				unsigned int *val);
static int _regmap_bus_read(void *context, unsigned int reg,
			    unsigned int *val);
static int _regmap_bus_formatted_write(void *context, unsigned int reg,
				       unsigned int val);
static int _regmap_bus_reg_write(void *context, unsigned int reg,
				 unsigned int val);
static int _regmap_bus_raw_write(void *context, unsigned int reg,
				 unsigned int val);

bool regmap_reg_in_ranges(unsigned int reg,
			  const struct regmap_range *ranges,
			  unsigned int nranges)
{
	const struct regmap_range *r;
	int i;

	for (i = 0, r = ranges; i < nranges; i++, r++)
		if (regmap_reg_in_range(reg, r))
			return true;
	return false;
}
EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);

bool regmap_check_range_table(struct regmap *map, unsigned int reg,
			      const struct regmap_access_table *table)
{
	/* Check "no ranges" first */
	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
		return false;

	/* In case zero "yes ranges" are supplied, any reg is OK */
	if (!table->n_yes_ranges)
		return true;

	return regmap_reg_in_ranges(reg, table->yes_ranges,
				    table->n_yes_ranges);
}
EXPORT_SYMBOL_GPL(regmap_check_range_table);

bool regmap_writeable(struct regmap *map, unsigned int reg)
{
	if (map->max_register && reg > map->max_register)
		return false;

	if (map->writeable_reg)
		return map->writeable_reg(map->dev, reg);

	if (map->wr_table)
		return regmap_check_range_table(map, reg, map->wr_table);

	return true;
}

bool regmap_readable(struct regmap *map, unsigned int reg)
{
	if (!map->reg_read)
		return false;

	if (map->max_register && reg > map->max_register)
		return false;

	if (map->format.format_write)
		return false;

	if (map->readable_reg)
		return map->readable_reg(map->dev, reg);

	if (map->rd_table)
		return regmap_check_range_table(map, reg, map->rd_table);

	return true;
}

bool regmap_volatile(struct regmap *map, unsigned int reg)
{
	if (!map->format.format_write && !regmap_readable(map, reg))
		return false;

	if (map->volatile_reg)
		return map->volatile_reg(map->dev, reg);

	if (map->volatile_table)
		return regmap_check_range_table(map, reg, map->volatile_table);

	if (map->cache_ops)
		return false;
	else
		return true;
}

bool regmap_precious(struct regmap *map, unsigned int reg)
{
	if (!regmap_readable(map, reg))
		return false;

	if (map->precious_reg)
		return map->precious_reg(map->dev, reg);

	if (map->precious_table)
		return regmap_check_range_table(map, reg, map->precious_table);

	return false;
}

static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
	size_t num)
{
	unsigned int i;

	for (i = 0; i < num; i++)
		if (!regmap_volatile(map, reg + i))
			return false;

	return true;
}

static void regmap_format_2_6_write(struct regmap *map,
				     unsigned int reg, unsigned int val)
{
	u8 *out = map->work_buf;

	*out = (reg << 6) | val;
}

static void regmap_format_4_12_write(struct regmap *map,
				     unsigned int reg, unsigned int val)
{
	__be16 *out = map->work_buf;
	*out = cpu_to_be16((reg << 12) | val);
}

static void regmap_format_7_9_write(struct regmap *map,
				    unsigned int reg, unsigned int val)
{
	__be16 *out = map->work_buf;
	*out = cpu_to_be16((reg << 9) | val);
}

static void regmap_format_10_14_write(struct regmap *map,
				    unsigned int reg, unsigned int val)
{
	u8 *out = map->work_buf;

	out[2] = val;
	out[1] = (val >> 8) | (reg << 6);
	out[0] = reg >> 2;
}

static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
{
	u8 *b = buf;

	b[0] = val << shift;
}

static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
{
	__be16 *b = buf;

	b[0] = cpu_to_be16(val << shift);
}

static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
{
	__le16 *b = buf;

	b[0] = cpu_to_le16(val << shift);
}

static void regmap_format_16_native(void *buf, unsigned int val,
				    unsigned int shift)
{
	*(u16 *)buf = val << shift;
}

static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
{
	u8 *b = buf;

	val <<= shift;

	b[0] = val >> 16;
	b[1] = val >> 8;
	b[2] = val;
}

static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
{
	__be32 *b = buf;

	b[0] = cpu_to_be32(val << shift);
}

static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
{
	__le32 *b = buf;

	b[0] = cpu_to_le32(val << shift);
}

static void regmap_format_32_native(void *buf, unsigned int val,
				    unsigned int shift)
{
	*(u32 *)buf = val << shift;
}

#ifdef CONFIG_64BIT
static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
{
	__be64 *b = buf;

	b[0] = cpu_to_be64((u64)val << shift);
}

static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
{
	__le64 *b = buf;

	b[0] = cpu_to_le64((u64)val << shift);
}

static void regmap_format_64_native(void *buf, unsigned int val,
				    unsigned int shift)
{
	*(u64 *)buf = (u64)val << shift;
}
#endif

static void regmap_parse_inplace_noop(void *buf)
{
}

static unsigned int regmap_parse_8(const void *buf)
{
	const u8 *b = buf;

	return b[0];
}

static unsigned int regmap_parse_16_be(const void *buf)
{
	const __be16 *b = buf;

	return be16_to_cpu(b[0]);
}

static unsigned int regmap_parse_16_le(const void *buf)
{
	const __le16 *b = buf;

	return le16_to_cpu(b[0]);
}

static void regmap_parse_16_be_inplace(void *buf)
{
	__be16 *b = buf;

	b[0] = be16_to_cpu(b[0]);
}

static void regmap_parse_16_le_inplace(void *buf)
{
	__le16 *b = buf;

	b[0] = le16_to_cpu(b[0]);
}

static unsigned int regmap_parse_16_native(const void *buf)
{
	return *(u16 *)buf;
}

static unsigned int regmap_parse_24(const void *buf)
{
	const u8 *b = buf;
	unsigned int ret = b[2];
	ret |= ((unsigned int)b[1]) << 8;
	ret |= ((unsigned int)b[0]) << 16;

	return ret;
}

static unsigned int regmap_parse_32_be(const void *buf)
{
	const __be32 *b = buf;

	return be32_to_cpu(b[0]);
}

static unsigned int regmap_parse_32_le(const void *buf)
{
	const __le32 *b = buf;

	return le32_to_cpu(b[0]);
}

static void regmap_parse_32_be_inplace(void *buf)
{
	__be32 *b = buf;

	b[0] = be32_to_cpu(b[0]);
}

static void regmap_parse_32_le_inplace(void *buf)
{
	__le32 *b = buf;

	b[0] = le32_to_cpu(b[0]);
}

static unsigned int regmap_parse_32_native(const void *buf)
{
	return *(u32 *)buf;
}

#ifdef CONFIG_64BIT
static unsigned int regmap_parse_64_be(const void *buf)
{
	const __be64 *b = buf;

	return be64_to_cpu(b[0]);
}

static unsigned int regmap_parse_64_le(const void *buf)
{
	const __le64 *b = buf;

	return le64_to_cpu(b[0]);
}

static void regmap_parse_64_be_inplace(void *buf)
{
	__be64 *b = buf;

	b[0] = be64_to_cpu(b[0]);
}

static void regmap_parse_64_le_inplace(void *buf)
{
	__le64 *b = buf;

	b[0] = le64_to_cpu(b[0]);
}

static unsigned int regmap_parse_64_native(const void *buf)
{
	return *(u64 *)buf;
}
#endif

static void regmap_lock_mutex(void *__map)
{
	struct regmap *map = __map;
	mutex_lock(&map->mutex);
}

static void regmap_unlock_mutex(void *__map)
{
	struct regmap *map = __map;
	mutex_unlock(&map->mutex);
}

static void regmap_lock_spinlock(void *__map)
__acquires(&map->spinlock)
{
	struct regmap *map = __map;
	unsigned long flags;

	spin_lock_irqsave(&map->spinlock, flags);
	map->spinlock_flags = flags;
}

static void regmap_unlock_spinlock(void *__map)
__releases(&map->spinlock)
{
	struct regmap *map = __map;
	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
}

static void dev_get_regmap_release(struct device *dev, void *res)
{
	/*
	 * We don't actually have anything to do here; the goal here
	 * is not to manage the regmap but to provide a simple way to
	 * get the regmap back given a struct device.
	 */
}

static bool _regmap_range_add(struct regmap *map,
			      struct regmap_range_node *data)
{
	struct rb_root *root = &map->range_tree;
	struct rb_node **new = &(root->rb_node), *parent = NULL;

	while (*new) {
		struct regmap_range_node *this =
			container_of(*new, struct regmap_range_node, node);

