summaryrefslogtreecommitdiffstats
path: root/drivers/edac/skx_base.c
blob: 4dbd46575bfb47e6e2ff07aae2481307e415a852 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
// SPDX-License-Identifier: GPL-2.0
/*
 * EDAC driver for Intel(R) Xeon(R) Skylake processors
 * Copyright (c) 2016, Intel Corporation.
 */

#include <linux/kernel.h>
#include <linux/processor.h>
#include <asm/cpu_device_id.h>
#include <asm/intel-family.h>
#include <asm/mce.h>

#include "edac_module.h"
#include "skx_common.h"

#define EDAC_MOD_STR    "skx_edac"

/*
 * Debug macros
 */
#define skx_printk(level, fmt, arg...)			\
	edac_printk(level, "skx", fmt, ##arg)

#define skx_mc_printk(mci, level, fmt, arg...)		\
	edac_mc_chipset_printk(mci, level, "skx", fmt, ##arg)

static struct list_head *skx_edac_list;

static u64 skx_tolm, skx_tohm;
static int skx_num_sockets;
static unsigned int nvdimm_count;

#define	MASK26	0x3FFFFFF		/* Mask for 2^26 */
#define MASK29	0x1FFFFFFF		/* Mask for 2^29 */

static struct skx_dev *get_skx_dev(struct pci_bus *bus, u8 idx)
{
	struct skx_dev *d;

	list_for_each_entry(d, skx_edac_list, list) {
		if (d->seg == pci_domain_nr(bus) && d->bus[idx] == bus->number)
			return d;
	}

	return NULL;
}

enum munittype {
	CHAN0, CHAN1, CHAN2, SAD_ALL, UTIL_ALL, SAD,
	ERRCHAN0, ERRCHAN1, ERRCHAN2,
};

struct munit {
	u16	did;
	u16	devfn[SKX_NUM_IMC];
	u8	busidx;
	u8	per_socket;
	enum munittype mtype;
};

/*
 * List of PCI device ids that we need together with some device
 * number and function numbers to tell which memory controller the
 * device belongs to.
 */
static const struct munit skx_all_munits[] = {
	{ 0x2054, { }, 1, 1, SAD_ALL },
	{ 0x2055, { }, 1, 1, UTIL_ALL },
	{ 0x2040, { PCI_DEVFN(10, 0), PCI_DEVFN(12, 0) }, 2, 2, CHAN0 },
	{ 0x2044, { PCI_DEVFN(10, 4), PCI_DEVFN(12, 4) }, 2, 2, CHAN1 },
	{ 0x2048, { PCI_DEVFN(11, 0), PCI_DEVFN(13, 0) }, 2, 2, CHAN2 },
	{ 0x2043, { PCI_DEVFN(10, 3), PCI_DEVFN(12, 3) }, 2, 2, ERRCHAN0 },
	{ 0x2047, { PCI_DEVFN(10, 7), PCI_DEVFN(12, 7) }, 2, 2, ERRCHAN1 },
	{ 0x204b, { PCI_DEVFN(11, 3), PCI_DEVFN(13, 3) }, 2, 2, ERRCHAN2 },
	{ 0x208e, { }, 1, 0, SAD },
	{ }
};

static int get_all_munits(const struct munit *m)
{
	struct pci_dev *pdev, *prev;
	struct skx_dev *d;
	u32 reg;
	int i = 0, ndev = 0;

	prev = NULL;
	for (;;) {
		pdev = pci_get_device(PCI_VENDOR_ID_INTEL, m->did, prev);
		if (!pdev)
			break;
		ndev++;
		if (m->per_socket == SKX_NUM_IMC) {
			for (i = 0; i < SKX_NUM_IMC; i++)
				if (m->devfn[i] == pdev->devfn)
					break;
			if (i == SKX_NUM_IMC)
				goto fail;
		}
		d = get_skx_dev(pdev->bus, m->busidx);
		if (!d)
			goto fail;

		/* Be sure that the device is enabled */
		if (unlikely(pci_enable_device(pdev) < 0)) {
			skx_printk(KERN_ERR, "Couldn't enable device %04x:%04x\n",
				   PCI_VENDOR_ID_INTEL, m->did);
			goto fail;
		}

		switch (m->mtype) {
		case CHAN0:
		case CHAN1:
		case CHAN2:
			pci_dev_get(pdev);
			d->imc[i].chan[m->mtype].cdev = pdev;
			break;
		case ERRCHAN0:
		case ERRCHAN1:
		case ERRCHAN2:
			pci_dev_get(pdev);
			d->imc[i].chan[m->mtype - ERRCHAN0].edev = pdev;
			break;
		case SAD_ALL:
			pci_dev_get(pdev);
			d->sad_all = pdev;
			break;
		case UTIL_ALL:
			pci_dev_get(pdev);
			d->util_all = pdev;
			break;
		case SAD:
			/*
			 * one of these devices per core, including cores
			 * that don't exist on this SKU. Ignore any that
			 * read a route table of zero, make sure all the
			 * non-zero values match.
			 */
			pci_read_config_dword(pdev, 0xB4, &reg);
			if (reg != 0) {
				if (d->mcroute == 0) {
					d->mcroute = reg;
				} else if (d->mcroute != reg) {
					skx_printk(KERN_ERR, "mcroute mismatch\n");
					goto fail;
				}
			}
			ndev--;
			break;
		}

		prev = pdev;
	}

	return ndev;
fail:
	pci_dev_put(pdev);
	return -ENODEV;
}

static struct res_config skx_cfg = {
	.type			= SKX,
	.decs_did		= 0x2016,
	.busno_cfg_offset	= 0xcc,
};

static const struct x86_cpu_id skx_cpuids[] = {
	X86_MATCH_INTEL_FAM6_MODEL_STEPPINGS(SKYLAKE_X, X86_STEPPINGS(0x0, 0xf), &skx_cfg),
	{ }
};
MODULE_DEVICE_TABLE(x86cpu, skx_cpuids);

static bool skx_check_ecc(u32 mcmtr)
{
	return !!GET_BITFIELD(mcmtr, 2, 2);
}

static int skx_get_dimm_config(struct mem_ctl_info *mci, struct res_config *cfg)
{
	struct skx_pvt *pvt = mci->pvt_info;
	u32 mtr, mcmtr, amap, mcddrtcfg;
	struct skx_imc *imc = pvt->imc;
	struct dimm_info *dimm;
	int i, j;
	int ndimms;

	/* Only the mcmtr on the first channel is effective */
	pci_read_config_dword(imc->chan[0].cdev, 0x87c, &mcmtr);

	for (i = 0; i < SKX_NUM_CHANNELS; i++) {
		ndimms = 0;
		pci_read_config_dword(imc->chan[i].cdev, 0x8C, &amap);
		pci_read_config_dword(imc->chan[i].cdev, 0x400, &mcddrtcfg);
		for (j = 0; j < SKX_NUM_DIMMS; j++) {
			dimm = edac_get_dimm(mci, i, j, 0);
			pci_read_config_dword(imc->chan[i].cdev,
					      0x80 + 4 * j, &mtr);
			if (IS_DIMM_PRESENT(mtr)) {
				ndimms += skx_get_dimm_info(mtr, mcmtr, amap, dimm, imc, i, j, cfg);
			} else if (IS_NVDIMM_PRESENT(mcddrtcfg, j)) {
				ndimms += skx_get_nvdimm_info(dimm, imc, i, j,
							      EDAC_MOD_STR);
				nvdimm_count++;
			}
		}
		if (ndimms && !skx_check_ecc(mcmtr)) {
			skx_printk(KERN_ERR, "ECC is disabled on imc %d\n", imc->mc);
			return -ENODEV;
		}
	}

	return 0;
}

#define	SKX_MAX_SAD 24

#define SKX_GET_SAD(d, i, reg)	\
	pci_read_config_dword((d)->sad_all, 0x60 + 8 * (i), &(reg))
#define SKX_GET_ILV(d, i, reg)	\
	pci_read_config_dword((d)->sad_all, 0x64 + 8 * (i), &(reg))