		parent = *new;
		if (data->range_max < this->range_min)
			new = &((*new)->rb_left);
		else if (data->range_min > this->range_max)
			new = &((*new)->rb_right);
		else
			return false;
	}

	rb_link_node(&data->node, parent, new);
	rb_insert_color(&data->node, root);

	return true;
}

static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
						      unsigned int reg)
{
	struct rb_node *node = map->range_tree.rb_node;

	while (node) {
		struct regmap_range_node *this =
			container_of(node, struct regmap_range_node, node);

		if (reg < this->range_min)
			node = node->rb_left;
		else if (reg > this->range_max)
			node = node->rb_right;
		else
			return this;
	}

	return NULL;
}

static void regmap_range_exit(struct regmap *map)
{
	struct rb_node *next;
	struct regmap_range_node *range_node;

	next = rb_first(&map->range_tree);
	while (next) {
		range_node = rb_entry(next, struct regmap_range_node, node);
		next = rb_next(&range_node->node);
		rb_erase(&range_node->node, &map->range_tree);
		kfree(range_node);
	}

	kfree(map->selector_work_buf);
}

int regmap_attach_dev(struct device *dev, struct regmap *map,
		      const struct regmap_config *config)
{
	struct regmap **m;

	map->dev = dev;

	regmap_debugfs_init(map, config->name);

	/* Add a devres resource for dev_get_regmap() */
	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
	if (!m) {
		regmap_debugfs_exit(map);
		return -ENOMEM;
	}
	*m = map;
	devres_add(dev, m);

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_attach_dev);

static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
					const struct regmap_config *config)
{
	enum regmap_endian endian;

	/* Retrieve the endianness specification from the regmap config */
	endian = config->reg_format_endian;

	/* If the regmap config specified a non-default value, use that */
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;

	/* Retrieve the endianness specification from the bus config */
	if (bus && bus->reg_format_endian_default)
		endian = bus->reg_format_endian_default;

	/* If the bus specified a non-default value, use that */
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;

	/* Use this if no other value was found */
	return REGMAP_ENDIAN_BIG;
}

enum regmap_endian regmap_get_val_endian(struct device *dev,
					 const struct regmap_bus *bus,
					 const struct regmap_config *config)
{
	struct device_node *np;
	enum regmap_endian endian;

	/* Retrieve the endianness specification from the regmap config */
	endian = config->val_format_endian;

	/* If the regmap config specified a non-default value, use that */
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;

	/* If the dev and dev->of_node exist try to get endianness from DT */
	if (dev && dev->of_node) {
		np = dev->of_node;

		/* Parse the device's DT node for an endianness specification */
		if (of_property_read_bool(np, "big-endian"))
			endian = REGMAP_ENDIAN_BIG;
		else if (of_property_read_bool(np, "little-endian"))
			endian = REGMAP_ENDIAN_LITTLE;
		else if (of_property_read_bool(np, "native-endian"))
			endian = REGMAP_ENDIAN_NATIVE;

		/* If the endianness was specified in DT, use that */
		if (endian != REGMAP_ENDIAN_DEFAULT)
			return endian;
	}

	/* Retrieve the endianness specification from the bus config */
	if (bus && bus->val_format_endian_default)
		endian = bus->val_format_endian_default;

	/* If the bus specified a non-default value, use that */
	if (endian != REGMAP_ENDIAN_DEFAULT)
		return endian;

	/* Use this if no other value was found */
	return REGMAP_ENDIAN_BIG;
}
EXPORT_SYMBOL_GPL(regmap_get_val_endian);

struct regmap *__regmap_init(struct device *dev,
			     const struct regmap_bus *bus,
			     void *bus_context,
			     const struct regmap_config *config,
			     struct lock_class_key *lock_key,
			     const char *lock_name)
{
	struct regmap *map;
	int ret = -EINVAL;
	enum regmap_endian reg_endian, val_endian;
	int i, j;

	if (!config)
		goto err;

	map = kzalloc(sizeof(*map), GFP_KERNEL);
	if (map == NULL) {
		ret = -ENOMEM;
		goto err;
	}

	if (config->lock && config->unlock) {
		map->lock = config->lock;
		map->unlock = config->unlock;
		map->lock_arg = config->lock_arg;
	} else {
		if ((bus && bus->fast_io) ||
		    config->fast_io) {
			spin_lock_init(&map->spinlock);
			map->lock = regmap_lock_spinlock;
			map->unlock = regmap_unlock_spinlock;
			lockdep_set_class_and_name(&map->spinlock,
						   lock_key, lock_name);
		} else {
			mutex_init(&map->mutex);
			map->lock = regmap_lock_mutex;
			map->unlock = regmap_unlock_mutex;
			lockdep_set_class_and_name(&map->mutex,
						   lock_key, lock_name);
		}
		map->lock_arg = map;
	}

	/*
	 * When we write in fast-paths with regmap_bulk_write() don't allocate
	 * scratch buffers with sleeping allocations.
	 */
	if ((bus && bus->fast_io) || config->fast_io)
		map->alloc_flags = GFP_ATOMIC;
	else
		map->alloc_flags = GFP_KERNEL;

	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
	map->format.pad_bytes = config->pad_bits / 8;
	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
			config->val_bits + config->pad_bits, 8);
	map->reg_shift = config->pad_bits % 8;
	if (config->reg_stride)
		map->reg_stride = config->reg_stride;
	else
		map->reg_stride = 1;
	if (is_power_of_2(map->reg_stride))
		map->reg_stride_order = ilog2(map->reg_stride);
	else
		map->reg_stride_order = -1;
	map->use_single_read = config->use_single_rw || !bus || !bus->read;
	map->use_single_write = config->use_single_rw || !bus || !bus->write;
	map->can_multi_write = config->can_multi_write && bus && bus->write;
	if (bus) {
		map->max_raw_read = bus->max_raw_read;
		map->max_raw_write = bus->max_raw_write;
	}
	map->dev = dev;
	map->bus = bus;
	map->bus_context = bus_context;
	map->max_register = config->max_register;
	map->wr_table = config->wr_table;
	map->rd_table = config->rd_table;
	map->volatile_table = config->volatile_table;
	map->precious_table = config->precious_table;
	map->writeable_reg = config->writeable_reg;
	map->readable_reg = config->readable_reg;
	map->volatile_reg = config->volatile_reg;
	map->precious_reg = config->precious_reg;
	map->cache_type = config->cache_type;
	map->name = config->name;

	spin_lock_init(&map->async_lock);
	INIT_LIST_HEAD(&map->async_list);
	INIT_LIST_HEAD(&map->async_free);
	init_waitqueue_head(&map->async_waitq);

	if (config->read_flag_mask || config->write_flag_mask) {
		map->read_flag_mask = config->read_flag_mask;
		map->write_flag_mask = config->write_flag_mask;
	} else if (bus) {
		map->read_flag_mask = bus->read_flag_mask;
	}

	if (!bus) {
		map->reg_read  = config->reg_read;
		map->reg_write = config->reg_write;

		map->defer_caching = false;
		goto skip_format_initialization;
	} else if (!bus->read || !bus->write) {
		map->reg_read = _regmap_bus_reg_read;
		map->reg_write = _regmap_bus_reg_write;

		map->defer_caching = false;
		goto skip_format_initialization;
	} else {
		map->reg_read  = _regmap_bus_read;
		map->reg_update_bits = bus->reg_update_bits;
	}

	reg_endian = regmap_get_reg_endian(bus, config);
	val_endian = regmap_get_val_endian(dev, bus, config);

	switch (config->reg_bits + map->reg_shift) {
	case 2:
		switch (config->val_bits) {
		case 6:
			map->format.format_write = regmap_format_2_6_write;
			break;
		default:
			goto err_map;
		}
		break;

	case 4:
		switch (config->val_bits) {
		case 12:
			map->format.format_write = regmap_format_4_12_write;
			break;
		default:
			goto err_map;
		}
		break;

	case 7:
		switch (config->val_bits) {
		case 9:
			map->format.format_write = regmap_format_7_9_write;
			break;
		default:
			goto err_map;
		}
		break;

	case 10:
		switch (config->val_bits) {
		case 14:
			map->format.format_write = regmap_format_10_14_write;
			break;
		default:
			goto err_map;
		}
		break;

	case 8:
		map->format.format_reg = regmap_format_8;
		break;

	case 16:
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_16_be;
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_16_native;
			break;
		default:
			goto err_map;
		}
		break;

	case 24:
		if (reg_endian != REGMAP_ENDIAN_BIG)
			goto err_map;
		map->format.format_reg = regmap_format_24;
		break;

	case 32:
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_32_be;
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_32_native;
			break;
		default:
			goto err_map;
		}
		break;