#define	SKX_SAD_MOD3MODE(sad)	GET_BITFIELD((sad), 30, 31)
#define	SKX_SAD_MOD3(sad)	GET_BITFIELD((sad), 27, 27)
#define SKX_SAD_LIMIT(sad)	(((u64)GET_BITFIELD((sad), 7, 26) << 26) | MASK26)
#define	SKX_SAD_MOD3ASMOD2(sad)	GET_BITFIELD((sad), 5, 6)
#define	SKX_SAD_ATTR(sad)	GET_BITFIELD((sad), 3, 4)
#define	SKX_SAD_INTERLEAVE(sad)	GET_BITFIELD((sad), 1, 2)
#define SKX_SAD_ENABLE(sad)	GET_BITFIELD((sad), 0, 0)

#define SKX_ILV_REMOTE(tgt)	(((tgt) & 8) == 0)
#define SKX_ILV_TARGET(tgt)	((tgt) & 7)

static void skx_show_retry_rd_err_log(struct decoded_addr *res,
				      char *msg, int len)
{
	u32 log0, log1, log2, log3, log4;
	u32 corr0, corr1, corr2, corr3;
	struct pci_dev *edev;
	int n;

	edev = res->dev->imc[res->imc].chan[res->channel].edev;

	pci_read_config_dword(edev, 0x154, &log0);
	pci_read_config_dword(edev, 0x148, &log1);
	pci_read_config_dword(edev, 0x150, &log2);
	pci_read_config_dword(edev, 0x15c, &log3);
	pci_read_config_dword(edev, 0x114, &log4);

	n = snprintf(msg, len, " retry_rd_err_log[%.8x %.8x %.8x %.8x %.8x]",
		     log0, log1, log2, log3, log4);

	pci_read_config_dword(edev, 0x104, &corr0);
	pci_read_config_dword(edev, 0x108, &corr1);
	pci_read_config_dword(edev, 0x10c, &corr2);
	pci_read_config_dword(edev, 0x110, &corr3);

	if (len - n > 0)
		snprintf(msg + n, len - n,
			 " correrrcnt[%.4x %.4x %.4x %.4x %.4x %.4x %.4x %.4x]",
			 corr0 & 0xffff, corr0 >> 16,
			 corr1 & 0xffff, corr1 >> 16,
			 corr2 & 0xffff, corr2 >> 16,
			 corr3 & 0xffff, corr3 >> 16);
}

static bool skx_sad_decode(struct decoded_addr *res)
{
	struct skx_dev *d = list_first_entry(skx_edac_list, typeof(*d), list);
	u64 addr = res->addr;
	int i, idx, tgt, lchan, shift;
	u32 sad, ilv;
	u64 limit, prev_limit;
	int remote = 0;

	/* Simple sanity check for I/O space or out of range */
	if (addr >= skx_tohm || (addr >= skx_tolm && addr < BIT_ULL(32))) {
		edac_dbg(0, "Address 0x%llx out of range\n", addr);
		return false;
	}

restart:
	prev_limit = 0;
	for (i = 0; i < SKX_MAX_SAD; i++) {
		SKX_GET_SAD(d, i, sad);
		limit = SKX_SAD_LIMIT(sad);
		if (SKX_SAD_ENABLE(sad)) {
			if (addr >= prev_limit && addr <= limit)
				goto sad_found;
		}
		prev_limit = limit + 1;
	}
	edac_dbg(0, "No SAD entry for 0x%llx\n", addr);
	return false;

sad_found:
	SKX_GET_ILV(d, i, ilv);

	switch (SKX_SAD_INTERLEAVE(sad)) {
	case 0:
		idx = GET_BITFIELD(addr, 6, 8);
		break;
	case 1:
		idx = GET_BITFIELD(addr, 8, 10);
		break;
	case 2:
		idx = GET_BITFIELD(addr, 12, 14);
		break;
	case 3:
		idx = GET_BITFIELD(addr, 30, 32);
		break;
	}

	tgt = GET_BITFIELD(ilv, 4 * idx, 4 * idx + 3);

	/* If point to another node, find it and start over */
	if (SKX_ILV_REMOTE(tgt)) {
		if (remote) {
			edac_dbg(0, "Double remote!\n");
			return false;
		}
		remote = 1;
		list_for_each_entry(d, skx_edac_list, list) {
			if (d->imc[0].src_id == SKX_ILV_TARGET(tgt))
				goto restart;
		}
		edac_dbg(0, "Can't find node %d\n", SKX_ILV_TARGET(tgt));
		return false;
	}

	if (SKX_SAD_MOD3(sad) == 0) {
		lchan = SKX_ILV_TARGET(tgt);
	} else {
		switch (SKX_SAD_MOD3MODE(sad)) {
		case 0:
			shift = 6;
			break;
		case 1:
			shift = 8;
			break;
		case 2:
			shift = 12;
			break;
		default:
			edac_dbg(0, "illegal mod3mode\n");
			return false;
		}
		switch (SKX_SAD_MOD3ASMOD2(sad)) {
		case 0:
			lchan = (addr >> shift) % 3;
			break;
		case 1:
			lchan = (addr >> shift) % 2;
			break;
		case 2:
			lchan = (addr >> shift) % 2;
			lchan = (lchan << 1) | !lchan;
			break;
		case 3:
			lchan = ((addr >> shift) % 2) << 1;
			break;
		}
		lchan = (lchan << 1) | (SKX_ILV_TARGET(tgt) & 1);
	}

	res->dev = d;
	res->socket = d->imc[0].src_id;
	res->imc = GET_BITFIELD(d->mcroute, lchan * 3, lchan * 3 + 2);
	res->channel = GET_BITFIELD(d->mcroute, lchan * 2 + 18, lchan * 2 + 19);

	edac_dbg(2, "0x%llx: socket=%d imc=%d channel=%d\n",
		 res->addr, res->socket, res->imc, res->channel);
	return true;
}

#define	SKX_MAX_TAD 8

#define SKX_GET_TADBASE(d, mc, i, reg)			\
	pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x850 + 4 * (i), &(reg))
#define SKX_GET_TADWAYNESS(d, mc, i, reg)		\
	pci_read_config_dword((d)->imc[mc].chan[0].cdev, 0x880 + 4 * (i), &(reg))
#define SKX_GET_TADCHNILVOFFSET(d, mc, ch, i, reg)	\
	pci_read_config_dword((d)->imc[mc].chan[ch].cdev, 0x90 + 4 * (i), &(reg))

#define	SKX_TAD_BASE(b)		((u64)GET_BITFIELD((b), 12, 31) << 26)
#define SKX_TAD_SKT_GRAN(b)	GET_BITFIELD((b), 4, 5)
#define SKX_TAD_CHN_GRAN(b)	GET_BITFIELD((b), 6, 7)
#define	SKX_TAD_LIMIT(b)	(((u64)GET_BITFIELD((b), 12, 31) << 26) | MASK26)
#define	SKX_TAD_OFFSET(b)	((u64)GET_BITFIELD((b), 4, 23) << 26)
#define	SKX_TAD_SKTWAYS(b)	(1 << GET_BITFIELD((b), 10, 11))
#define	SKX_TAD_CHNWAYS(b)	(GET_BITFIELD((b), 8, 9) + 1)

/* which bit used for both socket and channel interleave */
static int skx_granularity[] = { 6, 8, 12, 30 };

static u64 skx_do_interleave(u64 addr, int shift, int ways, u64 lowbits)
{
	addr >>= shift;
	addr /= ways;
	addr <<= shift;

	return addr | (lowbits & ((1ull << shift) - 1));
}

static bool skx_tad_decode(struct decoded_addr *res)
{
	int i;
	u32 base, wayness, chnilvoffset;
	int skt_interleave_bit, chn_interleave_bit;
	u64 channel_addr;

	for (i = 0; i < SKX_MAX_TAD; i++) {
		SKX_GET_TADBASE(res->dev, res->imc, i, base);
		SKX_GET_TADWAYNESS(res->dev, res->imc, i, wayness);
		if (SKX_TAD_BASE(base) <= res->addr && res->addr <= SKX_TAD_LIMIT(wayness))
			goto tad_found;
	}
	edac_dbg(0, "No TAD entry for 0x%llx\n", res->addr);
	return false;

tad_found:
	res->sktways = SKX_TAD_SKTWAYS(wayness);
	res->chanways = SKX_TAD_CHNWAYS(wayness);
	skt_interleave_bit = skx_granularity[SKX_TAD_SKT_GRAN(base)];
	chn_interleave_bit = skx_granularity[SKX_TAD_CHN_GRAN(base)];