#ifdef CONFIG_64BIT
	case 64:
		switch (reg_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_reg = regmap_format_64_be;
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_reg = regmap_format_64_native;
			break;
		default:
			goto err_map;
		}
		break;
#endif

	default:
		goto err_map;
	}

	if (val_endian == REGMAP_ENDIAN_NATIVE)
		map->format.parse_inplace = regmap_parse_inplace_noop;

	switch (config->val_bits) {
	case 8:
		map->format.format_val = regmap_format_8;
		map->format.parse_val = regmap_parse_8;
		map->format.parse_inplace = regmap_parse_inplace_noop;
		break;
	case 16:
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_16_be;
			map->format.parse_val = regmap_parse_16_be;
			map->format.parse_inplace = regmap_parse_16_be_inplace;
			break;
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_val = regmap_format_16_le;
			map->format.parse_val = regmap_parse_16_le;
			map->format.parse_inplace = regmap_parse_16_le_inplace;
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_16_native;
			map->format.parse_val = regmap_parse_16_native;
			break;
		default:
			goto err_map;
		}
		break;
	case 24:
		if (val_endian != REGMAP_ENDIAN_BIG)
			goto err_map;
		map->format.format_val = regmap_format_24;
		map->format.parse_val = regmap_parse_24;
		break;
	case 32:
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_32_be;
			map->format.parse_val = regmap_parse_32_be;
			map->format.parse_inplace = regmap_parse_32_be_inplace;
			break;
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_val = regmap_format_32_le;
			map->format.parse_val = regmap_parse_32_le;
			map->format.parse_inplace = regmap_parse_32_le_inplace;
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_32_native;
			map->format.parse_val = regmap_parse_32_native;
			break;
		default:
			goto err_map;
		}
		break;
#ifdef CONFIG_64BIT
	case 64:
		switch (val_endian) {
		case REGMAP_ENDIAN_BIG:
			map->format.format_val = regmap_format_64_be;
			map->format.parse_val = regmap_parse_64_be;
			map->format.parse_inplace = regmap_parse_64_be_inplace;
			break;
		case REGMAP_ENDIAN_LITTLE:
			map->format.format_val = regmap_format_64_le;
			map->format.parse_val = regmap_parse_64_le;
			map->format.parse_inplace = regmap_parse_64_le_inplace;
			break;
		case REGMAP_ENDIAN_NATIVE:
			map->format.format_val = regmap_format_64_native;
			map->format.parse_val = regmap_parse_64_native;
			break;
		default:
			goto err_map;
		}
		break;
#endif
	}

	if (map->format.format_write) {
		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
		    (val_endian != REGMAP_ENDIAN_BIG))
			goto err_map;
		map->use_single_write = true;
	}

	if (!map->format.format_write &&
	    !(map->format.format_reg && map->format.format_val))
		goto err_map;

	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
	if (map->work_buf == NULL) {
		ret = -ENOMEM;
		goto err_map;
	}

	if (map->format.format_write) {
		map->defer_caching = false;
		map->reg_write = _regmap_bus_formatted_write;
	} else if (map->format.format_val) {
		map->defer_caching = true;
		map->reg_write = _regmap_bus_raw_write;
	}

skip_format_initialization:

	map->range_tree = RB_ROOT;
	for (i = 0; i < config->num_ranges; i++) {
		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
		struct regmap_range_node *new;

		/* Sanity check */
		if (range_cfg->range_max < range_cfg->range_min) {
			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
				range_cfg->range_max, range_cfg->range_min);
			goto err_range;
		}

		if (range_cfg->range_max > map->max_register) {
			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
				range_cfg->range_max, map->max_register);
			goto err_range;
		}

		if (range_cfg->selector_reg > map->max_register) {
			dev_err(map->dev,
				"Invalid range %d: selector out of map\n", i);
			goto err_range;
		}

		if (range_cfg->window_len == 0) {
			dev_err(map->dev, "Invalid range %d: window_len 0\n",
				i);
			goto err_range;
		}

		/* Make sure, that this register range has no selector
		   or data window within its boundary */
		for (j = 0; j < config->num_ranges; j++) {
			unsigned sel_reg = config->ranges[j].selector_reg;
			unsigned win_min = config->ranges[j].window_start;
			unsigned win_max = win_min +
					   config->ranges[j].window_len - 1;

			/* Allow data window inside its own virtual range */
			if (j == i)
				continue;

			if (range_cfg->range_min <= sel_reg &&
			    sel_reg <= range_cfg->range_max) {
				dev_err(map->dev,
					"Range %d: selector for %d in window\n",
					i, j);
				goto err_range;
			}

			if (!(win_max < range_cfg->range_min ||
			      win_min > range_cfg->range_max)) {
				dev_err(map->dev,
					"Range %d: window for %d in window\n",
					i, j);
				goto err_range;
			}
		}

		new = kzalloc(sizeof(*new), GFP_KERNEL);
		if (new == NULL) {
			ret = -ENOMEM;
			goto err_range;
		}

		new->map = map;
		new->name = range_cfg->name;
		new->range_min = range_cfg->range_min;
		new->range_max = range_cfg->range_max;
		new->selector_reg = range_cfg->selector_reg;
		new->selector_mask = range_cfg->selector_mask;
		new->selector_shift = range_cfg->selector_shift;
		new->window_start = range_cfg->window_start;
		new->window_len = range_cfg->window_len;

		if (!_regmap_range_add(map, new)) {
			dev_err(map->dev, "Failed to add range %d\n", i);
			kfree(new);
			goto err_range;
		}

		if (map->selector_work_buf == NULL) {
			map->selector_work_buf =
				kzalloc(map->format.buf_size, GFP_KERNEL);
			if (map->selector_work_buf == NULL) {
				ret = -ENOMEM;
				goto err_range;
			}
		}
	}

	ret = regcache_init(map, config);
	if (ret != 0)
		goto err_range;

	if (dev) {
		ret = regmap_attach_dev(dev, map, config);
		if (ret != 0)
			goto err_regcache;
	}

	return map;

err_regcache:
	regcache_exit(map);
err_range:
	regmap_range_exit(map);
	kfree(map->work_buf);
err_map:
	kfree(map);
err:
	return ERR_PTR(ret);
}
EXPORT_SYMBOL_GPL(__regmap_init);

static void devm_regmap_release(struct device *dev, void *res)
{
	regmap_exit(*(struct regmap **)res);
}

struct regmap *__devm_regmap_init(struct device *dev,
				  const struct regmap_bus *bus,
				  void *bus_context,
				  const struct regmap_config *config,
				  struct lock_class_key *lock_key,
				  const char *lock_name)
{
	struct regmap **ptr, *regmap;

	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return ERR_PTR(-ENOMEM);

	regmap = __regmap_init(dev, bus, bus_context, config,
			       lock_key, lock_name);
	if (!IS_ERR(regmap)) {
		*ptr = regmap;
		devres_add(dev, ptr);
	} else {
		devres_free(ptr);
	}

	return regmap;
}
EXPORT_SYMBOL_GPL(__devm_regmap_init);

static void regmap_field_init(struct regmap_field *rm_field,
	struct regmap *regmap, struct reg_field reg_field)
{
	rm_field->regmap = regmap;
	rm_field->reg = reg_field.reg;
	rm_field->shift = reg_field.lsb;
	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
	rm_field->id_size = reg_field.id_size;
	rm_field->id_offset = reg_field.id_offset;
}

/**
 * devm_regmap_field_alloc(): Allocate and initialise a register field
 * in a register map.
 *
 * @dev: Device that will be interacted with
 * @regmap: regmap bank in which this register field is located.
 * @reg_field: Register field with in the bank.
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap_field. The regmap_field will be automatically freed
 * by the device management code.
 */
struct regmap_field *devm_regmap_field_alloc(struct device *dev,
		struct regmap *regmap, struct reg_field reg_field)
{
	struct regmap_field *rm_field = devm_kzalloc(dev,
					sizeof(*rm_field), GFP_KERNEL);
	if (!rm_field)
		return ERR_PTR(-ENOMEM);

	regmap_field_init(rm_field, regmap, reg_field);

	return rm_field;

}
EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);

/**
 * devm_regmap_field_free(): Free register field allocated using
 * devm_regmap_field_alloc. Usally drivers need not call this function,
 * as the memory allocated via devm will be freed as per device-driver
 * life-cyle.
 *
 * @dev: Device that will be interacted with
 * @field: regmap field which should be freed.
 */
void devm_regmap_field_free(struct device *dev,
	struct regmap_field *field)
{
	devm_kfree(dev, field);
}
EXPORT_SYMBOL_GPL(devm_regmap_field_free);