	SKX_GET_TADCHNILVOFFSET(res->dev, res->imc, res->channel, i, chnilvoffset);
	channel_addr = res->addr - SKX_TAD_OFFSET(chnilvoffset);

	if (res->chanways == 3 && skt_interleave_bit > chn_interleave_bit) {
		/* Must handle channel first, then socket */
		channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit,
						 res->chanways, channel_addr);
		channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit,
						 res->sktways, channel_addr);
	} else {
		/* Handle socket then channel. Preserve low bits from original address */
		channel_addr = skx_do_interleave(channel_addr, skt_interleave_bit,
						 res->sktways, res->addr);
		channel_addr = skx_do_interleave(channel_addr, chn_interleave_bit,
						 res->chanways, res->addr);
	}

	res->chan_addr = channel_addr;

	edac_dbg(2, "0x%llx: chan_addr=0x%llx sktways=%d chanways=%d\n",
		 res->addr, res->chan_addr, res->sktways, res->chanways);
	return true;
}

#define SKX_MAX_RIR 4

#define SKX_GET_RIRWAYNESS(d, mc, ch, i, reg)		\
	pci_read_config_dword((d)->imc[mc].chan[ch].cdev,	\
			      0x108 + 4 * (i), &(reg))
#define SKX_GET_RIRILV(d, mc, ch, idx, i, reg)		\
	pci_read_config_dword((d)->imc[mc].chan[ch].cdev,	\
			      0x120 + 16 * (idx) + 4 * (i), &(reg))

#define	SKX_RIR_VALID(b) GET_BITFIELD((b), 31, 31)
#define	SKX_RIR_LIMIT(b) (((u64)GET_BITFIELD((b), 1, 11) << 29) | MASK29)
#define	SKX_RIR_WAYS(b) (1 << GET_BITFIELD((b), 28, 29))
#define	SKX_RIR_CHAN_RANK(b) GET_BITFIELD((b), 16, 19)
#define	SKX_RIR_OFFSET(b) ((u64)(GET_BITFIELD((b), 2, 15) << 26))

static bool skx_rir_decode(struct decoded_addr *res)
{
	int i, idx, chan_rank;
	int shift;
	u32 rirway, rirlv;
	u64 rank_addr, prev_limit = 0, limit;

	if (res->dev->imc[res->imc].chan[res->channel].dimms[0].close_pg)
		shift = 6;
	else
		shift = 13;

	for (i = 0; i < SKX_MAX_RIR; i++) {
		SKX_GET_RIRWAYNESS(res->dev, res->imc, res->channel, i, rirway);
		limit = SKX_RIR_LIMIT(rirway);
		if (SKX_RIR_VALID(rirway)) {
			if (prev_limit <= res->chan_addr &&
			    res->chan_addr <= limit)
				goto rir_found;
		}
		prev_limit = limit;
	}
	edac_dbg(0, "No RIR entry for 0x%llx\n", res->addr);
	return false;

rir_found:
	rank_addr = res->chan_addr >> shift;
	rank_addr /= SKX_RIR_WAYS(rirway);
	rank_addr <<= shift;
	rank_addr |= res->chan_addr & GENMASK_ULL(shift - 1, 0);

	res->rank_address = rank_addr;
	idx = (res->chan_addr >> shift) % SKX_RIR_WAYS(rirway);