/**
 * regmap_field_alloc(): Allocate and initialise a register field
 * in a register map.
 *
 * @regmap: regmap bank in which this register field is located.
 * @reg_field: Register field with in the bank.
 *
 * The return value will be an ERR_PTR() on error or a valid pointer
 * to a struct regmap_field. The regmap_field should be freed by the
 * user once its finished working with it using regmap_field_free().
 */
struct regmap_field *regmap_field_alloc(struct regmap *regmap,
		struct reg_field reg_field)
{
	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);

	if (!rm_field)
		return ERR_PTR(-ENOMEM);

	regmap_field_init(rm_field, regmap, reg_field);

	return rm_field;
}
EXPORT_SYMBOL_GPL(regmap_field_alloc);

/**
 * regmap_field_free(): Free register field allocated using regmap_field_alloc
 *
 * @field: regmap field which should be freed.
 */
void regmap_field_free(struct regmap_field *field)
{
	kfree(field);
}
EXPORT_SYMBOL_GPL(regmap_field_free);

/**
 * regmap_reinit_cache(): Reinitialise the current register cache
 *
 * @map: Register map to operate on.
 * @config: New configuration.  Only the cache data will be used.
 *
 * Discard any existing register cache for the map and initialize a
 * new cache.  This can be used to restore the cache to defaults or to
 * update the cache configuration to reflect runtime discovery of the
 * hardware.
 *
 * No explicit locking is done here, the user needs to ensure that
 * this function will not race with other calls to regmap.
 */
int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
{
	regcache_exit(map);
	regmap_debugfs_exit(map);

	map->max_register = config->max_register;
	map->writeable_reg = config->writeable_reg;
	map->readable_reg = config->readable_reg;
	map->volatile_reg = config->volatile_reg;
	map->precious_reg = config->precious_reg;
	map->cache_type = config->cache_type;

	regmap_debugfs_init(map, config->name);

	map->cache_bypass = false;
	map->cache_only = false;

	return regcache_init(map, config);
}
EXPORT_SYMBOL_GPL(regmap_reinit_cache);

/**
 * regmap_exit(): Free a previously allocated register map
 */
void regmap_exit(struct regmap *map)
{
	struct regmap_async *async;

	regcache_exit(map);
	regmap_debugfs_exit(map);
	regmap_range_exit(map);
	if (map->bus && map->bus->free_context)
		map->bus->free_context(map->bus_context);
	kfree(map->work_buf);
	while (!list_empty(&map->async_free)) {
		async = list_first_entry_or_null(&map->async_free,
						 struct regmap_async,
						 list);
		list_del(&async->list);
		kfree(async->work_buf);
		kfree(async);
	}
	kfree(map);
}
EXPORT_SYMBOL_GPL(regmap_exit);

static int dev_get_regmap_match(struct device *dev, void *res, void *data)
{
	struct regmap **r = res;
	if (!r || !*r) {
		WARN_ON(!r || !*r);
		return 0;
	}

	/* If the user didn't specify a name match any */
	if (data)
		return (*r)->name == data;
	else
		return 1;
}

/**
 * dev_get_regmap(): Obtain the regmap (if any) for a device
 *
 * @dev: Device to retrieve the map for
 * @name: Optional name for the register map, usually NULL.
 *
 * Returns the regmap for the device if one is present, or NULL.  If
 * name is specified then it must match the name specified when
 * registering the device, if it is NULL then the first regmap found
 * will be used.  Devices with multiple register maps are very rare,
 * generic code should normally not need to specify a name.
 */
struct regmap *dev_get_regmap(struct device *dev, const char *name)
{
	struct regmap **r = devres_find(dev, dev_get_regmap_release,
					dev_get_regmap_match, (void *)name);

	if (!r)
		return NULL;
	return *r;
}
EXPORT_SYMBOL_GPL(dev_get_regmap);

/**
 * regmap_get_device(): Obtain the device from a regmap
 *
 * @map: Register map to operate on.
 *
 * Returns the underlying device that the regmap has been created for.
 */
struct device *regmap_get_device(struct regmap *map)
{
	return map->dev;
}
EXPORT_SYMBOL_GPL(regmap_get_device);

static int _regmap_select_page(struct regmap *map, unsigned int *reg,
			       struct regmap_range_node *range,
			       unsigned int val_num)
{
	void *orig_work_buf;
	unsigned int win_offset;
	unsigned int win_page;
	bool page_chg;
	int ret;

	win_offset = (*reg - range->range_min) % range->window_len;
	win_page = (*reg - range->range_min) / range->window_len;

	if (val_num > 1) {
		/* Bulk write shouldn't cross range boundary */
		if (*reg + val_num - 1 > range->range_max)
			return -EINVAL;

		/* ... or single page boundary */
		if (val_num > range->window_len - win_offset)
			return -EINVAL;
	}

	/* It is possible to have selector register inside data window.
	   In that case, selector register is located on every page and
	   it needs no page switching, when accessed alone. */
	if (val_num > 1 ||
	    range->window_start + win_offset != range->selector_reg) {
		/* Use separate work_buf during page switching */
		orig_work_buf = map->work_buf;
		map->work_buf = map->selector_work_buf;

		ret = _regmap_update_bits(map, range->selector_reg,
					  range->selector_mask,
					  win_page << range->selector_shift,
					  &page_chg, false);

		map->work_buf = orig_work_buf;

		if (ret != 0)
			return ret;
	}

	*reg = range->window_start + win_offset;

	return 0;
}

int _regmap_raw_write(struct regmap *map, unsigned int reg,
		      const void *val, size_t val_len)
{
	struct regmap_range_node *range;
	unsigned long flags;
	u8 *u8 = map->work_buf;
	void *work_val = map->work_buf + map->format.reg_bytes +
		map->format.pad_bytes;
	void *buf;
	int ret = -ENOTSUPP;
	size_t len;
	int i;

	WARN_ON(!map->bus);

	/* Check for unwritable registers before we start */
	if (map->writeable_reg)
		for (i = 0; i < val_len / map->format.val_bytes; i++)
			if (!map->writeable_reg(map->dev,
					       reg + regmap_get_offset(map, i)))
				return -EINVAL;

	if (!map->cache_bypass && map->format.parse_val) {
		unsigned int ival;
		int val_bytes = map->format.val_bytes;
		for (i = 0; i < val_len / val_bytes; i++) {
			ival = map->format.parse_val(val + (i * val_bytes));
			ret = regcache_write(map,
					     reg + regmap_get_offset(map, i),
					     ival);
			if (ret) {
				dev_err(map->dev,
					"Error in caching of register: %x ret: %d\n",
					reg + i, ret);
				return ret;
			}
		}
		if (map->cache_only) {
			map->cache_dirty = true;
			return 0;
		}
	}

	range = _regmap_range_lookup(map, reg);
	if (range) {
		int val_num = val_len / map->format.val_bytes;
		int win_offset = (reg - range->range_min) % range->window_len;
		int win_residue = range->window_len - win_offset;

		/* If the write goes beyond the end of the window split it */
		while (val_num > win_residue) {
			dev_dbg(map->dev, "Writing window %d/%zu\n",
				win_residue, val_len / map->format.val_bytes);
			ret = _regmap_raw_write(map, reg, val, win_residue *
						map->format.val_bytes);
			if (ret != 0)
				return ret;

			reg += win_residue;
			val_num -= win_residue;
			val += win_residue * map->format.val_bytes;
			val_len -= win_residue * map->format.val_bytes;

			win_offset = (reg - range->range_min) %
				range->window_len;
			win_residue = range->window_len - win_offset;
		}

		ret = _regmap_select_page(map, &reg, range, val_num);
		if (ret != 0)
			return ret;
	}

	map->format.format_reg(map->work_buf, reg, map->reg_shift);

	u8[0] |= map->write_flag_mask;

	/*
	 * Essentially all I/O mechanisms will be faster with a single
	 * buffer to write.  Since register syncs often generate raw
	 * writes of single registers optimise that case.
	 */
	if (val != work_val && val_len == map->format.val_bytes) {
		memcpy(work_val, val, map->format.val_bytes);
		val = work_val;
	}

	if (map->async && map->bus->async_write) {
		struct regmap_async *async;

		trace_regmap_async_write_start(map, reg, val_len);

		spin_lock_irqsave(&map->async_lock, flags);
		async = list_first_entry_or_null(&map->async_free,
						 struct regmap_async,
						 list);
		if (async)
			list_del(&async->list);
		spin_unlock_irqrestore(&map->async_lock, flags);

		if (!async) {
			async = map->bus->async_alloc();
			if (!async)
				return -ENOMEM;

			async->work_buf = kzalloc(map->format.buf_size,
						  GFP_KERNEL | GFP_DMA);
			if (!async->work_buf) {
				kfree(async);
				return -ENOMEM;
			}
		}

		async->map = map;

		/* If the caller supplied the value we can use it safely. */
		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
		       map->format.reg_bytes + map->format.val_bytes);

		spin_lock_irqsave(&map->async_lock, flags);
		list_add_tail(&async->list, &map->async_list);
		spin_unlock_irqrestore(&map->async_lock, flags);

		if (val != work_val)
			ret = map->bus->async_write(map->bus_context,
						    async->work_buf,
						    map->format.reg_bytes +
						    map->format.pad_bytes,
						    val, val_len, async);
		else
			ret = map->bus->async_write(map->bus_context,
						    async->work_buf,
						    map->format.reg_bytes +
						    map->format.pad_bytes +
						    val_len, NULL, 0, async);

		if (ret != 0) {
			dev_err(map->dev, "Failed to schedule write: %d\n",
				ret);

			spin_lock_irqsave(&map->async_lock, flags);
			list_move(&async->list, &map->async_free);
			spin_unlock_irqrestore(&map->async_lock, flags);
		}

		return ret;
	}

	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);

	/* If we're doing a single register write we can probably just
	 * send the work_buf directly, otherwise try to do a gather
	 * write.
	 */
	if (val == work_val)
		ret = map->bus->write(map->bus_context, map->work_buf,
				      map->format.reg_bytes +
				      map->format.pad_bytes +
				      val_len);
	else if (map->bus->gather_write)
		ret = map->bus->gather_write(map->bus_context, map->work_buf,
					     map->format.reg_bytes +
					     map->format.pad_bytes,
					     val, val_len);

	/* If that didn't work fall back on linearising by hand. */
	if (ret == -ENOTSUPP) {
		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
		buf = kzalloc(len, GFP_KERNEL);
		if (!buf)
			return -ENOMEM;

		memcpy(buf, map->work_buf, map->format.reg_bytes);
		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
		       val, val_len);
		ret = map->bus->write(map->bus_context, buf, len);

		kfree(buf);
	} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
		regcache_drop_region(map, reg, reg + 1);
	}

	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);

	return ret;
}

/**
 * regmap_can_raw_write - Test if regmap_raw_write() is supported
 *
 * @map: Map to check.
 */
bool regmap_can_raw_write(struct regmap *map)
{
	return map->bus && map->bus->write && map->format.format_val &&
		map->format.format_reg;
}
EXPORT_SYMBOL_GPL(regmap_can_raw_write);

/**
 * regmap_get_raw_read_max - Get the maximum size we can read
 *
 * @map: Map to check.
 */
size_t regmap_get_raw_read_max(struct regmap *map)
{
	return map->max_raw_read;
}
EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);

/**
 * regmap_get_raw_write_max - Get the maximum size we can read
 *
 * @map: Map to check.
 */
size_t regmap_get_raw_write_max(struct regmap *map)
{
	return map->max_raw_write;
}
EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);

static int _regmap_bus_formatted_write(void *context, unsigned int reg,
				       unsigned int val)
{
	int ret;
	struct regmap_range_node *range;
	struct regmap *map = context;

	WARN_ON(!map->bus || !map->format.format_write);

	range = _regmap_range_lookup(map, reg);
	if (range) {
		ret = _regmap_select_page(map, &reg, range, 1);
		if (ret != 0)
			return ret;
	}

	map->format.format_write(map, reg, val);

	trace_regmap_hw_write_start(map, reg, 1);

	ret = map->bus->write(map->bus_context, map->work_buf,
			      map->format.buf_size);

	trace_regmap_hw_write_done(map, reg, 1);

	return ret;
}

static int _regmap_bus_reg_write(void *context, unsigned int reg,
				 unsigned int val)
{
	struct regmap *map = context;

	return map->bus->reg_write(map->bus_context, reg, val);
}

static int _regmap_bus_raw_write(void *context, unsigned int reg,
				 unsigned int val)
{
	struct regmap *map = context;

	WARN_ON(!map->bus || !map->format.format_val);

	map->format.format_val(map->work_buf + map->format.reg_bytes
			       + map->format.pad_bytes, val, 0);
	return _regmap_raw_write(map, reg,
				 map->work_buf +
				 map->format.reg_bytes +
				 map->format.pad_bytes,
				 map->format.val_bytes);
}

static inline void *_regmap_map_get_context(struct regmap *map)
{
	return (map->bus) ? map : map->bus_context;
}

int _regmap_write(struct regmap *map, unsigned int reg,
		  unsigned int val)
{
	int ret;
	void *context = _regmap_map_get_context(map);

	if (!regmap_writeable(map, reg))
		return -EIO;

	if (!map->cache_bypass && !map->defer_caching) {
		ret = regcache_write(map, reg, val);
		if (ret != 0)
			return ret;
		if (map->cache_only) {
			map->cache_dirty = true;
			return 0;
		}
	}

#ifdef LOG_DEVICE
	if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
		dev_info(map->dev, "%x <= %x\n", reg, val);
#endif

	trace_regmap_reg_write(map, reg, val);

	return map->reg_write(context, reg, val);
}

/**
 * regmap_write(): Write a value to a single register
 *
 * @map: Register map to write to
 * @reg: Register to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
{
	int ret;

	if (!IS_ALIGNED(reg, map->reg_stride))
		return -EINVAL;

	map->lock(map->lock_arg);

	ret = _regmap_write(map, reg, val);

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_write);

/**
 * regmap_write_async(): Write a value to a single register asynchronously
 *
 * @map: Register map to write to
 * @reg: Register to write to
 * @val: Value to be written
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
{
	int ret;

	if (!IS_ALIGNED(reg, map->reg_stride))
		return -EINVAL;

	map->lock(map->lock_arg);

	map->async = true;

	ret = _regmap_write(map, reg, val);

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_write_async);

/**
 * regmap_raw_write(): Write raw values to one or more registers
 *
 * @map: Register map to write to
 * @reg: Initial register to write to
 * @val: Block of data to be written, laid out for direct transmission to the
 *       device
 * @val_len: Length of data pointed to by val.
 *
 * This function is intended to be used for things like firmware
 * download where a large block of data needs to be transferred to the
 * device.  No formatting will be done on the data provided.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_write(struct regmap *map, unsigned int reg,
		     const void *val, size_t val_len)
{
	int ret;

	if (!regmap_can_raw_write(map))
		return -EINVAL;
	if (val_len % map->format.val_bytes)
		return -EINVAL;
	if (map->max_raw_write && map->max_raw_write > val_len)
		return -E2BIG;

	map->lock(map->lock_arg);

	ret = _regmap_raw_write(map, reg, val, val_len);

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_write);

/**
 * regmap_field_update_bits_base():
 *	Perform a read/modify/write cycle on the register field
 *	with change, async, force option
 *
 * @field: Register field to write to
 * @mask: Bitmask to change
 * @val: Value to be written
 * @change: Boolean indicating if a write was done
 * @async: Boolean indicating asynchronously
 * @force: Boolean indicating use force update
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_field_update_bits_base(struct regmap_field *field,
				  unsigned int mask, unsigned int val,
				  bool *change, bool async, bool force)
{
	mask = (mask << field->shift) & field->mask;

	return regmap_update_bits_base(field->regmap, field->reg,
				       mask, val << field->shift,
				       change, async, force);
}
EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);

/**
 * regmap_fields_update_bits_base():
 *	Perform a read/modify/write cycle on the register field
 *	with change, async, force option
 *
 * @field: Register field to write to
 * @id: port ID
 * @mask: Bitmask to change
 * @val: Value to be written
 * @change: Boolean indicating if a write was done
 * @async: Boolean indicating asynchronously
 * @force: Boolean indicating use force update
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_fields_update_bits_base(struct regmap_field *field,  unsigned int id,
				   unsigned int mask, unsigned int val,
				   bool *change, bool async, bool force)
{
	if (id >= field->id_size)
		return -EINVAL;

	mask = (mask << field->shift) & field->mask;

	return regmap_update_bits_base(field->regmap,
				       field->reg + (field->id_offset * id),
				       mask, val << field->shift,
				       change, async, force);
}
EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);

/*
 * regmap_bulk_write(): Write multiple registers to the device
 *
 * @map: Register map to write to
 * @reg: First register to be write from
 * @val: Block of data to be written, in native register size for device
 * @val_count: Number of registers to write
 *
 * This function is intended to be used for writing a large block of
 * data to the device either in single transfer or multiple transfer.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
		     size_t val_count)
{
	int ret = 0, i;
	size_t val_bytes = map->format.val_bytes;
	size_t total_size = val_bytes * val_count;

	if (!IS_ALIGNED(reg, map->reg_stride))
		return -EINVAL;