	SKX_GET_RIRILV(res->dev, res->imc, res->channel, idx, i, rirlv);
	res->rank_address = rank_addr - SKX_RIR_OFFSET(rirlv);
	chan_rank = SKX_RIR_CHAN_RANK(rirlv);
	res->channel_rank = chan_rank;
	res->dimm = chan_rank / 4;
	res->rank = chan_rank % 4;

	edac_dbg(2, "0x%llx: dimm=%d rank=%d chan_rank=%d rank_addr=0x%llx\n",
		 res->addr, res->dimm, res->rank,
		 res->channel_rank, res->rank_address);
	return true;
}

static u8 skx_close_row[] = {
	15, 16, 17, 18, 20, 21, 22, 28, 10, 11, 12, 13, 29, 30, 31, 32, 33
};

static u8 skx_close_column[] = {
	3, 4, 5, 14, 19, 23, 24, 25, 26, 27
};

static u8 skx_open_row[] = {
	14, 15, 16, 20, 28, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33
};

static u8 skx_open_column[] = {
	3, 4, 5, 6, 7, 8, 9, 10, 11, 12
};

static u8 skx_open_fine_column[] = {
	3, 4, 5, 7, 8, 9, 10, 11, 12, 13
};

static int skx_bits(u64 addr, int nbits, u8 *bits)
{
	int i, res = 0;

	for (i = 0; i < nbits; i++)
		res |= ((addr >> bits[i]) & 1) << i;
	return res;
}

static int skx_bank_bits(u64 addr, int b0, int b1, int do_xor, int x0, int x1)
{
	int ret = GET_BITFIELD(addr, b0, b0) | (GET_BITFIELD(addr, b1, b1) << 1);

	if (do_xor)
		ret ^= GET_BITFIELD(addr, x0, x0) | (GET_BITFIELD(addr, x1, x1) << 1);

	return ret;
}

static bool skx_mad_decode(struct decoded_addr *r)
{
	struct skx_dimm *dimm = &r->dev->imc[r->imc].chan[r->channel].dimms[r->dimm];
	int bg0 = dimm->fine_grain_bank ? 6 : 13;

	if (dimm->close_pg) {
		r->row = skx_bits(r->rank_address, dimm->rowbits, skx_close_row);
		r->column = skx_bits(r->rank_address, dimm->colbits, skx_close_column);
		r->column |= 0x400; /* C10 is autoprecharge, always set */
		r->bank_address = skx_bank_bits(r->rank_address, 8, 9, dimm->bank_xor_enable, 22, 28);
		r->bank_group = skx_bank_bits(r->rank_address, 6, 7, dimm->bank_xor_enable, 20, 21);
	} else {
		r->row = skx_bits(r->rank_address, dimm->rowbits, skx_open_row);
		if (dimm->fine_grain_bank)
			r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_fine_column);
		else
			r->column = skx_bits(r->rank_address, dimm->colbits, skx_open_column);
		r->bank_address = skx_bank_bits(r->rank_address, 18, 19, dimm->bank_xor_enable, 22, 23);
		r->bank_group = skx_bank_bits(r->rank_address, bg0, 17, dimm->bank_xor_enable, 20, 21);
	}
	r->row &= (1u << dimm->rowbits) - 1;

	edac_dbg(2, "0x%llx: row=0x%x col=0x%x bank_addr=%d bank_group=%d\n",
		 r->addr, r->row, r->column, r->bank_address,
		 r->bank_group);
	return true;
}

static bool skx_decode(struct decoded_addr *res)
{
	return skx_sad_decode(res) && skx_tad_decode(res) &&
		skx_rir_decode(res) && skx_mad_decode(res);
}

static struct notifier_block skx_mce_dec = {
	.notifier_call	= skx_mce_check_error,
	.priority	= MCE_PRIO_EDAC,
};

#ifdef CONFIG_EDAC_DEBUG
/*
 * Debug feature.
 * Exercise the address decode logic by writing an address to
 * /sys/kernel/debug/edac/skx_test/addr.
 */
static struct dentry *skx_test;

static int debugfs_u64_set(void *data, u64 val)
{
	struct mce m;

	pr_warn_once("Fake error to 0x%llx injected via debugfs\n", val);

	memset(&m, 0, sizeof(m));
	/* ADDRV + MemRd + Unknown channel */
	m.status = MCI_STATUS_ADDRV + 0x90;
	/* One corrected error */
	m.status |= BIT_ULL(MCI_STATUS_CEC_SHIFT);
	m.addr = val;
	skx_mce_check_error(NULL, 0, &m);