	/*
	 * Some devices don't support bulk write, for
	 * them we have a series of single write operations in the first two if
	 * blocks.
	 *
	 * The first if block is used for memory mapped io. It does not allow
	 * val_bytes of 3 for example.
	 * The second one is for busses that do not provide raw I/O.
	 * The third one is used for busses which do not have these limitations
	 * and can write arbitrary value lengths.
	 */
	if (!map->bus) {
		map->lock(map->lock_arg);
		for (i = 0; i < val_count; i++) {
			unsigned int ival;

			switch (val_bytes) {
			case 1:
				ival = *(u8 *)(val + (i * val_bytes));
				break;
			case 2:
				ival = *(u16 *)(val + (i * val_bytes));
				break;
			case 4:
				ival = *(u32 *)(val + (i * val_bytes));
				break;
#ifdef CONFIG_64BIT
			case 8:
				ival = *(u64 *)(val + (i * val_bytes));
				break;
#endif
			default:
				ret = -EINVAL;
				goto out;
			}

			ret = _regmap_write(map,
					    reg + regmap_get_offset(map, i),
					    ival);
			if (ret != 0)
				goto out;
		}
out:
		map->unlock(map->lock_arg);
	} else if (map->bus && !map->format.parse_inplace) {
		const u8 *u8 = val;
		const u16 *u16 = val;
		const u32 *u32 = val;
		unsigned int ival;

		for (i = 0; i < val_count; i++) {
			switch (map->format.val_bytes) {
			case 4:
				ival = u32[i];
				break;
			case 2:
				ival = u16[i];
				break;
			case 1:
				ival = u8[i];
				break;
			default:
				return -EINVAL;
			}

			ret = regmap_write(map, reg + (i * map->reg_stride),
					   ival);
			if (ret)
				return ret;
		}
	} else if (map->use_single_write ||
		   (map->max_raw_write && map->max_raw_write < total_size)) {
		int chunk_stride = map->reg_stride;
		size_t chunk_size = val_bytes;
		size_t chunk_count = val_count;

		if (!map->use_single_write) {
			chunk_size = map->max_raw_write;
			if (chunk_size % val_bytes)
				chunk_size -= chunk_size % val_bytes;
			chunk_count = total_size / chunk_size;
			chunk_stride *= chunk_size / val_bytes;
		}

		map->lock(map->lock_arg);
		/* Write as many bytes as possible with chunk_size */
		for (i = 0; i < chunk_count; i++) {
			ret = _regmap_raw_write(map,
						reg + (i * chunk_stride),
						val + (i * chunk_size),
						chunk_size);
			if (ret)
				break;
		}

		/* Write remaining bytes */
		if (!ret && chunk_size * i < total_size) {
			ret = _regmap_raw_write(map, reg + (i * chunk_stride),
						val + (i * chunk_size),
						total_size - i * chunk_size);
		}
		map->unlock(map->lock_arg);
	} else {
		void *wval;

		if (!val_count)
			return -EINVAL;

		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
		if (!wval) {
			dev_err(map->dev, "Error in memory allocation\n");
			return -ENOMEM;
		}
		for (i = 0; i < val_count * val_bytes; i += val_bytes)
			map->format.parse_inplace(wval + i);

		map->lock(map->lock_arg);
		ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
		map->unlock(map->lock_arg);

		kfree(wval);
	}
	return ret;
}
EXPORT_SYMBOL_GPL(regmap_bulk_write);

/*
 * _regmap_raw_multi_reg_write()
 *
 * the (register,newvalue) pairs in regs have not been formatted, but
 * they are all in the same page and have been changed to being page
 * relative. The page register has been written if that was necessary.
 */
static int _regmap_raw_multi_reg_write(struct regmap *map,
				       const struct reg_sequence *regs,
				       size_t num_regs)
{
	int ret;
	void *buf;
	int i;
	u8 *u8;
	size_t val_bytes = map->format.val_bytes;
	size_t reg_bytes = map->format.reg_bytes;
	size_t pad_bytes = map->format.pad_bytes;
	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
	size_t len = pair_size * num_regs;

	if (!len)
		return -EINVAL;

	buf = kzalloc(len, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	/* We have to linearise by hand. */

	u8 = buf;

	for (i = 0; i < num_regs; i++) {
		unsigned int reg = regs[i].reg;
		unsigned int val = regs[i].def;
		trace_regmap_hw_write_start(map, reg, 1);
		map->format.format_reg(u8, reg, map->reg_shift);
		u8 += reg_bytes + pad_bytes;
		map->format.format_val(u8, val, 0);
		u8 += val_bytes;
	}
	u8 = buf;
	*u8 |= map->write_flag_mask;

	ret = map->bus->write(map->bus_context, buf, len);

	kfree(buf);

	for (i = 0; i < num_regs; i++) {
		int reg = regs[i].reg;
		trace_regmap_hw_write_done(map, reg, 1);
	}
	return ret;
}

static unsigned int _regmap_register_page(struct regmap *map,
					  unsigned int reg,
					  struct regmap_range_node *range)
{
	unsigned int win_page = (reg - range->range_min) / range->window_len;

	return win_page;
}

static int _regmap_range_multi_paged_reg_write(struct regmap *map,
					       struct reg_sequence *regs,
					       size_t num_regs)
{
	int ret;
	int i, n;
	struct reg_sequence *base;
	unsigned int this_page = 0;
	unsigned int page_change = 0;
	/*
	 * the set of registers are not neccessarily in order, but
	 * since the order of write must be preserved this algorithm
	 * chops the set each time the page changes. This also applies
	 * if there is a delay required at any point in the sequence.
	 */
	base = regs;
	for (i = 0, n = 0; i < num_regs; i++, n++) {
		unsigned int reg = regs[i].reg;
		struct regmap_range_node *range;

		range = _regmap_range_lookup(map, reg);
		if (range) {
			unsigned int win_page = _regmap_register_page(map, reg,
								      range);

			if (i == 0)
				this_page = win_page;
			if (win_page != this_page) {
				this_page = win_page;
				page_change = 1;
			}
		}

		/* If we have both a page change and a delay make sure to
		 * write the regs and apply the delay before we change the
		 * page.
		 */

		if (page_change || regs[i].delay_us) {

				/* For situations where the first write requires
				 * a delay we need to make sure we don't call
				 * raw_multi_reg_write with n=0
				 * This can't occur with page breaks as we
				 * never write on the first iteration
				 */
				if (regs[i].delay_us && i == 0)
					n = 1;

				ret = _regmap_raw_multi_reg_write(map, base, n);
				if (ret != 0)
					return ret;

				if (regs[i].delay_us)
					udelay(regs[i].delay_us);

				base += n;
				n = 0;

				if (page_change) {
					ret = _regmap_select_page(map,
								  &base[n].reg,
								  range, 1);
					if (ret != 0)
						return ret;

					page_change = 0;
				}

		}

	}
	if (n > 0)
		return _regmap_raw_multi_reg_write(map, base, n);
	return 0;
}

static int _regmap_multi_reg_write(struct regmap *map,
				   const struct reg_sequence *regs,
				   size_t num_regs)
{
	int i;
	int ret;

	if (!map->can_multi_write) {
		for (i = 0; i < num_regs; i++) {
			ret = _regmap_write(map, regs[i].reg, regs[i].def);
			if (ret != 0)
				return ret;

			if (regs[i].delay_us)
				udelay(regs[i].delay_us);
		}
		return 0;
	}

	if (!map->format.parse_inplace)
		return -EINVAL;

	if (map->writeable_reg)
		for (i = 0; i < num_regs; i++) {
			int reg = regs[i].reg;
			if (!map->writeable_reg(map->dev, reg))
				return -EINVAL;
			if (!IS_ALIGNED(reg, map->reg_stride))
				return -EINVAL;
		}

	if (!map->cache_bypass) {
		for (i = 0; i < num_regs; i++) {
			unsigned int val = regs[i].def;
			unsigned int reg = regs[i].reg;
			ret = regcache_write(map, reg, val);
			if (ret) {
				dev_err(map->dev,
				"Error in caching of register: %x ret: %d\n",
								reg, ret);
				return ret;
			}
		}
		if (map->cache_only) {
			map->cache_dirty = true;
			return 0;
		}
	}

	WARN_ON(!map->bus);

	for (i = 0; i < num_regs; i++) {
		unsigned int reg = regs[i].reg;
		struct regmap_range_node *range;

		/* Coalesce all the writes between a page break or a delay
		 * in a sequence
		 */
		range = _regmap_range_lookup(map, reg);
		if (range || regs[i].delay_us) {
			size_t len = sizeof(struct reg_sequence)*num_regs;
			struct reg_sequence *base = kmemdup(regs, len,
							   GFP_KERNEL);
			if (!base)
				return -ENOMEM;
			ret = _regmap_range_multi_paged_reg_write(map, base,
								  num_regs);
			kfree(base);

			return ret;
		}
	}
	return _regmap_raw_multi_reg_write(map, regs, num_regs);
}

/*
 * regmap_multi_reg_write(): Write multiple registers to the device
 *
 * where the set of register,value pairs are supplied in any order,
 * possibly not all in a single range.
 *
 * @map: Register map to write to
 * @regs: Array of structures containing register,value to be written
 * @num_regs: Number of registers to write
 *
 * The 'normal' block write mode will send ultimately send data on the
 * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
 * addressed. However, this alternative block multi write mode will send
 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
 * must of course support the mode.
 *
 * A value of zero will be returned on success, a negative errno will be
 * returned in error cases.
 */
int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
			   int num_regs)
{
	int ret;

	map->lock(map->lock_arg);

	ret = _regmap_multi_reg_write(map, regs, num_regs);

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_multi_reg_write);

/*
 * regmap_multi_reg_write_bypassed(): Write multiple registers to the
 *                                    device but not the cache
 *
 * where the set of register are supplied in any order
 *
 * @map: Register map to write to
 * @regs: Array of structures containing register,value to be written
 * @num_regs: Number of registers to write
 *
 * This function is intended to be used for writing a large block of data
 * atomically to the device in single transfer for those I2C client devices
 * that implement this alternative block write mode.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_multi_reg_write_bypassed(struct regmap *map,
				    const struct reg_sequence *regs,
				    int num_regs)
{
	int ret;
	bool bypass;

	map->lock(map->lock_arg);

	bypass = map->cache_bypass;
	map->cache_bypass = true;

	ret = _regmap_multi_reg_write(map, regs, num_regs);

	map->cache_bypass = bypass;

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);

/**
 * regmap_raw_write_async(): Write raw values to one or more registers
 *                           asynchronously
 *
 * @map: Register map to write to
 * @reg: Initial register to write to
 * @val: Block of data to be written, laid out for direct transmission to the
 *       device.  Must be valid until regmap_async_complete() is called.
 * @val_len: Length of data pointed to by val.
 *
 * This function is intended to be used for things like firmware
 * download where a large block of data needs to be transferred to the
 * device.  No formatting will be done on the data provided.
 *
 * If supported by the underlying bus the write will be scheduled
 * asynchronously, helping maximise I/O speed on higher speed buses
 * like SPI.  regmap_async_complete() can be called to ensure that all
 * asynchrnous writes have been completed.
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_write_async(struct regmap *map, unsigned int reg,
			   const void *val, size_t val_len)
{
	int ret;

	if (val_len % map->format.val_bytes)
		return -EINVAL;
	if (!IS_ALIGNED(reg, map->reg_stride))
		return -EINVAL;

	map->lock(map->lock_arg);

	map->async = true;

	ret = _regmap_raw_write(map, reg, val, val_len);

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_write_async);

static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
			    unsigned int val_len)
{
	struct regmap_range_node *range;
	u8 *u8 = map->work_buf;
	int ret;

	WARN_ON(!map->bus);

	if (!map->bus || !map->bus->read)
		return -EINVAL;

	range = _regmap_range_lookup(map, reg);
	if (range) {
		ret = _regmap_select_page(map, &reg, range,
					  val_len / map->format.val_bytes);
		if (ret != 0)
			return ret;
	}

	map->format.format_reg(map->work_buf, reg, map->reg_shift);

	/*
	 * Some buses or devices flag reads by setting the high bits in the
	 * register address; since it's always the high bits for all
	 * current formats we can do this here rather than in
	 * formatting.  This may break if we get interesting formats.
	 */
	u8[0] |= map->read_flag_mask;

	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);

	ret = map->bus->read(map->bus_context, map->work_buf,
			     map->format.reg_bytes + map->format.pad_bytes,
			     val, val_len);

	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);

	return ret;
}

static int _regmap_bus_reg_read(void *context, unsigned int reg,
				unsigned int *val)
{
	struct regmap *map = context;

	return map->bus->reg_read(map->bus_context, reg, val);
}

static int _regmap_bus_read(void *context, unsigned int reg,
			    unsigned int *val)
{
	int ret;
	struct regmap *map = context;

	if (!map->format.parse_val)
		return -EINVAL;

	ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
	if (ret == 0)
		*val = map->format.parse_val(map->work_buf);

	return ret;
}

static int _regmap_read(struct regmap *map, unsigned int reg,
			unsigned int *val)
{
	int ret;
	void *context = _regmap_map_get_context(map);

	if (!map->cache_bypass) {
		ret = regcache_read(map, reg, val);
		if (ret == 0)
			return 0;
	}

	if (map->cache_only)
		return -EBUSY;

	if (!regmap_readable(map, reg))
		return -EIO;

	ret = map->reg_read(context, reg, val);
	if (ret == 0) {
#ifdef LOG_DEVICE
		if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
			dev_info(map->dev, "%x => %x\n", reg, *val);
#endif

		trace_regmap_reg_read(map, reg, *val);

		if (!map->cache_bypass)
			regcache_write(map, reg, *val);
	}

	return ret;
}

/**
 * regmap_read(): Read a value from a single register
 *
 * @map: Register map to read from
 * @reg: Register to be read from
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
{
	int ret;

	if (!IS_ALIGNED(reg, map->reg_stride))
		return -EINVAL;

	map->lock(map->lock_arg);

	ret = _regmap_read(map, reg, val);

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_read);

/**
 * regmap_raw_read(): Read raw data from the device
 *
 * @map: Register map to read from
 * @reg: First register to be read from
 * @val: Pointer to store read value
 * @val_len: Size of data to read
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
		    size_t val_len)
{
	size_t val_bytes = map->format.val_bytes;
	size_t val_count = val_len / val_bytes;
	unsigned int v;
	int ret, i;

	if (!map->bus)
		return -EINVAL;
	if (val_len % map->format.val_bytes)
		return -EINVAL;
	if (!IS_ALIGNED(reg, map->reg_stride))
		return -EINVAL;
	if (val_count == 0)
		return -EINVAL;

	map->lock(map->lock_arg);

	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
	    map->cache_type == REGCACHE_NONE) {
		if (!map->bus->read) {
			ret = -ENOTSUPP;
			goto out;
		}
		if (map->max_raw_read && map->max_raw_read < val_len) {
			ret = -E2BIG;
			goto out;
		}

		/* Physical block read if there's no cache involved */
		ret = _regmap_raw_read(map, reg, val, val_len);

	} else {
		/* Otherwise go word by word for the cache; should be low
		 * cost as we expect to hit the cache.
		 */
		for (i = 0; i < val_count; i++) {
			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
					   &v);
			if (ret != 0)
				goto out;

			map->format.format_val(val + (i * val_bytes), v, 0);
		}
	}

 out:
	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_raw_read);

/**
 * regmap_field_read(): Read a value to a single register field
 *
 * @field: Register field to read from
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_field_read(struct regmap_field *field, unsigned int *val)
{
	int ret;
	unsigned int reg_val;
	ret = regmap_read(field->regmap, field->reg, &reg_val);
	if (ret != 0)
		return ret;

	reg_val &= field->mask;
	reg_val >>= field->shift;
	*val = reg_val;

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_field_read);

/**
 * regmap_fields_read(): Read a value to a single register field with port ID
 *
 * @field: Register field to read from
 * @id: port ID
 * @val: Pointer to store read value
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_fields_read(struct regmap_field *field, unsigned int id,
		       unsigned int *val)
{
	int ret;
	unsigned int reg_val;

	if (id >= field->id_size)
		return -EINVAL;

	ret = regmap_read(field->regmap,
			  field->reg + (field->id_offset * id),
			  &reg_val);
	if (ret != 0)
		return ret;

	reg_val &= field->mask;
	reg_val >>= field->shift;
	*val = reg_val;

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_fields_read);

/**
 * regmap_bulk_read(): Read multiple registers from the device
 *
 * @map: Register map to read from
 * @reg: First register to be read from
 * @val: Pointer to store read value, in native register size for device
 * @val_count: Number of registers to read
 *
 * A value of zero will be returned on success, a negative errno will
 * be returned in error cases.
 */
int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
		     size_t val_count)
{
	int ret, i;
	size_t val_bytes = map->format.val_bytes;
	bool vol = regmap_volatile_range(map, reg, val_count);

	if (!IS_ALIGNED(reg, map->reg_stride))
		return -EINVAL;