	return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(fops_u64_wo, NULL, debugfs_u64_set, "%llu\n");

static void setup_skx_debug(void)
{
	skx_test = edac_debugfs_create_dir("skx_test");
	if (!skx_test)
		return;

	if (!edac_debugfs_create_file("addr", 0200, skx_test,
				      NULL, &fops_u64_wo)) {
		debugfs_remove(skx_test);
		skx_test = NULL;
	}
}

static void teardown_skx_debug(void)
{
	debugfs_remove_recursive(skx_test);
}
#else
static inline void setup_skx_debug(void) {}
static inline void teardown_skx_debug(void) {}
#endif /*CONFIG_EDAC_DEBUG*/

/*
 * skx_init:
 *	make sure we are running on the correct cpu model
 *	search for all the devices we need
 *	check which DIMMs are present.
 */
static int __init skx_init(void)
{
	const struct x86_cpu_id *id;
	struct res_config *cfg;
	const struct munit *m;
	const char *owner;
	int rc = 0, i, off[3] = {0xd0, 0xd4, 0xd8};
	u8 mc = 0, src_id, node_id;
	struct skx_dev *d;

	edac_dbg(2, "\n");

	owner = edac_get_owner();
	if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
		return -EBUSY;

	if (cpu_feature_enabled(X86_FEATURE_HYPERVISOR))
		return -ENODEV;

	id = x86_match_cpu(skx_cpuids);
	if (!id)
		return -ENODEV;

	cfg = (struct res_config *)id->driver_data;

	rc = skx_get_hi_lo(0x2034, off, &skx_tolm, &skx_tohm);
	if (rc)
		return rc;

	rc = skx_get_all_bus_mappings(cfg, &skx_edac_list);
	if (rc < 0)
		goto fail;
	if (rc == 0) {
		edac_dbg(2, "No memory controllers found\n");
		return -ENODEV;
	}
	skx_num_sockets = rc;

	for (m = skx_all_munits; m->did; m++) {
		rc = get_all_munits(m);
		if (rc < 0)
			goto fail;
		if (rc != m->per_socket * skx_num_sockets) {
			edac_dbg(2, "Expected %d, got %d of 0x%x\n",
				 m->per_socket * skx_num_sockets, rc, m->did);
			rc = -ENODEV;
			goto fail;
		}
	}

	list_for_each_entry(d, skx_edac_list, list) {
		rc = skx_get_src_id(d, 0xf0, &src_id);
		if (rc < 0)
			goto fail;
		rc = skx_get_node_id(d, &node_id);
		if (rc < 0)
			goto fail;
		edac_dbg(2, "src_id=%d node_id=%d\n", src_id, node_id);
		for (i = 0; i < SKX_NUM_IMC; i++) {
			d->imc[i].mc = mc++;
			d->imc[i].lmc = i;
			d->imc[i].src_id = src_id;
			d->imc[i].node_id = node_id;
			rc = skx_register_mci(&d->imc[i], d->imc[i].chan[0].cdev,
					      "Skylake Socket", EDAC_MOD_STR,
					      skx_get_dimm_config, cfg);
			if (rc < 0)
				goto fail;
		}
	}

	skx_set_decode(skx_decode, skx_show_retry_rd_err_log);

	if (nvdimm_count && skx_adxl_get() == -ENODEV)
		skx_printk(KERN_NOTICE, "Only decoding DDR4 address!\n");

	/* Ensure that the OPSTATE is set correctly for POLL or NMI */
	opstate_init();

	setup_skx_debug();

	mce_register_decode_chain(&skx_mce_dec);

	return 0;
fail:
	skx_remove();
	return rc;
}

static void __exit skx_exit(void)
{
	edac_dbg(2, "\n");
	mce_unregister_decode_chain(&skx_mce_dec);
	teardown_skx_debug();
	if (nvdimm_count)
		skx_adxl_put();
	skx_remove();
}

module_init(skx_init);
module_exit(skx_exit);

module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");

MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Tony Luck");
MODULE_DESCRIPTION("MC Driver for Intel Skylake server processors");