	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
		/*
		 * Some devices does not support bulk read, for
		 * them we have a series of single read operations.
		 */
		size_t total_size = val_bytes * val_count;

		if (!map->use_single_read &&
		    (!map->max_raw_read || map->max_raw_read > total_size)) {
			ret = regmap_raw_read(map, reg, val,
					      val_bytes * val_count);
			if (ret != 0)
				return ret;
		} else {
			/*
			 * Some devices do not support bulk read or do not
			 * support large bulk reads, for them we have a series
			 * of read operations.
			 */
			int chunk_stride = map->reg_stride;
			size_t chunk_size = val_bytes;
			size_t chunk_count = val_count;

			if (!map->use_single_read) {
				chunk_size = map->max_raw_read;
				if (chunk_size % val_bytes)
					chunk_size -= chunk_size % val_bytes;
				chunk_count = total_size / chunk_size;
				chunk_stride *= chunk_size / val_bytes;
			}

			/* Read bytes that fit into a multiple of chunk_size */
			for (i = 0; i < chunk_count; i++) {
				ret = regmap_raw_read(map,
						      reg + (i * chunk_stride),
						      val + (i * chunk_size),
						      chunk_size);
				if (ret != 0)
					return ret;
			}

			/* Read remaining bytes */
			if (chunk_size * i < total_size) {
				ret = regmap_raw_read(map,
						      reg + (i * chunk_stride),
						      val + (i * chunk_size),
						      total_size - i * chunk_size);
				if (ret != 0)
					return ret;
			}
		}

		for (i = 0; i < val_count * val_bytes; i += val_bytes)
			map->format.parse_inplace(val + i);
	} else {
		for (i = 0; i < val_count; i++) {
			unsigned int ival;
			ret = regmap_read(map, reg + regmap_get_offset(map, i),
					  &ival);
			if (ret != 0)
				return ret;

			if (map->format.format_val) {
				map->format.format_val(val + (i * val_bytes), ival, 0);
			} else {
				/* Devices providing read and write
				 * operations can use the bulk I/O
				 * functions if they define a val_bytes,
				 * we assume that the values are native
				 * endian.
				 */
#ifdef CONFIG_64BIT
				u64 *u64 = val;
#endif
				u32 *u32 = val;
				u16 *u16 = val;
				u8 *u8 = val;

				switch (map->format.val_bytes) {
#ifdef CONFIG_64BIT
				case 8:
					u64[i] = ival;
					break;
#endif
				case 4:
					u32[i] = ival;
					break;
				case 2:
					u16[i] = ival;
					break;
				case 1:
					u8[i] = ival;
					break;
				default:
					return -EINVAL;
				}
			}
		}
	}

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_bulk_read);

static int _regmap_update_bits(struct regmap *map, unsigned int reg,
			       unsigned int mask, unsigned int val,
			       bool *change, bool force_write)
{
	int ret;
	unsigned int tmp, orig;

	if (change)
		*change = false;

	if (regmap_volatile(map, reg) && map->reg_update_bits) {
		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
		if (ret == 0 && change)
			*change = true;
	} else {
		ret = _regmap_read(map, reg, &orig);
		if (ret != 0)
			return ret;

		tmp = orig & ~mask;
		tmp |= val & mask;

		if (force_write || (tmp != orig)) {
			ret = _regmap_write(map, reg, tmp);
			if (ret == 0 && change)
				*change = true;
		}
	}

	return ret;
}

/**
 * regmap_update_bits_base:
 *	Perform a read/modify/write cycle on the
 *	register map with change, async, force option
 *
 * @map: Register map to update
 * @reg: Register to update
 * @mask: Bitmask to change
 * @val: New value for bitmask
 * @change: Boolean indicating if a write was done
 * @async: Boolean indicating asynchronously
 * @force: Boolean indicating use force update
 *
 * if async was true,
 * With most buses the read must be done synchronously so this is most
 * useful for devices with a cache which do not need to interact with
 * the hardware to determine the current register value.
 *
 * Returns zero for success, a negative number on error.
 */
int regmap_update_bits_base(struct regmap *map, unsigned int reg,
			    unsigned int mask, unsigned int val,
			    bool *change, bool async, bool force)
{
	int ret;

	map->lock(map->lock_arg);

	map->async = async;

	ret = _regmap_update_bits(map, reg, mask, val, change, force);

	map->async = false;

	map->unlock(map->lock_arg);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_update_bits_base);

void regmap_async_complete_cb(struct regmap_async *async, int ret)
{
	struct regmap *map = async->map;
	bool wake;

	trace_regmap_async_io_complete(map);

	spin_lock(&map->async_lock);
	list_move(&async->list, &map->async_free);
	wake = list_empty(&map->async_list);

	if (ret != 0)
		map->async_ret = ret;

	spin_unlock(&map->async_lock);

	if (wake)
		wake_up(&map->async_waitq);
}
EXPORT_SYMBOL_GPL(regmap_async_complete_cb);

static int regmap_async_is_done(struct regmap *map)
{
	unsigned long flags;
	int ret;

	spin_lock_irqsave(&map->async_lock, flags);
	ret = list_empty(&map->async_list);
	spin_unlock_irqrestore(&map->async_lock, flags);

	return ret;
}

/**
 * regmap_async_complete: Ensure all asynchronous I/O has completed.
 *
 * @map: Map to operate on.
 *
 * Blocks until any pending asynchronous I/O has completed.  Returns
 * an error code for any failed I/O operations.
 */
int regmap_async_complete(struct regmap *map)
{
	unsigned long flags;
	int ret;

	/* Nothing to do with no async support */
	if (!map->bus || !map->bus->async_write)
		return 0;

	trace_regmap_async_complete_start(map);

	wait_event(map->async_waitq, regmap_async_is_done(map));

	spin_lock_irqsave(&map->async_lock, flags);
	ret = map->async_ret;
	map->async_ret = 0;
	spin_unlock_irqrestore(&map->async_lock, flags);

	trace_regmap_async_complete_done(map);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_async_complete);

/**
 * regmap_register_patch: Register and apply register updates to be applied
 *                        on device initialistion
 *
 * @map: Register map to apply updates to.
 * @regs: Values to update.
 * @num_regs: Number of entries in regs.
 *
 * Register a set of register updates to be applied to the device
 * whenever the device registers are synchronised with the cache and
 * apply them immediately.  Typically this is used to apply
 * corrections to be applied to the device defaults on startup, such
 * as the updates some vendors provide to undocumented registers.
 *
 * The caller must ensure that this function cannot be called
 * concurrently with either itself or regcache_sync().
 */
int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
			  int num_regs)
{
	struct reg_sequence *p;
	int ret;
	bool bypass;

	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
	    num_regs))
		return 0;

	p = krealloc(map->patch,
		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
		     GFP_KERNEL);
	if (p) {
		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
		map->patch = p;
		map->patch_regs += num_regs;
	} else {
		return -ENOMEM;
	}

	map->lock(map->lock_arg);

	bypass = map->cache_bypass;

	map->cache_bypass = true;
	map->async = true;

	ret = _regmap_multi_reg_write(map, regs, num_regs);

	map->async = false;
	map->cache_bypass = bypass;

	map->unlock(map->lock_arg);

	regmap_async_complete(map);

	return ret;
}
EXPORT_SYMBOL_GPL(regmap_register_patch);

/*
 * regmap_get_val_bytes(): Report the size of a register value
 *
 * Report the size of a register value, mainly intended to for use by
 * generic infrastructure built on top of regmap.
 */
int regmap_get_val_bytes(struct regmap *map)
{
	if (map->format.format_write)
		return -EINVAL;

	return map->format.val_bytes;
}
EXPORT_SYMBOL_GPL(regmap_get_val_bytes);

/**
 * regmap_get_max_register(): Report the max register value
 *
 * Report the max register value, mainly intended to for use by
 * generic infrastructure built on top of regmap.
 */
int regmap_get_max_register(struct regmap *map)
{
	return map->max_register ? map->max_register : -EINVAL;
}
EXPORT_SYMBOL_GPL(regmap_get_max_register);

/**
 * regmap_get_reg_stride(): Report the register address stride
 *
 * Report the register address stride, mainly intended to for use by
 * generic infrastructure built on top of regmap.
 */
int regmap_get_reg_stride(struct regmap *map)
{
	return map->reg_stride;
}
EXPORT_SYMBOL_GPL(regmap_get_reg_stride);

int regmap_parse_val(struct regmap *map, const void *buf,
			unsigned int *val)
{
	if (!map->format.parse_val)
		return -EINVAL;

	*val = map->format.parse_val(buf);

	return 0;
}
EXPORT_SYMBOL_GPL(regmap_parse_val);

static int __init regmap_initcall(void)
{
	regmap_debugfs_initcall();

	return 0;
}
postcore_initcall(regmap_initcall);